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The present paper is rather negative in character. Its aim is to show that the conventional
models of paramagnetic relaxation cannot be used at helium temperatures, because the lattice
vibrations cannot possibly serve as a thermostat in the way ordinarily supposed. Namely,
if the quanta exchanged between the spin system and the lattice oscillators are of the order
0.2 cm characteristic of the usual Stark splittings in chrome or iron alum, the spins will be
in thermal contact only with oscillators at the extreme low frequency end of the lattice spectrum
which are too few in number to conduct away the surplus spin energy. It is found that this
limited band of oscillators is interrupted much more frequently by interactions with the
spins than by (a) collisions with the walls or (b) interplay with other oscillators due to an-
harmonic terms (calculated in the next paper). Consequently the lattice vibrations in thermal
contact with the spin system will be at nearly the spin temperature, and not at that of the
helium container as ordinarily supposed. Impurities with abnormally large Stark splittings,
of the order 2.0 cm ', would make a wider band of lattice oscillators available and so would
avoid the difFiculty of insufficient lattice conductivity, but it is very doubtful whether the
impurities could be in thermal equilibrium with the great bulk of the paramagnetic ions.
By thus showing that conventional hypotheses will not work, we aim to pave the way for a
future paper proposing a rather unusual substitute conduction mechanism which is, however,
compatible with the thermodynamic formulae of Casimir and du Pr6.

Introduction. —In a previous paper' the writer
computed paramagnetic relaxation times for
chromium and titanium alum on the basis of the
thermodynamical model of Casimir and du Pre, '
wherein the lattice oscillators are treated as a
thermostat as far as the interchange of energy
with the spins is concerned. These calculations
were in fairly satisfactory agreement with experi-
ment at liquid-air temperatures, but failed com-
pletely at helium temperatures, giving here a
wrong order of magnitude for titanium alum,
and the wrong sign for the dependence of the
relaxation time of chrome alum on the strength
of the applied magnetic field. It is the purpose
of the present article to point out that it is
impossible for the lattice oscillators to preserve a
constant temperature in the face of frequent
energy transfers with the spin. Hence it is not
surprising that the calculations based on the
ordinary assumptions should partially fail and
so, apart from basic thermodynamic features,
the conventional theory must somehow be
modified. It was emphasized by Casimir himself
that at low temperatures the lattice, inclusive

' J. H. Van Vleck, Phys. Rev. 57, 426, 1052 (1940).' H. B. G. Casimir and F. K. du Pre, Physica 5, 507
(1938).' H. B. G. Casimir, Physica 0, 156 (1939).

of all oscillators, has such a small heat capacity
that it can serve as a thermostat only if it is
surrounded by a bath of liquid helium, and is in

equilibrium with the latter. However, the situa-
tion is much more acute even than this, because
of the fact that the work required to turn over a
spin against either the applied magnetic or the
crystalline field is very small, not more than
0.2 cm ', for example, in chrome or iron alum.
Hence the conservation of energy allows ex-
change of energy only between the spins and
oscillators of very low frequency or, which are far
from numerous inasmuch as the density of
oscillators is proportional to co' and which con-
sequently cannot conduct energy rapidly to the
walls. The same difficulty does not arise in con-
nection with the calculations at liquid-air tem-
peratures, as here interaction between spin and
lattice is secured by means of second-order
processes wherein a spin scatters a lattice quan-
tum of comparatively high energy with only a
relatively small modulation of frequency, like the
Raman mechanism in radiation theory. Such
processes, however, have been shown by Waller4
and others to be of minor importance at very
low temperatures.

4 I. Wailer, Zeits. f. Physik 79, 370 (1932).
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Width of the low frequency band. —If the spin
of a paramagnetic atom had sharply defined
energy levels, split only by a definite crystalline
field and the applied magnetic field, then because
of the conservation of energy the possible energy
exchanges between spin and lattice would form a
discrete spectrum, and only an infinitesimal
fraction of the lattice oscillators would be on
"speaking terms" with the spin. Actually, the
energy-exchange spectrum will be blurred into a
continuum for two reasons. In the first place,
the spin-spin interaction will introduce a fluctu-
ating effective magnetic field acting upon the
atom, which is superposed upon the applied field,
and which has a continuous distribution of
magnitudes. Secondly, there is a diffuseness in

energy levels due to the uncertainty principle,
because the harmonic oscillations do not persist
over a large number of periods.

