The Zeeman Effect of Xenon

J. B. GREEN, E. H. HURLBURT* AND D. W. BOWMANT Mendenhall Laboratory of Physics, Ohio State University, Columbus, Ohio (Received November 13, 1940)

Measurements of the Zeeman effects of about 125 lines in the spectrum of XeI have been made. The g sum rule is violated by both of the completely known configurations, and in some cases may be accounted for by configuration interaction. For other configurations, where only the lower levels are known, the J of the core is shown to be a "good" quantum number.

DRELIMINARY classifications in the spectrum of xenon were first given by Meggers et al.1 and were later extended by Gremmer² and Rasmussen.³ The subsequent improvement in photographic techniques enabled Humphreys and Meggers⁴ to list further lines and classifications.

Measurements of the Zeeman effect of a few lines of XeI were first carried out by Pogány,⁵ and were later supplemented by the addition of fifteen more lines by Lörinczi.6 The present investigation covers the measurements on about 125 lines, of which those associated with transitions involving the $5p^{5}mf$ configurations will be discussed at a later date, because of their bearing on a problem of some theoretical importance. Our experimental results are in many cases at considerable variance with Lörinczi's, more so than in the case of krypton⁷ and we are unable to account for these discrepancies. Only one error in Humphreys and Meggers'⁴ classification has been found, an inversion of the classification of $8d_5$ and $8d_6$. Zeeman effect data clearly show that the H-M $8d_6$ has J=1. This modification inverts the usual order of the d_5 and d_6 levels, which also occurs in the case of $5d_5$ and $5d_6$.

The apparatus was the same as that used in our previous work.⁷ A mixture of 5 percent Xe and 95 percent He was employed in the discharge tube. Eastman Special Spectroscopic plates were used for wave-lengths greater than 6800A. East-

(1940).

man 40's were used from λ 3200– λ 4800; Eastman IG from λ 4800– λ 5800 and Eastman Superpanchromatic Press were found especially suitable in the region λ 5800- λ 6800. All plates except the 40's were presensitized by bathing for one minute in a cold 4-percent aqueous ammonia solution.

Exposures varied from 48 hours to 100 hours and in all cases one discharge tube served for a complete exposure.

Table I is a summary of the measurements with the exception of those involving the $5p^5mf$ levels which are indicated by the notation PB (beginning Paschen-Back effect). Parallel polarizations are enclosed in parentheses, mixed polarizations in square brackets; in the fourth column, bold face indicates strongest components, in the last two columns, italics indicate assumed values obtained from other lines.

Table II is a summary of the averages of the g values taken from the last two columns of Table I. Whenever possible, these averages represent only resolved patterns.

Only two configurations of XeI are completely known, $5p^{5}6s$ and $5p^{5}6p$. The comparisons between experiment and theory are given in Tables III and IV. An inspection of these tables shows that XeI is the bad boy of the rare gas spectra. Even the lowest configurations are perturbed enough so that the g sum rule is violated. In all of the other rare gas spectra the g sum rule is accurately verified for all of the low configurations for all values of J. In the XeI spectrum, only J=2 of $5p^{5}6p$ satisfies this rule.

The discrepancy in the $5p^{5}6s$ configuration is real and is probably caused by the near presence of the upper levels of 5p⁵5d. Pogány's⁵ results are based on an assumed value of 1.50 for $1s_5$, and while this appears to be correct, no independent

^{*} Now at Fenn College, Cleveland, Ohio.

[†] Now at Hendrix College, Conway, Arkansas. ¹ Meggers, de Bruin and Humphreys, Bur. Stand. J. Research 3, 731 (1929).

² W. Gremmer, Zeits. f. Physik 59, 154 (1930)

⁸ E. Rasmussen, Zeits. f. Physik 73, 779 (1932).

