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A new method for creating the most important eigenvalue problems in quantum mechanics
is developed. The solutions can be found immediately once the equations are factorized by
means of linear operators. These operators acting on a normalized eigenfunction change it
into a new normalized eigenfunction and all solutions can be found once the basic eigenfunction
is known. This basic eigenfunction is a solution of a simple differential equation of the first
order. The underlying theory is explained more fully on a special case (Section 1) and then
the rules of procedure are formulated explicitly (Section 2). The rest of the paper contains
applications including the Kepler problem treated according to Dirac's theory.

INTRQDUcTIoN

HIS paper contains a very simple method
of solving the most important eigenvalue

problems in quantum mechanics. The method
applies however only to the discontinuous spec-
trum. No power series or polynomial develop-
ment is necessary. The diAiculty of normalization
is avoided; our formulae give the energy eigen-
values and the normalized eigenfunctions.

The basic ideas of the method are closely re-
lated to those recently developed by Schrodinger. '
But there are also essential differences between
these two methods. In Schrodinger's language
the basic difference can be expressed as follows.
Schrodinger uses a finite number of infinite
ladders, whereas I use an infinite number of
finite ladders. All problems on which Schrodinger
illustrated his method can be treated directly
by mine. But the opposite is not true. This is
evident if we compare the two treatments of
the Kepler problem (in a Euclidean, or spherical
space). In this paper the Kepler problem fur-
nishes a direct application of the method. But
it cannot be treated directly by Schrodinger's
method. What Schrodinger does, and what is
usually done, is to use a transformation involving
the coordinate and energy and to change the
Kepler .problem into a different, though related
problem, accessible to his method.

The first section of this paper contains a
typical eigenvalue problem which I have tried to
treat slowly and carefully. The discussion of all
other cases follows the same pattern and I

' E. Schrodinger, Proc. Roy. Irish Acad. A46, 9—16
(May 1940).
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present them in a tempo which accelerates with
their increasing number.

1. THE FIRsT CAsE

When presented with a problem of the
Sturm-Liouville type, we shall always change
it into the form

d'u/dx'+ru+Xu =0; u =u(x). (1.1)

This is possible if in the original form

d(pv')/dy+gv+Xpv =0; v =v(y), (1.2)

the functions p, p are never negative and if p/p
exists everywhere in the interval in which the
solution is considered. The transformation lead-
ing from (1.2) to (1.1) is2

u=(pp) *v; x=, ~

(
—-( dy.

~, (pi
In particular if p=p, the transformation from
(1.2) to (1.1) does not involve a change in the
independent variable. ' The boundary condition
will always be the same: the vanishing of u at
the ends of the interval. In the case in which
the interval reaches infinity, the condition that
J'u'dx (taken over the whole interval) is finite
should be added.

We shall now formulate our first case:

m(m+1)u" — u+ (X+1)u =0.
s1n x

(1.4)

~ Courant-Hilbert, Methoden der Matkematishen PJfysik
(Springer, Berlin, 1931),Vol. 1, p. 250.

3The choice of the form (1.1) is only to systematize
our procedure. The method could be applied just as well
to (1.2).
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After having performed the indicated linear
operations we find that both (1.5a) and (1.5b)
lead to (1.4). Therefore (1.4) can be written
either in the form (1.5a) or (1.5b). In (1.5) the
dependence of n on ), m is expressed explicitly
and that on x suppressed. The equation (1.5b)
can be obtained from (1.5a) by interchanging
the first two coeKcients, and changing (m+1)
into m everywhere with the exception of u(X, m).

For later use we shall write (1.5) in the more

general form:

H("+'&+H( +'& u(X, m)

= (X —I.(m+1))u(X, m), (1.6a)

H H"+u(X, m) =(),—-I.( m)) (uX, m), (1.6b)

where, in our special case

II"~ =m cot x&d/dx;

I.(m) =m' 1= (m —1—)(m+1).
(1 7)

Theorem I

(»(II'" f)dx = (EI~+y) f—dx, (1.8)f
0

if (yf) vanishes at the ends of the interval and

H ~ are given by (1.7). This means: the opera-

4 Ke omit throughout, the case of m&0 since this does
not lead to new eigenfunctions.

Indeed the equation (1.4) has the general
form (1.1);m is assumed to be a positive integer'
(m=0, 1, 2 ~ ~ ) and the interval for x is (0, »r).

Putting (X+1) in (1.4) instead of X seems to be
unnecessary but it is connected with the history
of this equation and with its physical meaning
about which I shall say a word more in Sections
3 and 7.

