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Random layer lattice structures are considered which consist of layers arranged parallel
and equidistant, but random in translation parallel to the layer, and rotation about the normal.
We call @ and b the axes in the layer, and ¢ the axis normal to the layer. In this notation there
will be crystalline reflections of type (00/), two-dimensional lattice reflections of type (kk),
and no general reflections (#k/). Equations are developed for the intensity distribution in a
two-dimensional powder reflection, and for the integrated intensity. Equations are also de-
developed for the particle size in terms of the peak breadth, and for the displacement of the
peak. The powder pattern of a heat treated carbon black is presented as an illustration of

"two-dimensional lattice reflections.

I. INTRODUCTION

HE x-ray diffraction patterns of certain

layer type materials indicate that they
may exist in a form which is intermediate be-
tween the amorphous and the crystalline states.
For example, the x-ray patterns of certain heat
treated carbon blacks indicate that they are
built up from individual graphite layers arranged
parallel to one another at about the normal
graphite spacing but random in translation
parallel to the layer, and rotation about the
normal. The powder pattern of such a material
consists of two kinds of reflections—crystalline
type reflections, and diffuse two-dimensional
lattice reflections. The qualitative form of a two-
dimensional lattice reflection has been given by
von Laue! for the limiting case of large two-
dimensional gratings. It is the purpose of this
paper to develop the general equations for x-ray
powder patternsof random layer lattice materials.

1 M. v. Laue, Zeits. f. Krist. 82, 127 (1932).

II. DIFFRACTION BY RANDOM LAYER
LatTicE BLOCK

The scheme of repetition in each layer is
defined by the translation vectors a@izs. The
separation between layers is given by the vector
as; perpendicular to a; and a@,. The layers are
identical and equidistant, but random in transla-
tion parallel to the layer and rotation about the
normal. It is enough to consider only the random
translation since the only reflections allowed on
the powder pattern are unaffected by an addi-
tional random rotation. The position of atom #
in cell mm., in layer m3 is given by the vector

Rur=m1a1+meas+msas+7n+0mar1+emgas, (1)

where 7, is the basis vector for atoms of type #,
and 6 and e have completely random values.
Let us represent the directions of the primary
and diffracted beams by unit vectors sy and s.
The intensity of diffracted radiation in electron
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units is then given by
I=3% fuoexp[(27i/N)(s—s0)* Rn"] X fn exp[—(2mi/N)(s—50) - Ru"]. (2)

Inserting (1) into (2) and summing, we have

in%(mw /A —0'N11'27f' —0'N22 —
o S s) Narsintr /N G50 Nate o ) (5 50)- (st b St et T (3)

sin®(r/A)(s—so0)-a1  sin?(w/AN)(s—so) a2 ms mg

where Na; and Naa, are the dimensions of the layer, assumed to be a parallelogram, and F is the
structure factor

F=3 fu exp[(2mi/N) (s =50)-7a]. @)
The two sine quotients will be small unless the two Laue equations are approximately satisfied.
(S—So)'a1=h>\, (S“‘So)'a2=k>\. (5)

If % and % are both zero Eq. (3) is independent of the randomness, and assumes the usual form for a
crystalline reflection.

I _F2sin2(1r/)\)(s—so)-N1a1 sin?(m/N\) (s —$0) * Naas sin2(w/N) (s —so) - Nsas 6
T sind(e/N) (s—so)-ar sin?(w/N)(s—s0)-as  sin®(m/N)(s—s0)-as (©)

If & and %k are not both zero, the phase factors in the summation over s are completely random, the
scattering from the individual layers will be incoherent, and the intensity from a single layer will be

= Fzsin2(7r/)\) (s —50)* Niai sin2(m/N) (s —$0)+ Nzaz. -
sin®(w/N) (s —s0) a1 sin®(mw/N) (s —50)- a2

The diffracted radiation will be of two kinds; crystalline reflections of type (00/), and two-dimen-
sional lattice reflections of type (hk). There will be no reflections of type (hkl). We are interested in
the powder pattern of a sample containing a large number of blocks with random orientation. The
crystalline peaks of type (00!) are given directly by the usual powdered crystal theory. The next step
is to develop the theory of the diffraction pattern of a two-dimensional lattice which takes with equal
probability all orientations in space.

III. PowpeEr PATTERN OF Two- plane of the layer and b; will be perpendicular to
DIMENSIONAL LATTICE the layer. The solution of the two Laue equations
Since the vector as is perpendicular to a; and 8'V¢S
as, the reciprocal vectors b, and b, will be in the s—so=MNH~+(s—s0)* asbs (8)
X P X where H= hb1+ kbs.