⁴ C. J. Humphreys and W. F. Meggers, Bur. Stand. J. Research 10, 139 (1933)

⁵ B. Pogány, Zeits. f. Physik 93, 364 (1934)

⁶ K. Lörinczi, Dissertation, Budapest (1937). ⁷ Green, Bowman and Hurlburt, Phys. Rev. 58, 1094

Table	I.	Observed	Zeeman	patterns	in	xenon.
-------	----	----------	--------	----------	----	--------

••••••••••••••••••••••••••••••••••••••						1					
Wave- length	Combi- nation	J VALUES	Observed Zeeman Pattern	ga	gь	WAVE- LENGTH	Combi- nation v.	J ALUES	Observed Zeeman Pattern	ga	gь
*3685.90 *3693.49 3800 84	$1s_5 - 5p_6$ $1s_5 - 5p_8$ $1s_5 - 5p_8$	2, 2 2, 3	(0.225), 1.448 (0.000), 1.113 (0.000), 1.200	1.510	1.386	*6314.97 *6318.062 *6430.155	$2p_7 - 5s_4$ $2p_8 - 6d_4'$	1, 1 3, 4 2, 2	(0.144), 1.092 (0.000), 1.085 (0.220), 1.450	1.020	1.164
*3950.925 *3967.541 3074 417	$155 - 4p_6$ $155 - 4p_8$ $155 - 4p_8$	2, 2 2, 3	(0.210), 1.451 (0.000), 1.044 () [0.767], 1.103, 1.490	1.509 1.500	1.392 1.272	†6469.705	$2p_{10} - 5d_3$ $2p_{10} - 5d_3$	1, 2 1, 1	(0.000), 0.459, (0.703), 1.192, 1.849 0.812 (1.040) 1.852	1.849	1.192
3985.202	155 -4p10	2, 2	(0.000), (0.301), 1.193, 1.193, 1.193,	1.490 1.493	1.103 1 794	6487.765 *6498.718	$2p_{10} - 5d_1''$ $2p_{10} - 5d_1''$	î, 2	(0.000), 0.300, (0.780), 1.080, 1.863 (0.000), 0.969	1.860	1.080
4078.821 *4109.709 *4116.115	$1s_4 - 4p_5$ $1s_4 - 4p_6$ $1s_4 - 4p_7$	1,0 1,2	(0.000), 1.205 (0.000), 1.495 (0.166), 1.120	1.205 1.204	0/0 1.398	6500.37 6521.508	$2p_5 - 7d_2$ $2p_7 - 6d_3$	0, 1 1, 2	(0.000), 0.899 (0.000), (0.269),, 1 290 1 573	0/0	0.899
*4135.134 4193.01 4193 530	$1s_4 - 4p_9$ $1s_5 - 4V$ $1s_5 - 4U$	1, 2 2, 2 2, 3	(0.000), 0.992 (PB)**	1.204	1.062 0.86	*6533.159 6543.360	2ps -4ss 2ps -4ss	2, 1 2, 2	(0.000), 1.080 (0.401), (0.767), 1.098, 1.405 1.827	1.106	1.158
*4500.977 4524.681	$1s_5 - 2p_2$ $1s_5 - 2p_3$	2, 1 2, 2	(0.000), 1.481 (-), (0.601) , 0.878, 1.195, 1.501 1.823	1.500	1.537	6668.920 6728.008 6827 315	$2p_{10} - 5d_6$ $2p_{10} - 5d_5$	1,0	(0.000), 1.862 (0.581), 1.273, 1.853 (0.000), 0.505	1.862	0/0 1.273
4582.747 4611.890	$1s_4 - 2p_1$ $1s_5 - 3p_7$	1, 0 2, 1	(0.000), 1.206 (0.000), (0.601),, 1.502, 2.008	1.206	0/0	‡*6846.613 ‡6850.13	$2p_9 - 5d_3$ $2p_9 - 5d_2$	2, 2 2, 1	(0.167), 1.211 (0.000), (0.280), —, —,	1.106	1.199