The next step is to factorize the equation (1.4).
Once this is done, the problem of finding the
eigenvalues for ) and the eigenfunctions is easy
and can be solved almost without calculation.
To factorize (1.4) means to replace it by the
following two equations:

{(m+1)cot x+d/dx} {(m+1)cot x —d/dx}

Xu(X, m) = {X—(m+1)'+1}u(X, m), (1.5a)

{m cot x —d/dx} {m cot x+d/dx}u(). , m)

= {X—m'+1}u(7, m). (1.5b)

tors H and II+ are mutually adjoin/. The proof
is self-evident.

u(X» m+1) =H("+" u(X m) (1 9a)

u(X», m —1)=H"+u(X„m)

are also solutions corresponding to the number
pairs (X», m+1) and (X», m —1), respectively. This
means: having a solution belonging to X(I, m, we

can 6nd, by applying our linear operators, new

solutions corresponding to ) 0, m+ I and Xo, m —1.
Thus we can go one step higher and one step
lower in the nz's. The argument can of course
be prolonged and thus we obtain a ladder of
solution in the m's, belonging to a definite Xo.

For the proof we multiply (1.6a} by H("+"
and (1.6b) by II +. The result is

(H(m+ i&—H(m+1&+)(H(m+&& —
u(7( m))

= (X» —I.(m+1)) (H("+'& u(X» m}), (1.10a)

(EEL+II" )(H~+u(X m)—)

= (X» —I-(m)) (H"+u(l((&, m)). (1.10b)

The comparison of (1.10) with (1.6) proves
our theorem expressed in the equations (1.9).
In our argument no use was made of the special
form of' the II~.

AVe know that the ladder constructed in this

way must end when the bottom, that is m=o,
is reached since m is assumed to be &~0. The
essential point to which we are driving is that
the ladder in which we are interested has not

only a bottom but also a top, that is, it is a
hnite ladder.

The equations (1.6a) and (1.6b) can be

interpreted with the help of our ladder picture
in the following way: by going one step up the

ladder and one step down the ladder (or one

step down and one step up) we arrive at the

solution from which we started, but multiplied

by (7(» —I (m+1)) or by (),»
—I (m)).

Theorem H

Let us assume that for a particular value of
7&=X» and for m+0, u(X», m) is a solution of
(1.4). (We do not care, for the moment, whether

u(X», m) satisfies our boundary condition. ) We
can prove that
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Theorem IV

A necessary condition that our solution
Q(lip, m), belonging to Xp, m should exist is that

Xp —L(np+1) ~&0. (1.11)

For the proof we multiply (1.6a) by u(Xp, m)
and integrate from 0 to x. We obtain, because
of Theorem I and (1.9a)

u'(Xp, m+1)dx

= ().,—L(pip+1)) u'(X, , m)dx. (1.12)
Jo

But this equation is not possible if Xp —L(m+1)
(0 and u(Xp, pit) exists. In the important case

we deduce
Xp — (Lm 1+) = 0,

u(Xp, m+1) =0

(1.13)

(1 14)

from (1.12) assuming that u(Xp, m) is our solution
(and, therefore, not identically equal to zero).
Thus our ladder has its top; it ends for the value
of pit which satisfies Xp —L(m+1) =0, if such

Theorem III
If u(Xp, m) is our solution, that is a regular

solution vanishing at the ends of the interval,
then the solutions obtained through (1.9) are
also our solutions. The contrary is also true.
Or: our and not our ladders do not mix. The
ladder can be either entirely ours or entirely
not ours.

If u(Xp, m) is our solution (for m+0), then as
a glance at (1.4) shows u(Xp, m) must go to zero
at the end of the interval (0, pr), at least as
rapidly as sin' x. Therefore, H'"+" u(Xp, m) and
H +u(Xp, m) must be also our solution and thus
the argument can be prolonged. This follows
from the form of H ~ expressed by (1.7). If,
however, u(Xp, m) is not our solution then neither
can be pt(Xp, m+1) =H'"+" (Xp, m), because go-
ing one step up and one step down leads (except
for a constant factor) to a solution from which
we started.

