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Calculation of Energy Exchange between Lattice Oscillators

J. H. VAN VLECK
Harvard University, Cambridge, Massachusetts
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The rate of transfer of energy between lattice oscillators due to anharmonic perturbations
is computed when different portions of the frequency spectrum are not in thermal equilibrium.
This calculation is needed for the .preceding paper and is not to be confused with that of
ordinary thermal conductivity, since the present article is concerned with the How of energy
between oscillators at the same point of space, rather than that associated with spatial temper-
ature gradients. The mean free paths for the two problems are shown to be unrelated, particu-
larly at low temperatures, inasmuch as spatial thermal resistivity can be created by boundary
or mosaic reHections, free from energy exchange, but does not arise from energy-transferring
collisions between oscillators unless they are of the abnormal "umklapp" type in which mo-
mentum is imparted to the grating framework. The force constants needed for the calculation
for the alums are furnished by Bridgman's compressibility data. The rate of How of energy
between a band of low frequency oscillators and the main body of lattice vibrations when
the two are at slightly different temperatures proves to be proportional to T4 at low tempera-
tures. The corresponding collision frequency between oscillators is about 10' sec. ' even at
helium temperatures and thus is of such a magnitude that equilibrium between the different
vibrations can be considered as secured instantaneously from the standpoint of macroscopic
acoustical experiments, but not at all as far as paramagnetic dispersion is concerned.

INTRoDUcTIQN

I'T is the purpose of the present paper to
- calculate the transfer of energy between

lattice oscillators at different temperatures. We
shall suppose that the oscillators at the low

frequency end of the spectrum are at a different
temperature than that of the rest and shall
determine the rate at which the temperatures
become equalized. It is to be emphasized that
we are thus concerned with a different kind of
conductivity than in the ordinary theory of heat
conduction, for in the latter one studies the
passage of heat between two spatial portions of
the lattice at different temperatures, whereas we
are interested in the fiow of heat between
different vibrations at the same position in space.
Most physical problems involve spatial. inhomo-
geneity in the temperature distribution, but
permit the assumption that all vibrations at the
same point in space are at the same temperature.
The reason for the latter supposition is that the
transfer of energy between vibrations at the
same point is more rapid than the spatial How.

Thus, for instance, in his interesting theory of
the internal friction of solids, Zener' supposes
that the rarefactions and condensations are at

' C. Zener, Phys. Rev. 52, 230 (1937); 53, 90 (1938).

different temperatures, but that the temperature
distribution over the frequency spectrum at a
given point in space is uniform, because, as he
says, "thermal equilibrium between the different
normal vibrations is established so rapidly. " It
is our intent to calculate how great the latter
rapidity really is, as its numerical value is needed
in connection with our preceding article on
paramagnetic relaxation, though it is so great
that the equilibrium can be considered instan-
taneous for a macroscopic elastic problem such as
Zener's. On the other hand, we are not concerned
with spatial inhomogeneity. Thus our mathe-
matical problem is quite different in nature from
that involved in ordinary conduction theory and
is in many ways a simpler one, for spatial
inhomogeneity in temperature is achieved only
as a sort of "wave packet" or interference effect
between waves of different frequency. In the
present calculation, we regard an oscillation of
given frequency as having the same temperature
throughout the crystal, and neglect the phase
effects associated with the superposition of waves
of different frequency. Thus with our model the
spatial conductivity would be infinite. Never-
theless our approximations appear legitimate
because we are concerned with a much shorter
relaxation time than in the spatial problem. We
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can apply our results to problems in which the
spatial distribution of temperatures is not uni-

form, because the spatial interference between
different waves is essentially a coarse-grained
effect not affecting the total strength of the
matrix elements connecting oscillators of differ-
ent frequencies.