For purposes of estimating the order of magni-
tude of the spreading in energy due to spin-spin
interaction, it will suffice to assume that the
latter broadens the spin levels into bands of
width 2'/k where P is the Bohr magneton
number, and X is the root mean square spin-spin
field. The frequency distribution law for the
oscillators is Cco'der, and their total number is
—',C(k8/k)' where C is a constant and k8/k is the
usual Debye cut-off frequency. Hence the frac-
tion x of the total number of oscillators which
is in thermal contact with the spins becomes
x 2pE k'oP/3k'8~. Here ken, the center of the
energy band of allowed exchanges, is of the order
0.2 cm ' in chrome alum, the precise value
naturally depending on the strength of the
applied magnetic field, while k8/k is approxi-
mately 230 cm ', and we previously' estimated
%=290 gauss, so that PX 10 ' cm '. Thus only
about one in 10" of the total number of lattice
oscillators is on "speaking terms" with the spin
system. The observed relaxation time 7 for a
spin is about 10 ' sec. for chrome or iron alum.
The number of exchanges or interruptions per
second for an oscillator accessible to the spin is
v~=(1/3xry) where y is the total number of
atoms per paramagnetic atom (=48 in KCr(SO4)2

12H20). This interruption frequency v, is thus
of the order 10"sec.—'.

%he estimates of the preceding paragraph,
however, overlook the fact that according to the

uncertainty principle, or its equivalent, one is
justified in talking of the proper frequency co of a
lattice vibration only if it persists uninterrupted
over several periods. Our preceding estimate of v;
is about 10 times as large as ~. Consequently
there will be a diffuseness in the oscillator levels.
The corresponding blurring of spin states is
negligible, as the spin-lattice energy exchanges
are prorated among the spins of all paramagnetic
atoms, much more numerous than the limited
number of low frequency oscillators. This diffuse-
ness makes the spins capable of exchanging
energy with more oscillators than otherwise.
The effect is roughly the same as though one
permitted transitions in which conservation of
energy based upon ideal monochromatic vibra-
tions failed by amounts up to hv;. Consequently
we should at first sight expect the width of the
zone of oscillators accessible to the spin to be
of the order 10"sec. ' or 1 cm ', as this was our
estimate of v; in the preceding paragraph. How-
ever, we must allow for the fact that when the
burden of spin exchanges is distributed over a
wider band of oscillators, the interruption fre-
quency per oscillator is diminished, and so we
ought to use a smaller value of v; as soon as the
band width becomes greater than that 10 ' cm '
used to obtain our estimate 10" sec. '. Con-
sequently, when allowance is made for this
compensating effect, the value of v; is changed to
10' sec. ', and the correspoindng zone-width to
0.1 cm '. This estimate may seem to be some-
what high because line breadth tends in general
to be rather less than the interruption frequency,
but we may regard this tendency as roughly
counterbalanced by the fact that there are
really several frequency bands, instead of one as
we assume. .Namely, in the alums there are four
paramagnetic ions in the unit cell, and as a
result there are four orientations of the applied
magnetic field relative to the microscopic trigonal
field, and hence four patterns for the decomposi-
tion of the energy levels; furthermore even one ion

may have more than one frequency interval, as its
ground state is usually split into more than two
components even without spin-spin interaction
or blurring due to the uncertainty principle.

The mechanisms (a) and (b).—From the
above discussion, it appears that the oscillators
which can exchange energy with the spin system
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are confined to a zone of width about 0.1 cm '.
However, if no more oscillators than this are on
"speaking terms" with the spin, they will be
unable to transfer energy fast enough between
the spin system and the helium bath to account
for paramagnetic relaxation times as short as
those observed experimentally. Frohlich and
Heitler' have shown that the heat conductivity
of the spin system itself is negligible. Hence the
heat flow between the spin system and the
boundary must take place via the lattice oscil-
lators. Two possible mechanisms for this flow are,
(a) direct coupling between the low freguency
oscillators and the helium bath and, (b) interaction

of the low frequency oscillators with those of higher

frequency, through anharmonic terms In (b) .there
must be indirect contact between our low fre-

quency oscillators and the bath via ordinary
oscillators of higher frequency, for we have
already noted that the heat capacity of the entire
lattice system is inadequate for it to serve as a
thermostat unless it is in equilibrium with the
bath. We call vibrations of the "low frequency"

type if their quanta are commensurate with the

energy required to turn over a spin, and if they
can thus exchange energy with the spin system.