Though in proving this theorem we made use
of the special form of our equation (1.4) the
argument is much the same in most of the cases
considered later.

m=l, (1.16)

which is always possible, as m is an integer.
The equation (1.6a) takes then the simple form

II«+»+II«+»-u, & =0 (1.17)

This equation is fulfilled if

H&'+" ui' ——((l+1) cot x—d/dx)ui' ——0, (1.18)
or

ui'=n sin'+'x; n =constant. (1.19)

This is our solution and as it contains an
arbitrary constant it represents all the solutions
belonging to m=l, X& L(l+1) and s——atisfying
our boundary condition. Indeed we see: If there
were any other solution u&', regular and satisfying
our boundary condition and for which II«+') u&'

+0, then we could go up the ladder to ui'+'QO
contrary to Theorem IV.

We cannot go higher towards greater m's,

because the higher solutions are zero solutions.
But we can go down the ladder, obtaining always
our solutions, always different from zero, as it
can be seen from (1.12) and from the fact that
L(l+1)—L(m+1) is always greater than zero
for m=0, 1 . l —1. Thus we have for a given l
a finite ladder with the top corresponding to
m=l and the bottom corresponding to m=0. .

The solutions are:

(1.20)

defined explicitly by

u)'=u sin '+'x;
(1.21)

u ~ ' =H"+ui" ——(m cot x+.d/dx)ui".

b. The condition is necessary. —We shall prove
now that these are the only solutions satisfying

integer m exists. This theorem is again general
and holds as long as (1.8) holds.

Theorem V

A necessary and suf6cient condition for the
existence of our ladder, belonging to (1.4) is:

X=Xi=L(l+1)=I(I+2); 1=0, 1, 2, ~ . (1.15)

a. The condition is sufhcient. —From now on
let us write Ni instead of uP i, m), where
l (0, 1, 2 ) is defined by (1.15). For a chosen
l there may be various m's for which u& is our
solution. Let us choose
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(U( )'dx=1. (1.26)

By using the operators 3C~ instead of H~ we

thus obtain a normalized ladder if the solution
from which we start, that is the top, is normal-
ized. Thus the final, normalized solution of our
problem can be written:

then u& must exist as it was gained by a legiti-
mate climbing up from the given solution u~. .
But u~ '+' cannot be our solution because L(l'+1)
—L(l+2) &0. Thus from our solution we could
obtain a solution by going up the ladder which
is not ours, contrary to Theorem III.

Summarizing we can say: To each 4=1(1+2)
(l=0, 1 ~ ~ ~ ) and only to such P, 's, there belongs
a finite ladder of solutions the top of which and
the successive steps down to m =0 are described
by (1.21).

Although our argument applied to the special
form (1.15) of L(l+1) it will be much the same
in all other cases. There is, however, one special
feature of (1.4) which will not appear later.
In the case of (1.4) we could equally well char-
acterize the ladder by starting from the bottom.
Indeed for m =0 the solution is simply

), =l(l+2)

1 (2.4 (2l+2) q
'*

sin'+'x
+jr (1.3 (2l+1)I

(1.27)

Up '=3Cp+Up=((i+1+m)(l+1 —m)) &

&& (m cot x+d/dx) U~", (1.28)

l, m =0, 1, 2 . ; m ~& I.

Although the reasoning leading to this result
was fairly long, the mechanical calculatioris are
practically non-existent, once the equation is
factorized. Equation (1.28) and X& =L(l+1)
=l(l+2) are known, once the factorization is
performed and U~' is a normalized solution of
an elementary diff'erential equation of the first
order.uP=n sin (l+1)x (1.22)

our boundary condition. Let us assume that this and multiplying (1.25) by Up and integrating
is not so. First we see that our solutions do not we have:
exist for Xp&0. Indeed in this case Xp —L(m+1)
=Xp —(m+1)'+1 is alway»egative (Theorem (U,"+')'dx= J (U ') dx
IV). The case L(l+1)=(l+1)'—1 for l=0, 1.
was discussed before. Let us now assume
X=L(l'+1) = (l'+1)' —1=l'(l'+2) where l' is not
an integer but greater than zero, and investigate
the corresponding ladder which we assume to
exist. If l and l+1 are two integers satisfying

and we could go along the same ladder up to the
top instead of down to the bottom.

There is one more problem: that of normaliza-
tion. We shall now introduce the normalized
functions U~ and the normalized operators K
and K+. We define

Xp~=(L(l+1) —L(m)) 1H ~ (1.23)

2. GENERALIZATION

We shall now summarize in general terms the
procedure which leads to a solution of all the
eigenvalue problems to be considered.

