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Random layer lattice structures are considered which consist of layers arranged parallel
and equidistant, but random in translation parallel to the layer, and rotation about the normal.
We call a and b the axes in the layer, and c the axis normal to the layer. In this notation there
will be crystalline reflections of type (00l), two-dimensional lattice reflections of type (hk),
and no general reflections (hkl). Equations are developed for the intensity distribution in a
two-dimensional powder reflection, and for the integrated intensity. Equations are also de-

developed for the particle size in terms of the peak breadth, and for the displacement of the
peak. The powder pattern of a heat treated carbon black is presented as an illustration of
two-dimensional lattice reflections.

I. INTRODUCTION

HE x-ray diffraction patterns of certain
layer type materials indicate that they

may exist in a form which is intermediate be-
tween the amorphous and the crystalline states.
For example, the x-ray patterns of certain heat
treated carbon blacks indicate that they are
built up from individual graphite layers arranged
parallel to one another at about the normal
graphite spacing but random in translation
parallel to the layer, and rotation about the
normal. The powder pattern of such a material
consists of two kinds of reHections —crystalline
type reflections, and diffuse two-dimensional
lattice reflections. The qualitative form of a two-
dimensional lattice reflection has been given by
von Laue' for the limiting case of large two-
dimensional gratings. It is the purpose of this

paper to develop the general equations for x-ray
powder patterns of random layer lattice materials.

' M. v. Laue, Zeits, f. Krist. 82, 127 (1932).

II. DIFFRACTION BY RANDOM LAYER

LATTICE BLOCK

The scheme of repetition in each layer is
defined by the translation vectors a~a2. The
separation between layers is given by the vector
a3 perpendicular to a& and a2. The layers are
identical and equidistant, but random in transla-
tion parallel to the layer and rotation about the
normal. It is enough to consider only the random
translation since the only reflections allowed on
the powder pattern are unaffected by an addi-
tional random rotation. The position of atom n
in cell m&m2, in layer m3 is given by the vector

R„"=m~a~+mna2+m~a~+r„+8mgcg+fmaQ2, (1)

where r„ is the basis vector for atoms of type n,
and 8 and e have completely random values.
Let us represent the directions of the primary
and diffracted beams by unit vectors so and s.
The intensity of diffracted radiation in electron
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units is then given by.

I=+ f„exp[(27ri/P)(s s—o).R„"g P f„exp[—(2 oir/P)( s s—p)'R "j.
nm nfl'

Inserting (1) into (2) and summing, we have

sin'(or/X)(s —sp) N&a& sin'(or/X)(s —sp) NpapI= F' g exp[(2ori/X) (s —so) (soap+ hmoal+pmoao) )P (3)
sin'(or/X)(s —sp) a~ sin'(s/X)(s —sp) 'ap mo tn3

where ¹a&and N2a2 are the dimensions of the layer, assumed to be a parallelogram, and F is the
structure factor

F=P f„exp[(2ori/X)(s —sp) r„j. (4)

The two sine quotients will be small unless the two Laue equations are approximately satisfied.

(s sp) ay =kX, (s sp) 'ap =At.

If k and k are both zero Eq. (3) is independent of the randomness, and assumes the usual form for a
crystalline reHection.

sin'(or/X)(s —sp) 'Nyaya sin (or/X)(s —so) Npap sin'(w/X)(s —so) Noao
Iooi = F'

sin'(or/X)(s —sp) a~ sin'(or/X)(s —so) ao sin'(vr/X)(s —so) ap
(6)

If h and k are not both zero, the phase factors in the summation over ma are completely random, the
scattering from the individual layers will be incoherent, and the intensity from a single layer will be

sin'(or/X) (s —so) ' Nial sin'(or/&) (s —sp) ~
N pap

lax= F
sin'(or/X)(s —sp) ~ aq sin'(7r/X)(s —sp) ao

The diffracted radiation will be of two kinds; crystalline reflections of type (00l), and two-dimen-
sional lattice reflections of type (kk). There will be no reflections of type (kkl). We are interested in
the powder pattern of a sample containing a large number of blocks with random orientation. The
crystalline peaks of type (001) are given directly by the usual powdered crystal theory. The next step
is to develop the theory of the diffraction pattern of a two-dimensional lattice which takes with equal
probability all orientations in space.