The significance of Eq. (8) is best seen in the
" reciprocal lattice construction shown in Fig. 1.

\ AH . . .
& The terminal point of the vector s—s, can lie

anywhere on the line KHK passing through the
¢ point H and perpendicular to the layer. For a
two-dimensional layer the reciprocal lattice be-
comes a series of parallel lines perpendicular to
the layer. Since |s—so| =2 sinf, for each index
pair kk there is a minimum value of sinf given by

4 0

F16. 1. Reciprocal lattice construction for a .
two-dimensional lattice. 2 sinfy=\H. 9)



DIFFRACTION IN
There will be a continuous distribution of
diffracted intensity for all values of sinf greater
than sinf,. In the vicinity of 6, there will be a
concentration in the diffracted intensity since
|s—so| changes slowly for small values of .
Each (kk) band will have the form shown in
Fig. 4.

In the general case the layers will not be
indefinitely large, and there will be an appreciable
intensity contribution for the terminal point of
s—so somewhat off the line KHK. To get the
exact intensity distribution in a (k%) reflection,
will therefore require the usual integrations in-
volved in the derivation of an integrated inten-
sity. Let P be the power, or total energy per
second of diffracted radiation for a particular
index pair (k).

P=ffIdAdM.

P is obtained by integrating the intensity from
each layer over the area of the receiving surface,
and over dM the number of crystals in each
range of orientation with respect to the primary
beam. To be able to discuss the shape of a two-
dimensional lattice reflection, it is necessary to
know the distribution of power with respect to
angle. Let us call this quantity Pgg, then P may
be expressed by

P= fP29d(20).

(10)

(11)

If we represent any value of s—so in terms of a
value (s—so)z which exactly satisfies the two
Laue equations we have

s—so=(s—Sso)u+As. (12)
From (7), the intensity per layer becomes
sin?(w/\)As Nya, sin?(w/N)As - Noao

Ihk= 2 13)

sin?(w/N)As- a1 sinz(r/)\)Ayag'

By restricting our attention to one particular
reflection (kk), the usual approximation can be

made
sin2Nx N2
—N? exp[ - ——xﬂ]
sin2x T

I},k= F2N12N22 exp{ - (1"/)\2)[(AS N1a1)2

+(AS‘N2(12)2]}. (14)

RANDOM LAYER LATTICES
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F16. 2. Displacements of s and so involved in the
integration for diffracted power.

We can express As in terms of the three variables
pi1paps as follows

As=ﬁb1+ﬁbz+ﬁbs, (15)
N, 2
Iy=F*N.2N,? exp[ — (7 /A2 (p1*+p:)) ] (16)

In Fig. 2 let the general vector (s—so) be the
polar axis. The direction of the primary beam s,
varies by small azimuth and latitude angles
doda and the direction of diffracted radiation by
the orthogonal displacements dBdy. The solid
angle covered by the primary beam is

dQ=cos bdads 17

and the area of receiving surface covered by the
diffracted radiation is

dA =RdBdy. (18)

If M is the number of two-dimensional layers in
the sample, the number dM for which the
primary beam lies within the solid angle dQ
having the same equivalent orientation as regards
a reflection (kk), is given by the proportion

dM/mM =dQ/4r,

where m is the two-dimensional multiplicity.
Substituting in (10), we obtain

mMR?
P= . ffff[cos@dadadﬁd'y. (19)
T

By holding ¢ constant, but allowing small
changes da, dB, dv, the vector As will receive an
increment d(As) given by

d(As) = (da—dvy) sinfi+dBj
+ (da+dvy) cosbk,

(20)
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where ¢ j k are unit orthogonal vectors. If we
replace the variables @, v by a new set §, € at
45° to the former axes, we have

6=(atv)/V2, e=(a—7)/V2, 21)
d(As) =V2 sinfdei+dBj+V2 cosbddk.

For increments dedfd$, the terminal point of As
sweeps out a volume

dV=sin20dedBds. (22)

From Eq. (15), for increments dpidpsdps we
find the terminal point of As sweeps out a volume

dV=Mdpldp2dp3. (23)
14V 2
Equating the volumes, we have
dedBdé = (N1Naw, sin20)~'dpdp.dps. (24)
Substitution in Eq. (19) gives
MR ffff —dadpldpgdpg (25)
87rN 1N ov, sinf

The integration with respect to do can be carried
out independently. Expressing I in terms of
(16), we obtain

R2N1N2Mm fff
sinf

X exp[ — (/N (p12+p22) Jdp.dpadps.