4624.276	1s5 -3p6	2,2	(0.122), (0.302), 1.186, 1.341, 1.512, 1.664 (0.000), (0.177), (0.437)	1.509	1.345	6863.20 *6866.838 *6882.155	$2p_{5} - 6d_{2}$ $2p_{9} - 5d_{1}''$ $2p_{0} - 5d_{1}$	0, 1 2, 2 2 3	(0.000), 0.914 (0.066), 1.089 (0.000), 0.047	0/0 1.107	0.914
4600 071	1st 2h	2,0	0.976, 1.170, 1.348, 1.516, (0.000), (0.710),, 1.498	1.516	1.348	*6910.82 6925.53	$2p_7 - 4s_4$ $3d_3 - 6U$ $3d_3 - 6V$	1, 1 2, 3 2, 3	(0.142), 1.111 PB PB	1.022 1.376	1.164
4697.020	1ss -3ps	2, 1	(0.000), (0.719), -, 1.490, 2.202 (0.378), (0.750), -, 1.123, 1.497, 1.866	1.494	0.786	*6976.182 *6982.05	$2p_8 - 5d_1'$ $2p_8 - 5d_3$	3, 3	(0.198), 1.301 (0.000), 1.596 (0.200), 6.56(), (0.860)	1.339 1.336	1.263
*4734.152 4792.619	1si -2ps 1si -3p10	1, 2 2, 1	(0.000), 1.183 (0.000), (0.215), 1.268,	1.205	1.124	*7047.37 *7119.598	$2p_8 - 5d_4$ $2p_8 - 4s_5$ $2p_8 - 5d_4$	3, 3 2, 2 3, 4	(0.290), (0.366), (0.860) (0.217), 1.426 (0.000), 1.039	1.335 1.365 1.336	1.020
4807.019 4829.709	$1s_4 - 3p_5$ $1s_4 - 3p_7$ $1s_4 - 3p_7$	1, 0 1, 1	(0.000), 1.207 (0.300), 0.903, 1.198 (0.000), (0.152), 1.244	1.207 1.202	0/0 0.900	‡7262.54	$2p_7 - 5d_8$	1,2	(0.000), (0.178),,, 1.379	1.023	1.201
4916.508	$154 - 2p_4$ $154 - 2p_4$	1, 1	(0.000), (0.132),, 1.344, 1.508 (0.417), 0.797, 1.204	1.192	1.350 0.794	*7285.301 †‡7316.272	$2p_7 - 5d_2''$ $2p_7 - 5d_1'''$ $1s_2 - 4Y$	1, 1 1, 2 1, 2	(0.000), 1.092 (0.000), (0.232), 0.885,	1.022	1.069
5028.280 5392.795	$134 - 3p_{10}$ $1s_4 - 3p_{10}$ $1s_3 - 6X$	1, 1 0, 1	(0.522), 1.203, 1.722 PB	1.204 1.203 0/0	1.723	7321.452 *7336.480	$1s_2 - 4X$ $2p_9 - 3s_1'''$	1, 1 2, 3	0.506, (0.814), 1.316 (0.000), 1.151	1.318 1.106	0.504
*5488.555 5552.385	$2p_{10} - 8d_{5}$ $2p_{9} - 9d_{4}$ $2p_{10} - 7d_{3}$	2, 3 1, 2	(0.000), 1.059 (0.000), [0.607], 1.302,	1.000	1.082	7386.002	$2p_{10} - 3s_5$	1, 2	(0.000), (0.383), 1.084, 1.464, 1.851	1.848	0.50 1.465
5566.615 5581.781	$2p_{10} - 7d_5$ $2p_{10} - 7d_6$	1, 1 1, 0	(0.629), 1.217, 1.845 (0.000), 1.859	1.847	1.217 0/0	7400.41	$2p_6 - 5a_3$ $2p_6 - 5d_1''$	2, 2 2, 2	(0.181), (0.379), 1.002, 1.189, 1.388, 1.579 (0.320), (0.629), (1.384	1.194
*5618.878 5688.373 *5722.14	$2p_9 - 8d_4$ $1s_2 - 6V$ $2p_9 - 6s_4$	2, 3 1, 2 2, 1	(0.000), 1.056 PB (0.000), 1.065	1.106 1.321 1.106	1.081 0.87 1.188	7451.00 7472.01	$\begin{array}{r} 3d_{5} -5V \\ 3d_{5} -5Y \end{array}$	1, 2 1, 2)	1.068, 1.376, 1.673 PB PB	1.376 1.40	1.068 0.85 1.10