At first sight, it perhaps appears that the
calculations of the present paper are unnecessary,
as one can determine a mean free path l~ from
the spatial thermal conductivity X by the usual
relation X=—', Cl~v, in which C is the total
specific heat per unit volume of all oscillators
and v is the velocity of sound. If one knows the
mean free path, it is easy enough to make an
estimate of the rate of energy transfer, for the
collision frequency is the ratio s/f» and the
amount of energy transferred between colliding
oscillators of temperatures 2 ~, T~ is, on the
average, usually supposed to be of the order
-';c(T2 —T~), where c is some sort of a mean
specific heat per oscillator. However, this way
of estimating energy transfer is fallacious, as the
mean free path entering in the spatial thermal
conductivity is irrelevant for our purposes.
Namely, as Casimir' has emphasized, the peculiar
dependence of thermal conductivity on cross
section found experimentally' in the helium
region shows very clearly. that the thermal
resistivity at low temperatures is not due
primarily to impacts between oscillators of
different frequencies, but instead to reHection of
the elastic waves at the walls, or at the surfaces
of crystalline imperfections due to mosaic struc-
ture. Such reflections can have no effect on the
redistribution of temperature between oscillators
of different frequency, as a reHection merely
alters the direction of a wave without altering

its frequency or energy. On the other hand, the
most common variety of collision between
oscillators is the type not involving any change
in the combined momentum of the two inter-
acting vibrations. Such collisions are of im-

portance for the reapportionment of energy
between oscillations of different frequency, but
do not give rise to any resistivity for spatial heat
How. As Peierls4 shows, only the abnormal
"umklapp" processes, which impart momentum
to the crystal grating, can influence the spatial
conductivity, and at low temperatures such
phenomena are unimportant compared with the
wall and mosaic effects. Thus the collisions
which are important for the purposes of the
present paper are not revealed at all in measure-
ments of thermal conductivity, and conversely,
the latter involves reflections irrelevant for us.
In other words, the mean free path or collision

frequency for energy exchange between oscilla-
tors has in principle no relation to that revealed

by the thermal conductivity. Hence it is not
surprising that the mean free path j..0 cm which
we calculate at 1.4'K is about ten times as
large as that l~ deduced in the usual way from
measurements of the thermal (spatial) con-
ductivity in a similar temperature region. The
rate of flow of energy to or from a low frequency
oscillator turns out to be less than one-hundredth
that which would be obtained by using the
naive formula ~~c(Tq —T2)v/1», as the latter errs
not only in the type of mean free path, but also
in supposing that the energy of two colliding
oscillators is divided equally after impact.
Actually a low frequency vibration will suffer
only a relatively small modulation of its energy at
collision, for it can only gain or lose a quantum h~
which is small compared to its mean energy k T.

DETAII.S OF CALCULATION

Force constants from Bridgman's compressibility data.—We shall assume that all the atoms of the
solid are equivalent, and that the interatomic forces are central in character. These approximations
are necessary to make the calculations tractable, and presumably do not affect orders-of magnitudes.
Since the potential energy V;; between atomsi and j is thus supposed a function only of the distance
r;; between them, the total energy of the solid takes the form

' H. B.G. Casimir, Physica 5, 495 (1938).' W. J.de Haas and Th. Biermasz, Physica 5, 619 (1938),
4 R. Peierls, Ann. d. Physik 3, 1055 (1929).
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The derivatives off;; necessary for our calculations can be evaluated from Bridgman's compressibility
data, ' which he writes in the form

AU 1 DV 8 t'DV) '
=AP J3P'—+"., i.e. P= —+—

{
Vp A Vp Ao& Voi

(2)

where Uo is the equilibrium volume at zero pressure. For potassium chrome alum, whose compres-
sibility is no doubt sufficiently typical of the alums used in the Dutch relaxation experiments,
Bridgman's values of A and 8 are

A =64.9X10 r, 8=112.5)&10 'o (P in Kg/cm') (3)

Since P= —BU/BU and since dr;;/dU= ,'r;;/U w-e have by development of (1) in the displacements
br;; from equilibrium,

P= s~Uo ' E~&; Lr 'f "(~AU/Vo)+( ,'r; f;;"'-3r; f;;—")(AU/3Up)'+

where r;Pf;;" means Pr, P(Bof/Br, P)]p, etc. In writing (4) we have omitted terms in f;, as their effect
vanishes in virtue of the fact that P=0 at V= Vp, which is equivalent to the relation Pr;;f, =0.
The sums Pr;Pf;;" and Pr„ f;;"' needed for later work can immediately be obtained by comparison
of (4) with (2) and (3).