By replacing the variables pip. by a new set of
orthogonal variables v;2; such that v, determines
the component of As parallel to the vector H we
obtain

R2N1N2Mm fff
sinf

Xexp[— (w/A\2) (912 4+v,2) Jdv1dved ps.
Let G be a unit vector parallel to H, and set
v,=L(As-G). (28)

The quantity L introduced in (28) has the
significance of a particle dimension given by

HE-C

(26)

(27)

(29)
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To get the distribution of power Psy, the integra-
tion is restricted to values of |s—s,| between 7
and 7-+dr, where 7=2sin6. In terms of the
cylindrical coordinates used in Fig. 3,

di’)ldp;;:L?’d(pd?’/ \ b3| y
v1=L(As-G)=L(r cospe—\H).

Since the exponential factor involving v, de-
creases rapidly we can approximate by replacing
the spherical shell by the tangent cylindrical
shell and integrating v, from — « to + .

N1N2R2WLM)\ ff
sinf

Xexp[ — (1r/)\2)L2(r cose—NH)?]Lrdedr. (30)

For the intense part of a reflection, only small
values of ¢ are of importance, and cose can be
expanded. By letting

o= N, wm oL/ GY)
Fla)= f " exp[—@—a)lde,  (32)
Eq. (30) becomes
N1N2R2mM)\Lf ( )%
A, A/mL sinf
X F(a) cos8d(26). (33)

The power Py is spread over a circle of circum-
ference 27R sin26. Calling Pj’ the power per
unit length of circle, and introducing the in-
tensity of scattering per electron, so that P’ is
expressed in absolute units, we have

Py It f14-cos?26
Pgo’ = ; . (34)
27R sin260 m?c*R? 2
TABLE 1. Function F(a).
a F(a) a F(a) a F(a) a F(a)
—1.2 0.12 | —-04 061 0.1 0.96 | 0.6 1.06
1.0 0.21 | —0.3 0.69| 0.2 1.01 | 0.8 1.04
—-0.8 032 |—0.2 0.77] 03 1.04 | 1.0 0.99
—0.6 046 | —0.1 0.84| 04 1.06 | 2.0 0.67
—0.5 0.53 00 0911 0.5 1.07 | 3.0 0.52




DIFFRACTION

dr
X Lox X
7 e N\
do
¢
5 0

F16. 3. Cylindrical coordinates used in the integration.

Letting
Lo N 1N, M2
g E— (35)
m2c*4TRA,
we obtain
F*(14-cos220) 7y L \?}
Pl =Knm (o) F. 6o
2(sing)? A/
where a=(24/7L/\)(sin —sinb,). (37)

The function F(a) as defined by Eq. (32) is
given in Table 1.
For large values of a (a>3)

F(a)=(r/4a)*
and Eq. (36) reduces to

KmF? (1+cos226)

Py’ = . (38)
4v2 sin6[sinf(sinf—sinf,) ¢

The usefulness of Eq. (38) is restricted by the
expansion of cosg in Eq. (30). For sinf < 1.2 sinf,
the error in Eq. (38) is less than 5 percent. A more
useful equation for large values of @ can be
obtained from (27). From Fig. 3, we see that if »
is appreciably larger than MH, the contribution
to the integral for P’ depends only on the
length of the reciprocal lattice line KHK inter-
cepted by the two spheres. The integration over
v; and v, can be carried out from — o to + =,

and
fd ) dr
pea [
’ |bs| sine

Using the relation sinf,=cos¢ sinf, and dividing
by 27R sin26, and multiplying by the intensity

IN RANDOM LAYER LATTICES
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per electron, we find Eq. (26) becomes

KmF?*(14cos?26)
2o’ = (39)

4 sinf(sin20 —sin26,) ¥

Equation (39) gives in absolute units, the result
which has already been derived by von Laue.!
To plot the distribution of intensity in a two-
dimensional reflection Eq. (36) should be used
for small values of sinf—sin6,, and Eq. (39) for
the larger values. Over small ranges of angle,
F? can be treated as a constant, otherwise it
must be considered as varying continuously with
sinf, and given by

Fri=3 fa exp[Zri{ hx~+ky
2@32
+ T(sin%? —sin26,)? } ] (40)