By the term "ordinary oscillators" we mean

those whose frequencies do not appreciably ex-
ceed kT/h, as vibrations with pp»Tk/hare not
appreciably excited, because of the Boltzmann
factor, and so need not be considered. A spin

quantum is about one-tenth of kT, in the helium

region, and so the low frequency oscillators are
much less abundant than the ordinary ones.

Inadequate conductivity of the 1ow frequency
oscillators. —To examine whether the mechanism

(a) can be effective, that is to say, whether the
temperature TI. of the low frequency oscillators
can be equilibrated by direct contact with the
surrounding helium bath of temperature To, we

imagine that we have a spherical specimen of
radius R and suppose that the elastic waves are
uninterrupted except when they interact with a
spin or reach the walls, as this is the extreme
case most favorable for the penetration of the
bath temperature into the specimen. As already
emphasized by Casimir in another connection, '

~ H. Frohlich and W. Heitler, Proc. Roy. Soc. A155,
640 (1936).' H. B. G. Casimir, Physica 5, 495 (1938).

the mathematical analysis appropriate to this
model corresponds essentially to radiation theory
rather than to ordinary conduction. We may thus
consider that we have a spherical hohlranm such

that the elastic waves impinging on the wall have
a temperature Tl., whereas those emitted by the
walls have a temperature Tp If u. (T) is the

energy per unit volume of oscillators at tempera-
ture T, then the analogue of radiation intensity
is I(T) =vu(T)/4', where v is the velocity of
sound (2.3X10' cm/sec. in the alums). Unit wall

area absorbs energy ffI(TI) cosedft=4vu(T&)
per unit time, and correspondingly emits ,'vu(Tp). —

If Tc—Tp is small, we may replace u(T&) —u(Tp)
by c(Tc Tp)f(cv)hp—p, where f(pp)App is the number
of low frequency oscillators per unit volume in

the interval Ace, and c is the mean specific heat
per oscillator. Hence the rate at which heat is
transferred from the low frequency oscillators to
the helium bath is

dQ/dT=a(Tc Tp), w—ith a=sR'ocf(pp)App. (1)

We can take c to have the classical value k = 1.37
X10 "ergs/deg. since our low frequency oscil-

lators have quanta small compared to kT. We
may suppose f(pp) A&p to be of the order 3 4X10",
since the formula for the number of oscillators

per unit volume in the frequency interval co,

co+Aor is 12~@ 'oPA~ and since our low frequency
band involves an ~ and Ace about 6)&10' and
3&10' sec. ', respectively. The conductivity a is

consequently 3.3 X10 'R' watts/deg.
Now according to the thermodynamical theory

of Casimir and du Pre, ' the rate at which heat
flows from the spin system to the low frequency
oscillators is

dQ/dt=n(Ts —Tc), with n=(4~R'/3)cs/r. (2)

Here T8 and cz are, respectively, the spin tem-

perature and the spin specific heat per unit

volume, and 7. is the paramagnetic relaxation
time. The numerical value of cq is 4800T '
ergs/cc, while r is the order 10 ' in the helium

region. Consequently at 1.4'K, the conductivity
constant n involved in (2) is about 10 'R'

watts/deg. Since the heat capacity of the low

frequency oscillators is negligible compared to
that of the spin system, the heat flows (1) and (2)
must be equal, whence (Ts, Tp)/(Ts Ts) = n/—a-
Clearly, if these oscillators are to serve as a
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thermostat, at substantially a temperature Tp,

we must have this ratio small compared to unity.
With our estimates of n and 12, however, n is
thirty times as large as c for a specimen 1 cm in

radius, and is three times as great even if R is
as small as 0.1 cm. In other words the low fre-

quency oscillators are interrupted much less
frequently by collisions with the walls than by
spin impacts, and so 'have a temperature much
closer to that of the spin system than of the bath.