Expansion of the potential to the third order. —We now develop the energy (1) as a Taylor's series
in the normal coordinates. q&,

. -. , q3~ for the crystalline system. Here N is the total number of
atoms composing the crystal. It would be very difficult to find the spectrum of the normal coordinates
exactly, and so we shall make the usual assumption that the frequencies are distributed in accord
with the standard Debye model. There are, of course, no linear terms in the expansion, and the
quadratic members, together with the momentum terms expressing the kinetic energy, merely
determine the normal coordinates themselves. The third-order terms in the q's make the motion
slightly anharmonic, and we regard them as a perturbation. They thus furnish a mechanism for
the transfer'of energy from one normal mode to another. The fourth-order terms we shall omit,
as their effect in coupling together the different modes of vibration is qualitatively similar to that
of the third-order members, but much smaller in numerical magnitude.

We must now compute explicitly the terms of the third order in the expansion of the energy U.
We write the displacement associated with a normal coordinate q as Dr;=u q exp(ik r;) where

r; is the equilibrium value of the 'position vector of a typical atom j, while k is a vector of magnitude

0 =2or/X directed along the direction of propagation of the wave associated with the vibration q,
and u is a unit vector along or perpendicular to k according as the wave is longitudinal or transverse.
We shall now assume that the wave-length X is large compared with r;; ( =

~
r;;

~
).This approximation

is warranted at helium and hydrogen temperatures, where only low frequencies are excited, provided,
as is doubtless true, the important interactions are between adjacent, or nearly adjacent atoms.
If X /r, ;«1, we have

hr; —Ar;=P u,q, (ok, r;;) exp(ik r;).

The corresponding modulation in Ar, ;= ~
r,;+Dr, —Ar;

~
r,;is-

hr;, =r;; [Q (r,; u )(ik r;;)q exp(ik r;)

+ ', P. o (ok r;;)(ik-o r;;)q.qo{u uo r;; (u, r ~)(us r„;)}]exp—(ik,—r;+iko r;) (6).
P. . Bridgman, Proc. Am. Acad. 64, 63 (1929). Strictly speaking, we want compressibility data at the absolute

zero rather than room temperatures, but the variation of the elastic constants with temperature is a second-order effect
of little importance for the present type of calculation.
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The terms of the third order in the expansion of the energy (1) in terms of the q's a,re thus

Ua ——P;&; P'p, » [I-',f;;"r;;—(u~ us)(r;;. u») ',f;;—"r—&; (r;;—u~)(r;; us)(r;; u„)

+-,'f;;"'r;; (r—;; u, )(r;; up)(r;; u„)I(ik, r;;)(i' r;;)(ik» r;;) Jg gsg»exp/i(k+kq+k») r;j. (7)

The rather formidable expression inclosed in heavy brackets in (7) is a periodic function of j when
summed' over i, since all atoms are assumed identical. Hence, by the usual argument, the expression
(7) vanishes unless

k +ks+k» =(2x/d)m, (8)

where m= (m', m&, rn'), with m', m2, ms integers, and where d is the lattice constant. Since the
matrix elements of g are of the form ~n =~1, nonvanishing elements of (7) can arise only if each
of the quanta changes by one unit. The energy associated with the vibration e, of frequeucy or,
is (n+-,')bc' . From standard perturbation theory, ' it is known that an appreciable matrix element
for energy transfer between different members of the system exists only if there is conservation
of the total energy, i.e.,

k An +kpd'np+k An =0, (9)

where k, = ~k,
~

=2xa& /v and where each of the he's can only be +1. It is possible to have a simul-
taneous solution of (8) and (9) with m~0 in (8) only if two (or more) of the k's are large enough
to be comparable with 2x/d, and involve ~n's of opposite sign in (9). Destruction of a large quantum
at low temperatures, however, is virtually impossible, for the corresponding initial Boltzmann
factor is negligible. Hence we can set m=0 in (8), so that (8) reduces to the familiar condition for
the conservation of momentum. In other words we can neglect the so-called' ' "umklapp" processes
corresponding to m~0. Clearly Eqs. (8) and (9), with m=0, are compatible only if the three vectors
k, kp, k~ are collinear, and if one of the k's is the algebraic sum of the other two, and has the opposite
sign for its ~n In ot.her words the destruction (or creation) of a quantum of one frequency is offset
by the creation (or destruction) of two quanta of lower frequency. The transfer process is thus
essentially a needle-like one, as all three quanta are directed along the same line.

In the preceding paragraph, and elsewhere, we have assumed that the velocity of sound is the
same for all frequencies, so that the wave number k is proportional to the frequency co. This as-
sumption involves no serious error. If different waves have different velocities, the vectors k, kp, k~
cease to be collinear, but our estimates of the magnitudes of transition probabilities are not much
affected, as the order of magnitude of the density factor p(~ ) in our later Eq. (11) is not greatly
influenced by the non-collinearity.