III. PowDER PATTERN QF Two-
DIMENSIONAL LATTICE

s sp XII+(s—sp)——aobo-
H= hbg+kb2.where

plane of the layer and b3 will be perpendicular to
the layer. The solution of the two Laue equations

Since the vector a3 is perpendicular to a~ and
a2, the reciprocal vectors b~ and b2 will be in the (8)

FIG. 1. Reciprocal lattice construction for a
two-dimensional lattice.

The significance of Eq. (8) is best seen in the
reciprocal lattice construction shown in Fig. 1.
The terminal point of the vector s —so can lie
anywhere on the line EHE passing through the
point H and perpendicular to the layer. For a
two-dimensional layer the reciprocal lattice be-
comes a series of parallel lines perpendicular to
the layer. Since ~s —sp~ =2 sin8, for each index
pair Itk there is a minimum value of sintIt given by

2 sineo=XH.
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There will be a continuous distribution of z
diffracted intensity for all values of sin8 greater d

than sin80. In the vicinity of 80 there will be a
concentration in the diffracted intensity since
~s —s0~ changes slowly for small values of p.
Each (kk) band will have the form shown in efP0
Flg. 4. X

In the general case the layers will not be
indehnitely large, and there will be an appreciable
intensity contribution for the terminal point of

PIC. 2. Displacements of s and s0 involved in the
So somewhat Off the 11ne +II+ TO get the . jnteg1gtjpn for Qjff13ctpg pp~pf,

exact intensity distribution in a (kk) reflection,
will therefore require the usual integrations in- Qi'e can express Qs in terms of the three variables
volved in the derivation of an integrated inten- p,p,ps as follows
sity. Let I' be the power, or total energy per
second of di&racted radiation for a particular & 'f, + 'f, +~ 8
index pair (kk).

P= )"J
"IdAd3/I.

I' is obtained by integrating the intensity from
each layer over the area of the receiving surface,
and over dM the number of crystals in each
range of orientation with respect to the primary
beam. To be able to discuss the shape of a two-
dimensional lattice reflection, it is necessary to
know the distribution of power with respect to
angle, Let us call this quantity P2e, then I' may
be expressed by

P= ~P2gd(28).

Ikg P'NiiX2' ——expL —(ir/V)(Pi'+P2') j (1&)

In Fig. 2 let the general vector (s —so) bethe
polar axis. The direction of the primary beam so

varies by small azimuth and latitude angles
dodo. and the direction of diAracted radiation by
the orthogonal displacements dPdy. The solid
angle covered by the primary beam is

dQ=cos 040fdr

and the area of receiving surface covered by the
d1ff1 acted 1Rd1Rtlon 1s

s —so = (s —so)ir+As. (12)

From ('T), the intensity per layer becomes

If we represent any value of s —so in terms of a
value (s —so)ir which exactly satisfies the two
Laue equations we have

If M is the number of two-dimensional layers in
the sample, the number dM for which the
pr101Rry beam 11es w'1th1n the solid angle d0
having the same equivalent orientation as regards
a reHection (kk), is given by the pl'oportioil

dM/mM=dQ/4s,

sin (K/X)ks'IiIiai sill (K/X)ds' X2a2 where m is the two-dimensional multiplicity.

sin'(s/X)hs ai sin'(s. /X)As am
Substituting in (10), we obtain

By restricting our attention to one particular
reHection (kk), the usual approximation can be
made

r03IIR2 t t' r r

P = I I I cos8dodndgdy (19).
J 0

sin'Nx

sin x

¹~¹exp ——x2
By holding 0' constRnt, but allowing small
changes dn, dP, dy, the vector Ds will receive an
increment d(ks) given by

Ii, i, =P'Ni'Iir2'expt —(ir/X')I (as X,a,)'
+(As ¹a2)'gI. (14)

d(ks) = (dc' —d'r) sln8$+dPJ
+(dn+dy) cos8k, (20)
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8 = (0 +y)/v2, e = (cx —y) /v2,
(21)

d(As) = V2 sin8dci+dP j+K2 cos8d8k. dvidps=Lrdydr/~b ~,

v, =L(ds G) =L(r cosy —XH).For increments dedPdb, the terminal point of As

sweeps out a volume Since the exponential' factor involving v2 de-
creases rapidly we can approximate by replacing
the spherical shell by the tangent cylindrical
shell and integrating v2 from —a& to + ~.

d t/'= sin28dedPd6. (22)

From Eq. (15), for increments dp&dp2dp3 we

find the terminal point of As sweeps out a volume

where i j k are unit orthogonal vectors. If we To get the distribution of power P», the integra-
replace the variables n, y by a new set 8, e at tion is restricted to values of is —so~ between r
45' to the former axes, we have and r+dr, where r = 2 sine. In terms of the

cylindrical coordinates used in Fig. 3,

bg b2Xb3
dV= dp xdp2dp3 ~

NgN2

Equating the volumes, we have

d~dpd8 = (N(N2v. sin28)-'dp, dp, dp, .