The equation of the type

u"+r(x, m) u+Xu =0; m =0, 1 ~ ~ ~ (2.1)

(The new oPerators have lao indices: l and m. ) has tp be brpught intp the fprm

U wc+1 —~ (m+1)—U m. U m—I —~ m+U m (] 24)

Theorem VI
(k(x, m+1)+d/dx)(k(x, m+1) —d/dx)

&(u(X, m) = (X—L(m+1))u(X, m), (2.2a)
If U~" is our normalized solution then Up+',

(k( ) d/d )(k( )+d/d )Up ' are also our normalized solutions. Indeed
instead of (1.6) we can write: = (X—L(m)) ug„m). (2.2b)

~ (m+1)+~ (m+I) —U m U m

m—~ m+Um Um
We assume that this is possible and we assume

(1 25b) further that L(l+1)—L(m+1) )0, for m=0
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No Solution4

„LadderS af
Qolvti o~

the 3C+ opt, ration. No solutions lie above the
bisecting line. 5

The questions which have so far been omitted
and which are important for the application of
this method are: 1.) When can an equation of
the type (2.1) be factorized? 2.) How can the
factors k and L be found if the factorization is
possible? Here is the answer to these questions
from (2.1) and (2.2) follows:

o i 2 y 4 5 e z s

FIG. 1.

I—i. Then the eigenvalues for X are &o, &x& ~2

where
Xi ——L(l+1); 1=0, 1, ~ ~

To each value of X~ there belong solutions

k'(x, m+1)+k'(x, m+1)+L(m+1)
= —r(x, m), (2.8a)

k2(x, m) —k'(x, m)+L(m) = —r(x, m). (2.8b)

(2 3) Replacing m+ 1 by m, in (2.8a) we have

k'(x, m) +k'(x, m) +L,(m) = —r(x, m —1), (2.9a)

(2.9b)

2n= 2n—(x—, m) =r(x, m)+r(x, m —1), (2.10a)

(2 4) k'(x, m) —k'(x, m)+L(m) = r(x, m)—
, ~

The top of this ladder, that is ug' is determined
by the equation

(k(x, l+1)—d/dx) u, ' =0, (2 5) 2P=2P(x, m) =r(x, m) —r(x, m —1). (2.10b)

from which follows

u(' ——C exp k(x, l+1)dx,
J gp

(2.6)

Therefore (2.9) can be written

k'+L = o.,

k'= p

(2.11)

(2.12)
where the constant C is determined by the
condition

)t(u)')'dx = 1.

The other expressions in (2.4) are given by the
recurrence formula

u~m '= (L(l+1)—L(m))

and therefore
2kk'= n'; k'= p

k = n'/2P;

(2.13)

(2.14)

Thus the last equation gives us k, if the factor-
ization is possible. Now the answer to our first
question follows immediately. We introduce
(2.14) into (2.11) and we have

X(k(x, m)+d/dx)up=X&"'+u&" (2.7). I.(m) =n n"/4p—' (2.15)

The eigenfunctions obtained in this way are
normalized.

Figure 1 will perhaps make the situation
clearer. Once having the equations factorized
we know X~ as function of l and can therefore
regard the solutions of (2.1) as functions of x,
and two positive integers l, m. The solutions
along the line bisecting the (l, m) plane are
given immediately by a simple quadrature. From
each of these solutions a ladder leads down to
the solutions corresponding to the same value
of ) & and obtained by successive application of

If L(m) calculated by (2.15) is a function of
m alone, then the factorization is possible and
(2.14) with (2.15) give all the data necessary for
factorization, since n and p are known functions.

Let us take as an example that considered in
Section i. We have:

r(x, m) = —(m(m+1)/sin' x)+1;
n = (m'/sin' x) —1;

p = —m/sin' x.
' This diagram was suggested to me by Professor Synge.
'This problem was investigated along di6erent lines

by my students, Coleman and Lin.
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Therefore: therefore, because of (3.5)

k(x, m) =m cot x; L, (m) =m' —1,

exactly as before. This method can be used to
obtain the factorization in all the cases treated
later.