The fact that k, ks, k» are collinear greatly facilitates the summing in (7). We will suppose th«
the r;; can be regarded as directed at random. This assumption introduces no error of consequence,
as a cubic crystal is very nearly isotropic. It is readily seen that then a nonvanishing result is obtained
only either if all three of the vibrations u, p, ' are longitudinal, or else if two are transverse and
one longitudinal. The averaging over the random orientations of r;; is readily performed. To do
this, we use the fact that the mean values of expressions of the type forms (r e)', (r e)',
and (r e)'(r e')(r e") are respectively r4/5, r'/7 and r'(e' e")/35 if r is random, and e, e', e" are
unit vectors, with e', e" both perpendicular to e. It is thus found that (7) becomes

UI=(6/210) P,» I6f;;"r/+5 f;;"'r;P } g ' »ik »ikpik»q 'gp'g»'

+(6/210) Q;&i I4fi;"r' +fi, ' rij } Qa&p Q» (&ka'$kp)lk»g~ gp g» (UIR us). (10)

The variable of summation i is not to be confused with the factor i = Q—1 preceding the wave number k in Eq. (7)
and elsewhere.

Cf. N. F. Mott and H. Jones, The Theory of the Properties of Met'uls and Alloys (Oxford University Press), p. 256.
Cf., for instance, P. A. M. Dirac, The Principles oj'Quantum 3Eecharjics (Oxford University Press), first edition, p. 166.
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A superscript l or t attached to a q means that it is a normal coordinate of longitudinal or transverse

type, respectively. The factor 6 preceding the summations arises from ordering considerations, as in

(10) the factors are arranged in a definite order, whereas this was unrestricted in (7). The inequality
n) P) y, etc. , does not necessarily refer to the relative sizes of ra, a&p, a&„and is merely a device for
excluding redundant terms. (The probability of repetitive cases such as n=P is negligible. )

Ke will now suppose that we are interested in a particular vibration of frequency ~0. Ke wish
to compute the rate at which this oscillator changes its quantum states due to interaction with the
other vibrations of the crystal. The latter will have frequencies mostly of the order kT/h, and will

be supposed in thermal equilibrium. On the other hand, we will suppose that oro is at a different
temperature from the main body of the lattice spectrum. In other words, we are dealing with a
particular oscill'ator which is out of step thermally with the great bulk of vibrations of the crystal,
and wish to determine how rapidly it acquires the prevalent temperature of the lattice.

First let us consider the case that ~0 is a longitudal vibration. Then we, say, associate coo with y
in (10) i.e. take k~=2m(oo/v. To determine the total probability A(n„+n„1—) of —a transition of
the form n~—+@~—1, we must integrate over all possible values of cv„. If we suppose that n ~n +1,
then we may take np —+np 1, so that —o) =cop+(op. Namely, if &oo is small compared with kT/h (the
case of greatest interest in the study of paramagnetic relaxation), the great bulk of collisions will

involve values of ~, cop larger than oro=co~, so that considerations of energy balance will prohibit
n, ns from both decreasing or both increasing simultaneously. Even if ru is comparable with kT/h,
omission of the case An =Any will not impair the orders of magnitudes of our results. By per-
turbation theory, ' we have

k8/h,

A(n~~n~ —1) =4m'h ')I (~ Uq(n npn~; n +~np ~n~ q) ~')Avp(44)dGD .
0

Here the subscript Av means that for given or, cop we are to average over the different possible
values of n, np distributed in equilibrium fashion appropriate to the temperature T. The weight
factor p(co )d&o is the density of states, relative to energy, for the s&, cup system when co takes on
all possible values between a& and ~,+dko . Eq. (11) involves an integration over co because transi-
tions satisfying the conservation of energy are possible for every value of co . The upper limit of
integration is the cut-off frequency associated with the Debye temperature 8.