The calculation of the effectiveness of process
(b), i.e. , energy exchange between the low fre-

quency and ordinary oscillators is more difficult,
and is given in the following paper. We may
assume that the ordinary oscillators are at the
bath temperature Tp, as this supposition gives
the most favorable case, and is, as a matter of
fact fully warranted, as the ordinary oscillators
are good conductors because they are so nu-
merous. The calculations of the following paper,
especially its Eq. (21), show that then the rate
at which heat is taken away from the low

frequency oscillators due to the process (b) is

dQ/dk =b(Tc Tp), (3)

with b=3&(10 'R' watts/deg at 1..4'K if, as
before, we assume that the band of low fre-
quency oscillators has co=6&(10', Ace=3&10'
sec. '. For a specimen j. cm in radius, the process
(b) is hence much less important than (a), and
is nothing like rapid enough to make the low
frequency oscillators serve as a thermostat.

Since we have seen that neither process (a) nor
(b) conducts heat fast enough to ma. ke the tem-
perature of the low frequency oscillators simulate
that of the container, one immediately wonders
whether possibly the correct model is instead one
in which the low frequency oscillators are more
nearly at the spin temperature, and in which the
"bottle neck" for the How of heat between the
spin system and the helium bath is located be-
tween the low frequency oscillators and the
container, rather than between the spin and
these oscillators, as ordinarily supposed. Such a
proposal, however, encounters serious difficulties,
and is, in our opinion, not tenable. In the first
place, the computed relaxation times become
entirely too long. The values calculated under
the conventional assumption that the low fre-
quency oscillators serve as a thermostat were of

about the right order of magnitude for chrome or
iron alum, and already too great for titanium
alum. With the mechanism (b), for instance, the
formula for r becomes cs(n+b) /nb instead of
cs/n, where cs is the spin specific heat, and n, b

are the conductivity constants for spin-lattice
coupling and process (b), respectively. The modi-
fied formula corresponds to the fact that the
conductivity due to two resistances 1/n, 1/b in
series is nb/(n+b). With mechanism (a), there is
no unique formula for the relaxation time, as
heat will be conducted away more rapidly from
spins at the edges of the specimen, than those at
the center. As a result the expressions for the
dispersion and absorption become complicated
functions of frequency, corresponding to a distri-
bution of relaxation times 7- wherein 7. increases
with the depth of penetration into the sample.
Such a behavior is probably not in agreement
with experiment, as the observed dispersion
curves agree fairly well with those computed
under the assumption of a single relaxation time.
Another difficulty with (a) is that the mean
relaxation time would increase with the volume of
the specimen, whereas no dependence on size is
found experimentally. These complications due
to spatial inhomogeneity do not arise in connec-
tion with (b), as in (b) the ordinary oscillators
serve as a thermostat throughout the volume.
However, in (b) there is the further objection
that the temperature dependence of 7 is wrong.
Namely, the observed values of 7 are approxi-
mately proportional to T ', whereas the theo-
retical expression cs(n+b)/nb is proportional to
T—' if a»b, inasmuch as cq T ', and as Eq.
(21) of the following paper shows that b-T4.

We thus find that neither mechanism (a) nor

(b) can account for the observed flow of heat
between the spin system and the container,
unless one assumes that somehow most of the
thermal contact between the spin system and the
lattice is made directly between spins and a
substantial portion of the "ordinary oscillators, "
whose frequencies are comparable with kT/k, . In
other words, energy exchange between spin and
lattice takes place primarily in virtue of the
handing back and forth of quanta which are