3. SPHERICAL HARMONICS

We shall now solve the differential equation
for associated spherical harmonics:

1 d ( dg) m'g—
{ sin x—}

— +) s = 0. (3 1)
sin x dx E dx) sin' x

y '=a sin'+'x
(3.8)

y m —
L —~m+y m —{(m &) cot x+d/dx}y m

determines our unique solution. By normalizing
the top solution and introducing the K's instead
of the II's we obtain a normalized ladder of Yl
functions characterized finally by:

),i=l(l+1);

t 13 (2~+1)~ l

V,~={
}

sin~+:-x;
2.2.4 2l ) -(3.9)

l+m f+1—m
We shall bring this equation in the form (1.1)
by a transformation X {(m —-,') cot x+d/dx}y)". .

y=(sinl x)g. (3.2)

Thus g are the ordinary associated spherical
harmonics and y the density functions belonging
to them. Equation (3.1) takes the form

We can formulate a more general problem
characterized by the equation

m2+ 2m' —m
y"+2y'y cot x ——— — q+Xy=0, (3.10)

s&n' o.
m 4y" — y+(~+-')y =o.
sin' x

This equation can be factorized:

{(m+-,') cot x+d/dx}

X {(m+-',) cot x —d/dx}y

u=(sin&x) y (3.11)

and we obtain

(3 3) where m, as before, is an integer (m &~ 0) and y is
an arbitrary positive parameter. Again this
equation takes the form (1.1) by a substitution

{(m--', ) cot x-d/dx}

= {X—m(m+1) }y, (3.4a) (m+y) (m+y —1)u" — u+ (X+y') u =0. (3.12)
s&n' x

X {(m—-', ) cot x+d/dx}y
= {X—(m —1)m}y. (3.4b)

Therefore we have, in this case, comparing (3.4)
with (1.6)

L(m+1) =m(m+1);
H"~ = (m —-', ) cot xwd/dx.

We see that this equation is a generalization
of the two cases considered up to now. Indeed
putting &=1, we have the equa. tion (1.4) and
y=-,' leads to (3.3). The functions u are general
ised spherical harmonics and the condition that
y are regular everywhere in the interval (0, s)
leads to the determination of normalized func-
tions U &, „satisfying (3.12). The result is:

The solutions for which g is regular in the
interval (0, s.) exist only if

X)——L(l+1) =l(l+1); t=0, 1, 2, (3.6)

The functions yl', yl', yp . yl' form a ladder
the top of which is determined by

X = l(l+2y);

I'(l+y+1) &

Ul ~ $ sin l+yx
r(1+&+-,')

3C(&"+'&~ = [(l+m+2y)(l —m) j &

X {(m+y) cot xWd/dx},

(3.13)

~(l+1)—y
l P (3.7) U, "'-'=l +U ll, y l l, y ~
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The equations (1.27) and (1.28) follow from
(3.13) for y= 1, and the equations (3.9) for y= ~~.

4. THE KEPLER PROBLEM

The application of this method to the Kepler
problem is straightforward and does not require
the usual transformation which changes the
original eigenvalue problem into a different one.
The differential equation is:

2 2P m(m+1)0"+-0'+—— P+ XP = 0, (4.1)
x x x2

The factorization of (4.4) gives:

1 d m+1
+

m+1 dx x

(=i X+—ip, (4.8b)
m')

m+1 1
p

x m+1 dx

(
(4.8a)

(m+1)'I
1 d m

+ p
x m dx x m dx

where, in the obvious notation:

Xi ———1/(l+1) ',

which has again the general form of (2.2).

X= (2h'/pZ'e')E; x= (pZe'/ll, ')r. (4.2)
Putting

(The usual notation is to use l instead of our m

in (4.1) and, later n instead of our l+1. But
in order to make the comparison with Section
1 simpler, we use here this unconventional
notation. )

We perform the transformation

OI

E~ ———pZ'e4/2h'(l+1)' (4 9)

p
f olX l+ 1g

—x f (l+1) (4.10)

we obtain regular solutious vanishing at the end
of the interval (0, ~). To each X~ of the form
(4.9) we have pP, pP p~', where

p =xP(x) (4 3)

and obtain in place of (4.1) the equation which
has the form of (1.1):

is a solution of

(l+1 1 d q

x l+1 dx)
(4.1 1)

f=(—X)lx.

Then (4.4) takes the form

(4 3)

p"+ (2p/k) ~ —[m(m+1) /k'7 p —p =o;
(4 6)

7 =(—7)—'

and p are functions of (. But although wc can
find the solution of( 4.4) from (4.6) these two are
quite different eigenvalue problems. This can
be seen if we compare the orthogonality condi-
tions for these two equations. If p&, p2 belong to
different values of ) and similarly p&, p2 to
different values of X, we have

p '+(2/ )p —
L ( +1)/ ']p+&p=o. (4 4)

The usual way to treat (4.4) is to perform
the transformation

From this top of the ladder we can reach the
bottom by the recurrence formula:

fm 1 dq
p~" '=Imp~" =

(
———+—!Ip" (4 12)

Ex m dx)

If we try to repeat the uniqueness proof of
Section 1 we encounter one difhculty: for X)0
the expression X —L,(m+ 1) =X+1/(m+1)' is

.always positive. The uniqueness theorem can
be proved only under the assumption X(0, and
only then does a discrete spectrum exist.