Evaluation of y(~ ).—The conservation of momentum is a rigorous consequence (apart from
umklapp processes) of the periodicity of the lattice, so that the vector relation (8), with m=0,
is exact. On the other hand, the conservation of energy must not be assumed to apply in computing
p(co ), as calculation of the density in an energy space requires a knowledge of how states are dis-
tributed over the energy interval in the vicinity of the point in question, although p(~ ) is, of course,
finally to be evaluated at the point at which the conservation relation (9) applies. The boundary
conditions at the edge of the crystal require that k „k „, k, be integral multiples of 2n/l, where
l is a dimension of the crystal, supposed for simplicity a cube, with edges parallel to the coordinate
axes. There is one longitudinal vibration, for each allowed value of k, and furthermore, with given
k~, there is one corresponding value of kp satisfying the conservation of momentum, viz. kp =k —k~.
Hence the number of states in the interval k „k „, k, ; k .+dk ., k „+dk „, k,+dk, is

dX= [V/(2v)']8k gk „dk ., (12)

where V is the volume P. If we introduce elliptic coordinates X=-', (k +kp), p=-,'(kp —k ), &p having
as foci two extremities of k~ which for present purposes is regarded as a fixed quantity, then the
right side of (12) becomes [2 V/(2v)'k„](X' —p')dhdpdq. Clearly (hv/2v)(k~+2p) is the lack of
energy balance hW. If we use AW, co =vk /2v as variables in place of ), p respectively, we have

4x' k„kp V
dN =p'dA Wd+~d rp with p' =—.

hv' k, (2s)'
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The quantity p(pi ) needed in connection with (11) is —, 2prp . Here the factor 2pr is contributed by
the .trivial integration over the azimuth y, while the factor —, owes its origin to the fact that AW
= (hs/2m. )(~k —ke~ —k +ke) is necessarily positive, and so the Dirichlet integrals, or equivalent,
involved in the familiar derivationp of (11)extend to only one side of the origin, instead of embracing
both sides. Thus, since k, = 2m pip/v, etc. , we have

p((o ) = (vr Vpi pie/v'piph). (u, P longitudinal) (14)

This is the value ot p(pi, ) to be used when the first part of (10) is substituted in (11).For the second

part of (10), where u, P are transverse, we must use a value of p(&a ) four times as great as (14),
as there are then two transverse vibrations for each allowed value of k or kp.

Calculation of transition probability. —The matrix elements of the q's, and the values of the n's

appropriate to thermal equilibrium are given by the usual formulas

g(n; n&1) =(h/8m'ilI'piI)l(n+ pimp), (n)p„——1/[exp(hpp/kT) —1],

where M is the mass of the crystal. We can now substitute (10), (14), (15) in (11), and express the
results in terms of the A and B constants, instead of the f;;, by comparison of (2) and (4). In squaring
the second part of (10), one may replace (u ue)' by its mean value —',. One thus finally obtains

with

and

A(n p~np 1) =—npDI,

D= ', n'v 'h(U-p/M)'(6/35)'[(54A ' —45BA ')'+2(15A ' —9BA ')']

&eA:ga pi 'pip' exp(hpi /kT) 00

I= ~~ dip ~l pi e ""iP dpi=4'kPT /h'
"p [exp(hp~ /kT) —1][exp(hpie/kT) —1]

(16)

(17)

(18)

The expression (17) is independent of crystalline size since 3E/Up is the density. The approxiinate
value given in the second form of (18) applies to the case that hppp is small compared with kT, where

~p=~ —coo can be replaced by co without serious error. In the preceding paper we needed primarily
this case, but the approximations used to simplify (18) furnish a crude estimate of orders of magni-
tudes even when co and oro are comparable. The replacement of the upper limit of integration by
infinity is legitimate since we are interested in temperatures small compared to the Debye cut-off.
Then the exponentials can also be simplified because the presence of the factor or 'cop' makes most
of the contributions to the integral come from values of hpi/k T somewhat greater than unity.

Equations (16, 17, 18) a,pply directly only in case ppp is a longitudinal vibration. If it is transverse,
we must identify pip with P rather than y in (10), and take pi =pp„+p~p. Correspondingly we replace
u, P by a, y in (14), (18), etc. , and in connection with the second pa, rt of (10) we must use a density
twice rather than four times the expression (14). Thus when pip is transverse, the expression for the
transition probability is an expression identical with (16, 17, 18), except that in (17) the terms
with factors 54, 45 are deleted, in virtue of the absence of the first pa, rt of (10) for transverse waves,
and the remainder of (17) is halved.