' W. J. de Haas and F. K. du Pre, Physica 5, 501 (1938).' H. B. G. Casimir, W. J. de Haas, and D. de Klerk,
Physica 0, 241 (1939).
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considerably larger than those of the order 0.2
cm ' which represent the prevalent Stark split-
tings. If the spin system makes thermal contact
with a sufficiently large fraction of the ordinary
oscillators, the conductivity of the portion of
the lattice in communication with the spin will

be sufficient to dispose of the heat liberated by
the latter, and the "bottle-neck" will be between
the spin and the lattice, rather than between the
lattice and the bath. An idea of the fraction of
oscillators required can be obtained by referring
to Eq. (1).~ We require a conductivity 300, or
more, times that previously computed on the
basis of a zone of low frequency oscillators of
width 3)&10' sec. ', and mean frequency 6X10'
sec. ', as then for a specimen of radius 1 cm, the
constant a in (1) will become about 10 times that
a in (2). To obtain this increased conductivity,
we must use in (1) a value of f(~)ha& about 300
times larger than formerly. As the oscillator
density f(&u) is proportional to oP, the requisite
increase will be obtained if we assume, for
instance, that bee=2. 0 cm ', and that the band
width hAcv is at least of the order 0.3 cm ', or
alternatively, that kcv and hA~ are each about
1.0 cm—'.

Unfortunately it appears impossible to find any
reasonable mechanism which will provide for
the appreciable exchange of such abnormally
large quanta between the spin system and
lattice. Temperley" has suggested that several

' It may be objected that Eq. (1) based on the radiation
model, furnishes only an upper limit to the conductivity,
and so does not tell us the necessary number of oscillators,
as this model does not take into account the possibility of
the mean free path of an oscillator being terminated
except by collisions with the walls. However, one can
also solve the heat conduction problem for a sphere with
surface at temperature T0 and containing a source of
intensity 7. 'cz(T& —T0) per unit volume (cf. Eq. (2)).
The necessary conductivity can then be gauged by the
requirement that the temperature at the center of the
sphere be much closer to To than to Tg. If one assumes
that the conductivity per oscillator in the alums is about
the same as that found experimentally by de Haas and
Biermasz (Physica 2, 673 and 5, 619) for other crystals
at helium temperatures, the estimate of the necessary
number of oscillators thus obtained, though . somewhat
larger, does not prove to be greatly different from that
supplied by the simple radiation model. We aim to de-
termine only rough orders of magnitude, and so throughout
the paper it is not worth while to distinguish between
J'oPCkv and co'b, or, or in the present connection to allow
for the fact that the specific heat c in (1) does not quite
reach the equipartition value k when &co is as high as
2,0 cm '.

"C. N. V. Temperley, Proc. Camb. Phil. Soc. 35, 256
(1939.

spins turn over simultaneously, but in our
opinion, ' the probability of such a process is
negligible. Another possibility is that we have
grossly underestimated the blurring due to the
uncertainty principle. As we intimated in a
previous paper, ' most of the difficulties would
disappear if the line breadth due to the uncer-
tainty principle were very large, of the order
3 &(10"sec. ' ( = 1 cm '), about ten times as large
as estimated in the first part of the present
article. However, it is very difficult to see how
this value could be so seriously in error, especially
since estimates of line breadth based simply on
the interruption frequency tend to be too high
rather than too Iow. (For instance, the line
breadth" of a harmonic oscillator due to radia-
tion does not increase with the quantum number,
although the amplitude and hence the transition
probability does. ) A blurring as wide as 1 cm—',
would make the effective oscillator density at low
frequencies practically independent of frequency,
instead of being proportional to cv' as in the
Debye law, and is doubtless contradicted by
experimental evidence in other fields, such as
specific heats.

Effect of impurities. —A possibility which must
be more seriously considered as a mechanism for
the transfer of large quanta is the potential
presence of impurities. By an impurity, we mean
any paramagnetic ion whose splitting is very
much larger than the mean value yielded by
specific heat data, in other words is of the order
2.0 cm ' instead of 0.2 cm '. The impurity need
not necessarily be chemical, and instead can be
an ordinary atom with an unusual crystalline
(or perhaps even exchange) potential due to
lattice imperfections, or in an abnormal valence
state. The possible importance of impurities has
beem emphasized to the writer by Professor
Casimir, who points out that two samples not
differing ostensibly in chemical and crystalline
structure sometimes yield relaxation times differ-
ing by a factor 2 or more. The first question which
arises in this connection is whether it is possible
to have impurities which are sufficiently rare as
to be without appreciable infiuence on, the
specific heat, etc. , but which are abnormally
potent in spin-lattice coupling. This question can