The final result for normalized functions R~
can be expressed now:

X = —1/(l+1)',

( 2 ) '+' 1
R(' ——

&l+1) (1+1)[(2l+1)!7 &

Il p

plp2dx= 0 and (p&p&/f)d&=0. (4.7)
Jp

Xx'+'e —*~'+' .(4 13)

'= (t+ 1)m[(l+1 —m) (l+ 1+m) 7
'*

Our method gives us, however, the direct
solution of (4.4) and the use of the transforma-
tion (4.5) is not necessary.

(m 1 dq
Xi +

&x m dx)



744 L. I NFELD

5. THE GENERALIZED KEPLER PROBLEM AND

THE OSCG.LATING ROTATOR

We shall now generalize the Kepler problem,
as before we generalized the equation for
spherical harmonics. This generalization will

later be applied to the solution of two problems:
the oscillating rotator and the Kepler problem
treated by Dirac's equations.

We start from the equation

2a (m+y) (m+y —1)f"+ f- f+Xf= 0, (5.1)
x x2

assuming y)0 and looking for solutious which
vanish at the ends of the interval (0, ~) and
for which fo"f'dx exists. (I'or y=a=1 Eq. (5.1)
goes over into (4.1).)

The last equation can be factorized:

c d+-
m+y dx

(myp a
X( — +—~F( +'

x m+y dxj

which again are a generalization of (4.13).
The solution of (5.1) enables us so solve the

problem of an oscillating rotator. Its equation is

2a m(m+1)+a
+—P— p+7(p =0, (5.6)

x x2

where a is a given, positive parameter.
But, for a given m, the equations (5.6) and

(5.1) are identical if

y = —(m ——',)+[(m+ -') '+a]'*. (5.7)

Therefore: q p is a normalized solution of (5.6) if

qi =~i~,

Finally, the normalized solutions are

F'~, .= (2a/7+I) """'*(I'(2I+27+1)) '

)&x'+& exp —Lxa/(I+y) j;
F"'(, ,——(I+y) (m+y) L(I+m+2') (l —m) $- & -(5.5)

m+y dx where y is defined by (5.7) and must be kept
constant on the way down the ladder from

&+ f (5 2 )
F'~ „ to F"~,. Introducing (5.7) into (5.3) we

(m+. ~)2 have for X the known expression:

t
m+y —1 8

m+y —1 dx
(—~~)'=

I+-', +[(m+-', ) '+a7&
(5.8)

m+7 —1
X

8 d
+

m+y —1 dx

with n =I—m. This example shows that our
method can sometimes be used even if a direct
factorization is not possible.

) + f (5.2b).
(m+y —1)'

6. THE KEPLER PRoBLEM TREATED BY

DIRAC S EQUATIONS

The Kepler problem treated by Dirac's
If X&0 we have a discrete eigenvalue problem equations leads, for the radial functions, to the

for following differential equations

dx, qi qc) Zl Z5.3

and the ladder foz„f'&,„~ f'&, , „ is deters mined by dr r h 4 80) r
(6.1a)

(m+y
z, ,=]

E. x

u d$
f m+1

m+p dx&

J 2& y
m+ I g m+ I

f'(, =nx'+~ e,xp ( xa/(I+y));— dy2 yq IJc ( El Z 8
+~—= —

~
1+—I+a- xi; a=— (6»)

dr r k ( 80) r kc

7A. Sommerfeld, Atombau end Spektrallinien (Vieweg
Sohn, 1929), Vol. II, p. 24—32.' Handblch der Physi 0 (Berlin, Springer, 1933),XXIV/1,

(5.4) p. 312.
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Here x~, x2 are the function densities, as the
normalization condition is

The last equation, together with (6.8) and
(5.3), gives the known formula:

(xi'+ xo')« = 1 (6.2)
o =Z/Zo ——(1+n'Z'/(1+v) ') l -(6.12)

v]vo = (Ko noZo) 2 = v

o =Z/Eo, b =mc/h

(6.3)

and replace xi, x~o by qi, qo in (6.1) defined by:

Ooi Yl(Xl+ X2) i Ooo V2(X1 X2) ~ (6 4)

~ is an integer, positive or negative, but not
equal to zero. B is the total energy and Bo=pc'
the rest energy.