If we use Bridgman's values (3) of the constants A, B, and take v =2.3)&10""cm/sec. , 3d/ Vp = 1.7
g/cc, then the value of the factor DI for longitudinal oscilla, tors p~p is 2.0&(10' sec. '. The corre-

sponding expression for transverse oscillators is 4.0&(10' sec. '. Thus the longitudinal low frequency
oscillators are much more effective intermediaries than are the transverse ones in transferring heat
between the spin system and the crystal proper, and so we will henceforth in numerical estimates
consider only the longitudinal type.

Rate of energy Qow.—In the preceding paper, we needed the value of the conductivity for the
heat How between the low frequency oscillators and the main body of vibrations under the assumption
that the former and latter are at temperatures Tz, T respectively, with

~

Tz, T~((T. If the low—
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frequency oscillators are located in the band coo, cdq+Aruo, and are Vf(coo)hcoo in number this flow is

dQ/(0 —(A (S0 +'SQ 1) A (N0
1~'So))Alkyd)0Vf(C00)A%0(

(19)

inasmuch as an amount of energy hcoo is added or removed from the vibration Ng at each collision.
The two transition probabilities involved in (19) differ solely in their Boltzmann weighting, i.e.,

A (NO~NO 1—)/A (mo 1—+n—o) =expL(kcvo/kT) —(k(aa/kTi) $ 1+L(Ti, —T) ka) 0/kT'$. (20)

The mean value of no needed in connection with averaging (16) is, by (15), very approximately
kT/kcoq since k~0/kT&&1. By (16), (18), and (20), the expression (19) becomes

dQ/dt =b(Ti, T) —with b =DIT 'h(oo Vf(uo) h~ 4|DT '(kT/k)'k~oVf(wo) ~&. (21)

The band of longitudinal low frequency oscillators in which we were interested in the previous
paper had f(a&0) =4scoo'/s', a0=6X10', ha&=3X10' sec. ', V=4''/3 where R is the radius of the
specimen. On combining these numerical values with the estimates of DI obtained in the preceding
paragraph, it is found that dQ/dT=3X10 'R' watts/deg. at T=1.4'K.

Mean life.—Instead of computing the conductivity b, it is in many ways more illuminating to
examine the iIiean free time ro of the oscillator coo between collisions, which is given by the formula
ra= 1/(2A(so~so —1))A,. Here the factor 2 appears in the denominator to allow for the fact that
there are approximately equal probabilities of a low frequency oscillator absorbing and emitting a
quantum. In our example, the numerical value of vo is 0.5&10 ' sec. The corresponding mean
free path /= vov is 1.0 cm.

The mean free time v 0 is not to be confused with the relaxation time v..required for the temperature
difference between the low frequency oscillators and the main body of lattice vibrations to reach
1/e of its original value, under the assumption that the specific heat of the former (viz. , kf(ca) Ace)

is small compared to the latter. The formula for r, is r, =kT/ka&DI and gives r, =2X10 ' instead
of 0.5&10 ' second at T=1.4 K. The distinction between the two kinds of times arises because
an oscillator loses or gains only a portion of its energy at each collision.

Even a mean free time 0.5 &10 ' sec. is not nearly as short as required if the conventional theory
of paramagnetic dispersion is to function properly at helium temperatures. In consequence, this
theory must be abandoned, or very materially modified, as discussed in the preceding paper. By
customary standards, however, the mean life v.o or the relaxation time v., must be regarded as ex-

ceedingly brief, at least at ordinary temperatures, and hence the process of temperature equalization
practically instantaneous. Thus in experiments on acoustical vibrations, etc. , all the oscillators can
be regarded as at the same temperature at a given point of the crystal, though spatial inhomogeneities
are of course possible. Our estimate T()=0.5+10 ' and v, =2X10 ' sec. was for oro

——6X10' sec. '
and T=1.4'K. In acoustical applications one is interested in much lower frequencies and much
higher temperatures, but this will reduce ro even further, since the integral I involved in (16) in-

creases rapidly with T, and since by (16) the value of rii 1/(2A(l —+I———1))A„ is inversely proportional
to the mean number of quanta no. The frequencies involved in acoustical problems are so low that
(no)All will amount. to millions rather than being of the order 10 as in our example appropriate to
paramagnetic relaxation in the helium domain, It will be noted that the interruption frequency due
to anharmonic perturbations is much larger than the proper frequency when the latter is in the
acoustic region. The resulting blurring, however, is insignificant, because acoustic vibrations have
such high amplitudes that the loss or gain of a quantum at a collision represents only a minor
disturbance.