Substitution in Eq. (19) gives

(23)

NgN2R'md&
t

t' F'

sin84A,

Xexp[ —(x/X')L'(r cosy —XH)'gLrdydr. (30)

For the intense part of a reHection, only small
values of y are of importance, and cosy can be
expanded. By letting

m3fR' ~ p I
d dp, dp, dp. (2S)

8~NgN2v, ~ ~ & ~ sing

m-L

(r —XH), x = y(+xLr/2X)
*

(31)

The integration with respect to do. can be carried
out independently. Expressing I in terms of
(16), we obtain

R'NiN2Mm t
t

t
F2

JJJ.;.8

F(a) = expL —(x' a)' jdx, —

Eq. (30) becomes

NgNgR'm MAL p (
A, J &gxL sin8)

(32)

XexpL —(x/X')(pi'+p, ')]dp,dp, dp, . (26)

By replacing the variables p&p& by a new set of
orthogonal variables viv2 such that vi determines
the component of hs parallel to the vector H we
obtain

R'NxN2~m ~ ~ r F'

XF(a) cos8d(28) (33).

The power P» is spread over a circle of circum-
ference 2~R sin28. Calling P2g' the power per
unit length of circle, and introducing the in-

tensity of scattering per electron, so that P»' is
expressed in absolute units, we have

Xe~pL —(vr/) ') (v|'-+v2') jdv, dv, dp3. (27)

Let G be a unit vector parallel to H, and set

Ioe' l'1+cos'28&
(34)

2+R sin20 m'c4R' E 2 j
TsBz,E I. Function F(a).

vr L(hs G). —— (2g)

1 -pb, Gi' /b, Gi' '

i+i( Ng ) E N2 i (29)

The quantity L introduced in (28) has the
significance of a particle dimension given by

—1.2—1.0—0.8—0.6—0.5

0.12
0.21
0.32
0.46
0.53

—0.4—0.3—0.2—0.1
0.0

0.61 0.1
0.69 0.2
0.77 0.3
0.84 0.4
0.91 0.5

F(0,) a F(a) a F(a) a

0.96 0.6
1.01 0.8
1.04 1.0
1.06 2.0
1.07 3.0

F(a)

1.06
1.04
0.99
0.67
0.52
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H

Letting

we obtain

Ioe4N&XzM~'X=
m'c44mRA „

(35)

F'(1+cos'28) ( L
P28 +~

I I F(a), (36)
2(sin8)' KgmA)

e,
-

Fro, 3. Cylindrical coordinates used in the integration.

per electron, we find Eq. (26) becomes

Xm F'(1+cos'28)
P2g'= . (39)

4 sin8(sin'8 —sin'80) l
I

Equation (39) gives in absolute units, the result
which has already been derived by von Laue. '
To plot the distribution of intensity in a two-
dimensional reflection Eq. (36) should be used
for small values of sin8 —sin80, and Eq. (39) for
the larger values. Over small ranges of angle,
F' can be treated as a constant, otherwise it
must be considered as varying continuously with
sino, and given by

Fgz=gf exp 27ri kx+ky

2638
+ (sin'8 —sin'8o) l . (40)

'A

where a = (2+s.L/X) (sin'8 —sin80). (37) IV. PARTICLE SIZE FROM PEAK BREADTH

The function F(a) as defined by Eq. (32) is
given in Table I.

For large values of a (a) 3)

F(a) = (s /4a)"

and Eq. (36) reduces to

+28
KmF' (1+cos'28)

4&2 sin8I sin8(sin8 —sin8, )]l
(3g)

)I'dp, =2 I'

Ibsl sine

Using the relation sin00= cosy sin0, and dividing
by 2~R sin28, and multiplying by the intensity

The usefulness of Eq. (38) is restricted by the
expansion of cosy in Fq. (30). For sin8 (1.2 sin 80
the error in Eq. (38) is less than 5 percent. A more
useful equation for large values of a can be
obtained from (27). From Fig. 3, we see that if r
is appreciably larger than XH, the contribution
to the integral for P2&' depends only on the
length of the reciprocal lattice line EHE inter-
cepted by the two spheres. The integration over
v~ and v2 can be carried out from —~ to + ~,
and