*5823.89 *5824.80 5894.988	$1s_3 - 5X$ $2p_9 - 7d_4$ $2p_{10} - 6d_5$	0, 1 2, 3 1, 1	PB (0.000), 1.050 (0.181), 1.185, 1.835	0/0 1.106 1.855	0.50 1.078 1.185	7474.01 7492.23	$3d_{5} - 5X$ $2p_{8} - 3s_{1}'''$	1, 1) 3, 3	PB (0.176), (0.413), (0.636), 0.910, 1.125, 1.339,	1.595	0.50
5931.241 *5934.172 *5998.115	$2p_{10} - 6d_6$ $2p_8 - 7d_4'$ $2p_9 - 5s_4$	1,0 3,4 2,1	(0.000), 1.852 (0.000), 1.088 (0.000), 1.081	1.852 1.336 1.109	0/0 1.237 1.164	7501.13	2¢9 -3s1''''	2, 2	1.549, 1.754 (), (0.338), 0.934, 1.101, 1.278, 1.442	1.338 1.105	1.125 1.274
*6111.759 *6152.069 6163.935	$2p_7 - 7d_1''$ $2p_9 - 6d_1''$ $1s_2 - 5V'$	1,2 2,3 1,2	(0.000), 0.959 (0.000), 1.424 PB	1.022 1.106 1.32	0.980 1.265 0.87	7514.54 7642.025 7643.91	$2p_7 - 5d_6$ $1s_3 - 2p_2$ $3d_3 - 5U$	1,0 0,1 2,3	(0.000), 1.022 (0.000), 1.553 PB	1.022 0/0 1.376	0/0 1.553 1.17
6178.302 6179.665 *6182.420	$1s_2 - 5Y$ $1s_2 - 5X$ $2p_9 - 6d_4$	1, 2 1, 1 2, 3	PB (0.000), 1.041	1.326 1.110	1.10 0.50 1.076	7664.56 *7802.651 ‡7887.395	$3d_3 - 5Y \\ 2p_9 - 3s_4 \\ 1s_2 - 2p_1$	2, 2 2, 1 1, 0	PB (0.000), 1.068 (0.000), 1.313	1.376 1.106 1.313	1.10 1.182 0/0
6189.10 6198.260	$2p_{10} - 4s_4$ $2p_{10} - 4s_5$	1, 1 1, 2	(0.712), 1.154, 1.839 (0.000), (0.360), 1.140, 1.499, 1.852	1.845 1.854	1.148 1.497	7967.314 8206.341 8266.519	$1s_3 - 3p_7$ $1s_3 - 2p_4$ $1s_2 - 2p_2$	0, 1 0, 1 1, 1	(0.000), 0.906 (0.000), 0.790 (0.232), 1.324, 1.549	0/0 0/0 1.321	0.906 0.790 1.551
6200.890 *6206.297	$2p_6 - 7d_1'$ $2p_9 - 6d_5$	2, 3 2, 1	(0.000), (), (), 0.916, (-0.000), 1.071	1.379 1.106	1.225	8280.116 8346.823	$1s_4 - 2p_5$ $1s_2 - 2p_3$	1, 0 1, 2	(0.000), 1.206 (0.000), (0.146), 1.060, 1.201.	1.206	0/0
*6224.169 *6261.212 6265.301	$2p_{8} - 7d_{3}$ $2p_{8} - 6d_{1}'$ $1s_{8} - 4p_{10}$	2, 2 3, 3 0, 1	(0.153), 1.333 (0.283), 1.283 (0.000), 1.808	1.376 1.338 0/0	1.290 1.228 1.808	\$8409.190 \$819.412	$1s_5 - 2p_7$ $1s_5 - 2p_9$	2, 1 2, 3	(0.000), (0.474), 1.043, 1.493, 1.961 (0.000), (0.171), (0.347)	1.497	1.034
6292.649	2ps -6d4	3, 3	(), [0.528], [0.790], 1.077, 1.339, 1.596, 1.856	1.337	1.076	9045 446	1.ss - 7.he	2, 3	1.014, 1.164, 1.332, 1.493, 1.657	1.499	1.330
*6294.45	2\$\$ -6d\$	3, 2	(0.000), 1.357	1.336	1.316	2010.110	100 - 219	4,4	<u> </u>	1.500	1.109