We introduce the following notation:

vi ——(a —nZ); v, = (~+nZ) r

In (6.10) A and B are constants. The functions
F'i, „and F'i, ~ are defined by (5.5) and gained
by descending from P~, ~ to the lowest level
(Foi, ~) and to the level above (F'i, ~).

But the ratio A/B is not arbitrary. We can
find it by going back to the equations (6.7) of
the first order. In terms of the H's belonging
to the generalized Kepler problem (Section 5)
they can be written

AH' Foi, „-B&(o——~/v 1)F'—i, „(613a)

BH'+F'i, ~=Ah(o~/v+1) F'i, „. (6.13b)

The result is:

(pi —booi= (V/r+obVi/Vo) po,

v"'+ b v'o = (v/r o&Vo/Vi) v'i—

Let us multiply these equations by the normal-
ization factor N which changes the IEs into the

(6.5a) K's. Then we obtain from (6.13):

(6.5b) A3Ci' Fo(, , AF'i, , ——

Now, replacing o~» q» by P» Po defined through: = NBb(o~/v 1)F'i, „—, (6.14a)

we obtain

4'i 0'i+ Po i (6.6) BXii+F'i =BFoi

=NAb(o~/v+1) Fog, „. (6.14b)

(v a d ) (ore

~

————fy, =bl ——1 [P„(6.7a)(r v dr) L v )

Therefore:
N—2 —($2/vo) (oog2 1) .

A/B=t («—v)/(«+v) 1'
(6.15)

where

(v a d)
(

———+—)go= $] —+1 (P ii (6.7b) Thus the solution is
ir v dr) & v )

P, =C(o~ v) F'i „&,—=C(o~+v) F'i, „. (6.16)
a =b~nZ. (6.8)

From (6.7) we easily obtain two equations of
the second order in which the function Pi and
Po are separated These .are:

v a d
t

v a d (o'&' 't——+
r v dry r v dr ( v' ) (6.9a)

a d v a d (o'K'
———+—P, =b'~ —1 (Po.

r v dr r v dr E v' ) (6.9b)

But these are exactly the equations (5.2a) and
(5.2b) for m =0 and m = 1. Therefore:

The constant C is to be determined by the
normalization condition (6.12).

Is l=0 permissible? For 1=0, Po vanishes,
because the upper index is greater than the
lower. From (6.12), and because o)0, we have
o«-o&=v/~~~. Thus Pi ——0 if ~)0 and Qi/0 if
~ &0. This result usually gained in a complicated
way, follows immediately from our formulae.

Going back to the functions y~, y2 from which
we started, we have, because of (6.16), (6.6)
and (6.4)

xi- («—v) 'L(vi+ vo) /v/F'i, ,
A=AF'i. &,'A=BF'i, p,

(ox $ a—1
I
=&i+—

(6.10)

(6.11)

-(-+v)'L(v -v /vjF'i, „(6.»a)
xo-(« —v) 'L(vo —vi) /vlF'i, ,

+(«+v)'Hvi+vo)/vh~'~, ' (6 17b)
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7. THE KEPLER PROBLEM IN A HYPERSPHERE

Schrodinger considered in his paper (quoted
above) a very interesting case: the Kepler
problem in a spherical space. This problem is of
theoretical interest because its solution gives,
unlike that in a Euclidean space, only a discrete
spectrum. The equation which Schrodinger
derives is:

( log—
~

sin' x—~+2v sin x cos xo.
dx E, dx)

where

—m(m+1)o+X sin' xa =0, (7.1)

v = (IJ /ll') Rze' lj. = (2v/5, ')ER' (7.2-)

and R is the radius of the hypersphere.
A word about how (7.1) was obtained: The

quadratic form of the space is assumed to be

dr'+R' sin' (r/R) (d6'+sin' 6d p')

=R'dx'+R' sin' x(d8'+sin' 6drp') (7.3)

(7 4)

After having written the Schrodinger equation

v

(m+1) cot x — +-
m+1 dx

X (m+1) cot x—
v

s
m+1 dx

V2

X —m(m+2)+ s, (7.10a)
(m+1)'

v d v
m cot x ———— m cot x ——+—s

m dx m dx

X —(m —1)(m+ 1)+ s. (7.10b)
m2

by (7.6). Therefore v=0 means a free particle
in a spherical space. But then the equation
(7.9) (for v=0) is identical with (1.4). Thus the
physical interpretation of (1.4) is given. It is
the radial part of the wave equation of a free
particle in a spherical space.