The size of a two-dimensional layer in the
plane of the layer can be determined from the
breadth of the two-dimensional reflection at half-
maximum intensity. The dimension L which is
determined from a reflection (kk) is the effec-
tive dimension of the layer in the direction
H=hb~+kb2. Over the small range of angle in-
cluded between half-maximum intensity values,
the variation in (36) can be considered as due
wholly to F(a). From a plot of Table I it is seen
that the half-maximum intensity breadth corre-
sponds to a change in a of amount ha=3. 26.
From Eq. (37)

2+~L . 1.84)
3.26 = 6(sin 8); L = —. (41)8 cos 8

It should be pointed out that Eq. (41) for the
two-dimensional particle size has exactly the
same form as the equation for the crystalline
particle size except for a numerical coeScient
about twice as large.

V. DISPLACEMENT OF PEAKS

The maximum in F(a) comes at a =0.55.
Calling the position of the maximum Hm, we
have

0.55 = (2+sL/X) (sin 8,„—sin 80).
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dividing by 2mB sin28, to give the power per unit
length of arc, and introducing the abbreviation
X from Eq. (35), we obtain

f F' 1+cos'28
sin 8e sec'yd y. (45)

( )I"=Km
2 sin8 sin28FIG. 4. Microphotometer record of the diffraction

pattern of a heat treated carbon black, showing two-
dimensional lattice reflections. Radiation Cu Eof,=1.539A,
monochromated by reflection from rocksalt.

e:m(e'),.(1+coo'28) I'+ cos seo
p/

2 sin8e 2 es~ „(cos'8e—siney) &6(sin8) =0.16KjL.

If the range 28 —28p is kept small, an average
value for F' and the polarization factor can be
used. Since sin8e ——sin8 cosy Eq. (44) becomes

The maximum is therefore displaced from 8p

toward larger angles by an amount

For small particle dimensions L, this displace-
ment of the peak toward larger angles can be
quite important. If the two-dimensional char-
acter of the reflection were not realized, and the
peak were treated as a normal crystalline powder
pattern line, erroneous conclusions about lattice
contractions could easily be drawn.

VI. INTEGRATED INTENSITY OF A TWO-

DIMENSIONAL REFLECTION

In order to determine from a powder pattern
the amount of material present in the form of
independent two-dimensional layers, it is con-
venient to measure the integrated intensity for
a two-dimensional reHection. Although each re-
flection extends to 28 = 180' it is better to
measure only the part extending to a convenient
and arbitrary value of sin8. We have

p28

integrated intensity =
~

Peed(28). (43)
p

From Eq. (26) and Fig. 3, we see that if 28 is
taken enough larger than 28p, such that the
intensity distribution at 28 is nearly independent
of particle size, the contribution will depend only
on the length of the reciprocal lattice line XIIX
within the sphere. Integrating p~ and p2 from
—~ to + ~ we find Eq. (26) becomes

F'NgN R'mMX' p 1
dp, (44)

sin8

d(hs) =
~

be ~dpe ——2 sin8e sec'ydy.

By introducing the intensity per electron and

and the integrated intensity is then given by

Xm 1+cos'28
Pee'd(28) = (F')e„

p sin 8p 2

(L1—sin'8e/sin'8j&y
)&sin '~ ~. (46)

cos8p

Equation (46) is in a convenient form for
evaluation from microphotometer records, and
for direct comparison with the integrated in-
tensity of a crystalline reflection.

VII. EXAMPLE OF TWO-DIMENSIONAL

LATTICE REFLECTION

Figure 4 is the microphotometer record of part
of an x-ray powder pattern of a heat treated
carbon black. In terms of the hexagonal axes of
graphite, the reflections appearing are the two-
dimensional grating reflections (10) and (11),
with the three-dimensional reflection (004) super-
imposed on (10). The form of a two-dimensional
grating reflection is shown very well by the
(10) curve, ' rising very rapidly near 8e and then
decreasing continuously toward larger angles.
From the breadth of the (10) peak at half-
maximum intensity the layer dimension in this
particular sample is calculated from (41) to be
L = 64A.

' The two-dimensional lattice character of certain
carbon black reflections has been recognized by a number
of investigators. U. Hofmann and D. Wilm, Zeits. f.
Electrochemie 42, 504 (1936); H. Arnfeld, Arkiv f. Mat.
Astron. Fys. B23, 1 (1932; E. Herl, K. Andress, L. Rein-
hardt and W. Herbert, Zeits. f. physik. Chemic A158,
273 (1932); A166, 81 (1933).