"V. Weisskopf and E. Wigner, Zeits. f. Physik 63, 54;
65, 18 (1930).
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in a certain sense be answered in the affirmative.
Namely, the specific heat is proportional to only
the square of the Stark splitting v of the spin
levels, whereas the spin-lattice coupling is under
certain conditions" proportional to v'. Hence, at
first sight, it seems that if, say, 1 ion in 10 has
10 times the normal Stark splitting, the spin-
lattice conductivity might be appreciably affected
by such an impurity. However, this is not really
the case, as the fact has been overlooked that
such large spin quanta as 2.0 cm ' cannot
possibly achieve a common temperature with the
more prevalent, tenfold smaller, quanta charac-
teristic of the spins of the great majority of the
ions. The energy exchanges among spins must
satisfy the conservation of energy, and so spin
temperatures can be equilibrated only by proc-
esses in which the turning over of a large quan-
tum is offset by the simultaneous turning over of
about 10 small quanta, due to spin-spin inter-
action. Such a cooperative or clustering phe-
nomenon can be regarded as in many respects a
generalization of the Temperley mechanism, and
has a negligible probability (of the order e "
or so). One way of escaping this difFiculty is to
assume that the impurities have a large over-all
Stark splitting v, but that the splitting 6v

between certain sub-states, say a doublet, is
comparable with the usual Stark intervals. Then
the relative, but not the total population of the
two doublet components conforms to the spin
temperature. Because of this fact, the catalytic
effect of the impurity is not as great as previously
estimated, as it can be shown that an extra factor
(Ai/v)' is thereby introduced. Thus if the irn-

purities have about 10 times the usual splitting,
our previous requirement of 1 in 10' would be
changed to 1 in 104. Such an abundance for
impurities is presumably so high as to be out
of the question, but quite irrespective of this fact
it is highly unlikely that they would have the
right kind of Stark pattern, wherein there are
small intervals of just the right size supcr-

'2 Eq. (53) of reference 1 sho~vs that the conductivity
obviously contains a factor v4 because the splittings
W„—W I in (53) are proportional to v. In addition
there may be an extra factor v' because increased splittings
are usually the result of closer upper states and so are
usually accompanied by larger perturbing matrix elements
H(~)(q', q"). This can be seen, for instance, from the fact
that Eq. (49) of reference 1 and Eq. (14) of J. Chem. Phys.
V, 71 (1939) involve denominators of similar structure.

posed on the large. The most likely possibility
of this type would appear to- be ions with an
odd number of electrons having a degenerate
or nearly degenerate orbital state. Then there
would be a large total splitting, but small
doublets due to the Kramcrs degeneracy which
are decomposed only by the magnetic field. The
only example of this situation in the iron group
is, however, Co++ if the crystalline field is of the
usual nearly cubic type. Ions with an even num-
ber of electrons might have certain sub-states
which separate only in virtue of the applied
niagnetic field, or of small deviations of the
crystalline field from the dominant symmetry,
but the diAiculty is that there would be no
matrix components of the spin-spin interaction
between the different sub-states, so that transi-
tions between the latter would be impossible.
For example, an ion with S=1 (e.g. , V+++) has
no matrix elements of spin between the two
degenerate levels 2IIq ——~1 in an axial field.

Thus, all told, any impurity mechanism appears
to be too highly artificial to be at all reasonable.

Conclusion. —We seem to be between Scylla
and Charybdis. We have shown that if the
quanta exchanged between spin and lattice are
comparable with the prevalent Stark splittings
of the spin system, the latter is on "speaking
terms" with only a very limited number of
lattice oscillators, which are located at the ex-
treme low frequency end of the spectrum, and
which conduct heat to the walls or to the rest of
the oscillators far too slowly to serve as a
thermostat as presupposed in the ordinary ther-
modynamic model. On the other hand, we have
seen that any mechanism, such as impurities,
which involves the transfer of larger quanta,
and which so makes more oscillators accessible,
is highly improbable. There is, however, one
more possibility, which we believe is the way
out, and which we will consider in a future
paper. It is that the conduction of heat from
the spin system to the helium bath takes place
via virtual rather than rea/ lattice states, i.e. , via
a sort of ghost wave. This process, though com-
patible with Casimir's thermodynamic postu-
lates, seems at first sight rather strange, and so
we have gone to some detail in the present
article to exhaust the other, more conventional
possibilities.