* Pattern was not resolved.
** PB Pattern unsymmetrical due to Paschen-Back effect.
† Almost symmetrical patterns whose separations were badly disturbed by beginning PB effect.
‡ Pattern was partly obscured by other lines (i.e., Xe spark line or He line or ghost of He line).
⁶ Forbidden line 1s₂ -5Y also appeared.
⁶ Forbidden line 3d₆ -5Y also appeared.

3

Σg

 $2p_{8}$

3.698

TABLE II. Average g values of XeI.

j	TERM	1	2	3	4	5	6	7	8	9
2 1 1 0	85 84 82 83	1.500 1.204 1.321 0/0		1.465 1.182*	1.496 1.154	1.512* 1.164	1.188			
3 2 2 1	Р8 Рэ Рв Рз Р10		$1.336 \\ 1.106 \\ 1.379 \\ 1.195 \\ 1.852 \\ 1.000$	1.348 1.123 1.347 1.728	1.272* 1.103 1.395* 1.801	1.307* 1.386*				
1 1 0 0	рт р4 р2 р5 р1		1.022 0.790 1.552 0/0 0/0	0.903	0/0	0/0				
4 3 3	d₄' d₄ d₁'			0.01		$1.217 \\ 1.026 \\ 1.263^*$	1.236 1.076 1.246*	1.237* 1.078* 1.225*	1.081*	1.082*
3 2 2	d_{3} d_{1}''			1.126 1.376†		1.196 1.073	1.303 0.987*	1.298 0.980*		
2 1 1 1	d_{5} d_{2} d_{3}'			1.274 1.395†		1.273 0.819	1.180* 0.914	1.217 0.899	1.308	
Ō	d ₈			0/0		0/0	0/0	0/0		
3 2 2 1	U Y V X				1.18† 1.11† 0.86† 0.504†	1.17† 1.10† 0.87 † 0.50†	1.09† 0.87† 0.50†			

* Obtained only from unresolved patterns. † Obtained only from perturbed patterns.

TABLE III. g values for Xe 5p⁵6s.

J	Level	Observed (Pogány)	Observed (Authors)	Calculated (Houston) ⁸
1	1 s4	1.20	1.204	1.221
	1 s ₂	1.30	1.321	1.279
Σg		2.50	2.525	2.500
2	1 s ₅		1.500	1.500

measures of 1s2 and 1s4 are indicated. Lörinczi's6 results also appear to be unreliable as indicated by the large error in $2p_{10}$.

Partial g sums based on jj-coupling may be obtained for several configurations, and these are listed in Table V.

Inspection shows that except for the case of $5p^{5}7p$ (*J*=1), the spectrum of XeI is remarkably close to *jj*-coupling, at least insofar as we may ⁸ W. V. Houston, Phys. Rev. 33, 297 (1929).

J	LEVEL	Observed (Pogány) ⁵	Observed (Lörinczi) ⁶	Calculated (Lörinczi) ⁶	Calcu- lated (Green)9	Observed (Authors)
1	$2p_2 \\ 2p_4 \\ 2p_7 \\ 2p_{10}$	1.02	0.781 1.009 1.75	$1.424 \\ 0.733 \\ 1.099 \\ 1.689$	$1.494 \\ 0.639 \\ 1.029 \\ 1.838$	$1.552 \\ 0.790 \\ 1.022 \\ 1.852$
	Σg			4.945	5.000	5.216
2	$2p_3 \\ 2p_6 \\ 2p_9$	$1.183 \\ 1.402 \\ 1.113$	1.178 1.381 1.113	1.169 1.407 1.096	1.178 1.391 1.098	$1.195 \\ 1.379 \\ 1.106$

TABLE IV. g values for Xe 5p⁵6p.

TABLE V. Partial g sums in XeI.

3.672

3 667

1.333

3 680

1.336

3.672

Configuration	J	jj Coupling	Observed
5 <i>0</i> ⁵ 7 <i>0</i>	1	2.833	2.631
50580	1	2.833	2.837
50570	2	2.500	2.470
50580	2	2.500	2.498
$5p^{5}5d(s_{1}''')$	3	1.111	1.126
$5p^{5}5d(s_{1}''')$	2	1.289	1.274
$5p^{5}7d$	1	2.167	2.092
5p58d	ĩ	2.167	2.094
5 p 5 9 d	ĩ	2.167	2.116
5057d	$\tilde{2}$	2.277	2.269
5p58d	$\overline{2}$	2.277	2.290
5 p 5 9 d	$\overline{2}$	2.277	2.278
5 p 57 d	3	2.306	2.289
5p58d	3	2.306	2.322
5p59d	3	2.306	2.303

say that the J of the core is a "good" quantum number. In the particular case of $5p^{57}p$ (J=1) both of the levels $3p_{10}$ and $3p_7$ have g values smaller than the neighboring $5p^{5}6p$ and $5p^{5}8p$ levels, their sum being 0.202 less than for jjcoupling, while $5p^{5}6p$ (J=1) has a g sum 0.217 in excess of the theoretical g sum. The energy levels concerned are:

$$2p_2 8555 \qquad 3p_{10} 9907 \\ 2p_4 9455 \qquad 3p_7 9089$$

so that both configuration interaction and the sharing of g values by the two configurations are extremely probable.

⁹ J. B. Green, Phys. Rev. 52, 736 (1937).