IV. PARTICLE SizE FROM PEAK BREADTH

The size of a two-dimensional layer in the
plane of the layer can be determined from the
breadth of the two-dimensional reflection at half-
maximum intensity. The dimension L which is
determined from a reflection (k%) is the effec-
tive dimension of the layer in the direction
H =hb;+-kbs. Over the small range of angle in-
cluded between half-maximum intensity values,
the variation in (36) can be considered as due
wholly to F(a). From a plot of Table I it is seen
that the half-maximum intensity breadth corre-
sponds to a change in @ of amount Aa=3.26.
From Eq. (37)

A
— . (4D)

A(sin6); L= .
B cos 6

2\/7L
3.26=

It should be pointed out that Eq. (41) for the
two-dimensional particle size has exactly the
same form as the equation for the crystalline
particle size except for a numerical coefficient
about twice as large.

V. DISPLACEMENT OF PEAKS

The maximum in F(a) comes at a=0.55.
Calling the position of the maximum 6m, we

have
0.55=(24/wL/\)(sin,,—sinb).
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(r0)

F1c. 4. Microphotometer record of the diffraction
pattern of a heat treated carbon black, showing two-
dimensional lattice reflections. Radiation Cu Ka=1. 539A,
monochromated by reflection from rocksalt.

The maximum is therefore displaced from 6,
toward larger angles by an amount

A(sing) =0.16\/L.

For small particle dimensions L, this displace-
ment of the peak toward larger angles can be
quite important. If the two-dimensional char-
acter of the reflection were not realized, and the
peak were treated as a normal crystalline powder
pattern line, erroneous conclusions about lattice
contractions could easily be drawn.

VI. INTEGRATED INTENSITY OF A Two-
DIMENSIONAL REFLECTION

In order to determine from a powder pattern
the amount of material present in the form of
independent two-dimensional layers, it is con-
venient to measure the integrated intensity for
a two-dimensional reflection. Although each re-
flection extends to 26=180° it is better to
measure only the part extending to a convenient
and arbitrary value of sinf. We have

integrated intensity = f Pyd(20). (43)
0

From Eq. (26) and Fig. 3, we see that if 26 is
taken enough larger than 26,, such that the
intensity distribution at 26 is nearly independent
of particle size, the contribution will depend only
on the length of the reciprocal lattice line KHK
within the sphere. Integrating p; and p, from
— o to + « we find Eq. (26) becomes

F2N1NyR*mMN\? 1

- f " dpy (44)
4o, sinf

d(As)=|bs|dps=2 sinf, secpdp.

By introducing the intensity per electron and
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dividing by 27 R sin26, to give the power per unit -
length of arc, and introducing the abbreviation
K from Eq. (35), we obtain

Pk fF2(1+cos220)
=Km S —

sinfy séc%d«:. (45)
2 sinf sin26

If the range 26—280, is kept small, an average
value for F? and the polarization factor can be
used. Since sinfy=sinf cos¢ Eq. (44) becomes

2 2
P Km(F)Av/1+cos 20>f
AY —o

cos pdo

2 smoo (c05200 —sinZp)?

and the integrated intensity is then given by

14 cos?26
f P2'd(26) = /Fz)m,< >
sm00 2 AV
[1—sin26,/sin26 ]}
Xsin— .
()
cosfy

Equation (46) is in a convenient form for
evaluation from microphotometer records, and
for direct comparison with the integrated in-
tensity of a crystalline reflection.

VII. ExaMPLE OF Two-DIMENSIONAL
LATTICE REFLECTION

Figure 4 is the microphotometer record of part
of an x-ray powder pattern of a heat treated
carbon black. In terms of the hexagonal axes of
graphite, the reflections appearing are the two-
dimensional grating reflections (10) and (11),
with the three-dimensional reflection (004) super-
imposed on (10). The form of a two-dimensional
grating reflection is shown very well by the
(10) curve,? rising very rapidly near 6, and then
decreasing continuously toward larger angles.
From the breadth of the (10) peak at half-
maximum intensity the layer dimension in this
particular sample is calculated from (41) to be
L=064A.

2The two-dimensional lattice character of certain
carbon black reflections has been recognized by a number
of investigators. U. Hofmann and D. Wilm, Zeits. f.
Electrochemie 42, 504 (1936); H. Arnfeld, Arkiv {. Mat.
Astron. Fys. B23, 1 (1932; E. Berl, K. Andress, L. Rein-
hardt an(f W. Herbert, Zeits. f. physik. Chemie A158,
273 (1932); A166, 81 (1933).