We can now turn towards solving, by our
method, the more complicated equation (7.9).
The factorization gives:

Af+ (2m/k') (E—V)f = 0

for this space, we introduce into (7.5)

(7.5)
A regular solution vanishing at the end of the

interval (0, s) exists, if

U= —(Ze'/R) cot x, (7.6) Xi=L(l+1)=l(l+2) —v'/(l+1)', (7.11)

because this V is a harmonic function in a
spherical space, that is, it satisfies the equation:

or
l(l+2) fi' e4p

+l —Z2
2pR' 2k'(1+1) ' (7.12)

d ( dVp

dx ( dx)
(7 7)

s=(sin x)o

brings (7.1) into the desired form:

m(m+1)s"+(2v cot x)s — s+(X+1)s=0. (7.9)
sin' x

Let us assume v =0. Evidently the term
(2v cot x)s owes its existence to U, represented

The V in (7.6) corresponds for a small x, to the
Coulomb energy Ze'/r. To solv—e (7.5) we must
express P as the product of the ordinary spherical
harmonics and o.(x) defined by (7.1), this equation
replacing the old radial equation (3.1) for the
Kepler problem in a Euclidean space.

The transformation

For small l's and increasing R, (7.12) tends
towards Bohr's formula and for very large 3's

towards the very dense spectrum of a free
particle. The uniqueness can be proved similarly
as in Section 1, and therefore the continuous
spectra must be absent. '

The top of the ladder s~', s~' s~' is:

s~' ——n sin'+'x exp —(vx/l+1), (7.13)

satisfying the differential equation

V

(l+1) cot x————si' ——0 (7.14)
dx

'For a given ), positive or negative, we can always
find such a positive l' that =L(l'+1). But onr solutions
exist only if L(l'+1)—L(m+1) goes through zero for
some integer m. Therefore l' must be an integer if our
solutions exist.
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From (8.4) we haveand eigenfunctions of all other levels are given
by:

2xlt =(2(n+1))*'lt„+t+(2n)&p„ t, (8.5)v d l
sp' '=] m cotx ——+—)st'".

8. OTHER ExAMPLES

(7.15)
the application of which allows us quickly to
calculate the intensities. Indeed we have

In our treatment of the most fundamental
equations in quantum mechanics, one was left
out, that of a harmonic oscillator. It seems not
to fit into the developed pattern, because of its
equation

lf
"—x'/+ X' = 0, (8.1)

the parameter m does not appear explicitly.
I shall show briefly how to treat this case though
the recurrence formulae to which it leads are
well known. Instead of (8.1) we write:

x'y' 2m—/+X'—P; lI
' =X+2m (8.2)

and the factorization gives:

(x d/dx)(x+—d/dx)P= (X' —(2m+1))P, (8.2a)

(x+d/dx) (x d/dx)P = (l—t' —(2m —1))lf, (8.2b)

therefore

lt'=2l+1; PI'=tr *
exp (—x'/2);

lt p—' = (2(l —m+1) ]—l(x —d/dx) lf,"
(8.3)

Pp ——m-i exp (—x'/2);

or putting n = l —m wc have thc normalized
eigenfunctions for ) =2n+1:

q„„.= lf „(xlf„)dx
—Qo

(8.6)

can be written:

m+ Q +—
X dX

m ——' d2

X dX

m+~
s = its, (8.9a)

X dX

m —— d2 +—s = its. (8.9b)
X dX

The described method breaks down, however,
because L(m) =L(m+1) =0."

The fact that all the important quantum-
mechanical eigenvalue problems can be treated
by this method seems to suggest that it is
something more than merely a mathematical
trick. Unfortunately, I was unable to find a
deeper reason for this.

My thanks are due to Dr. Griffith, Professors
Synge and Stevenson for reading the manuscript
and for helpful criticism.

q„+t, „——[(n+ 1)/2] '*; q„ t, = (n/2) '*. (8.7)

A few words now about Bessel's equation:
It can easily be factorized, but, of course, it
cannot be treated in the described way. Indeed

Z"—
I (m' ——,')/x']s+Xs=0

lf „~,= [2(n+1)] '(x d/dx) /„— —

if „,= (2n) l (x+d/dx) P„. —

"It may be noted in passing that we can deduce
~(8.4) quickly the known recurrence formulae from (8.9):

~
~

m+-', d m ——,
' d

Zm Zm+1 yx dx x dx
+- —Z&n =Zna


