VIBRATIONS OF ALKALI HALIDES

the present theory. His formula agreed with
experiment for values of ¢ above 0.5. The present
theory agrees with experiment over the entire
investigated range. The present theory shows
that e approaches zero only asymptotically as A
increases. The several cases of zero e recorded by
Raman must be attributed to experimental
difficulties in measuring small rebound velocities.
In our notation, Raman'’s formula is

e=(1—0.88))/(140.88)).

In view of the success of this formula for small
values of A, it is of interest to see the relation
between this formula and the present theory.
This relation is given below.

According to the definition of e, the change in
velocity of the sphere during impact is (1-+e¢)v,.
It is also equal to S"m~'Fdt. Hence

(1+e)vo= S m~1Fdi. (18)

Likewise, according to the definition of e, the
energy lost by the sphere during impact is
(1—e®)mue2/2. But this is equal to the energy
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absorbed by the plate, namely, S"F(dU/dt)dt, or
by Eq. (1), a S F*dt. Hence

(1 —e)ymoe?/2=a S F2dt. (19)

Upon dividing Eq. (19) by the square of Eq.
(18), we obtain

(1—e)/(1+e)=R,
and hence
e=(1—R)/(1+R)
where
R=2ma f F%dt/( S Fdt)?,
or, by Eq. (17),
R=2\{Se%d7/(S oidr)?].
When the inelasticity parameter A is small, the
bracketed ratio will be only slightly different
from its value for A=0. The value of this ratio
has been calculated numerically for the case
A=0, and found to be 0.42. Hence in the limit

of small A,
R=0.84x,

which is nearly the value used by Raman.
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The long wave-length, polar lattice vibrations of alkali
halide crystals are discussed without making any specific
assumptions about the detailed interactions between the
ions. This is made possible by the introduction of the
effective charge, ¢*, of an ion defined as follows: All of the
positive ions in a crystal slab are displaced by an equal
amount in a direction perpendicular to the faces of the
slab and all of the negative ions in the opposite direction.
Then e* is the ratio of the dipole moment per ion pair
induced in the slab by this displacement to the relative

HE calculation of a property of an ionic

crystal which involves the lattice vibrations

usually requires that detailed assumptions be

made about the microscopic behavior of the
* Now at Purdue University, Lafayette Indiana.

displacement of the positive and the negative ions, Ex-
pressions are obtained for the frequency, wi, of the longi-
tudinal vibration and the frequency, we, of the transverse
vibration in terms of the dielectric constant, &, of the
crystal, the dielectric constant, ko, obtained by extrapo-
lating the square of the index of refraction of the crystal
from high frequencies to zero frequency, and e*. The ratio
of the two frequencies is found to be independent of e*
and given by wi/w.= (k/ko)}.

crystal. However, statements that are inde-
pendent of such a full knowledge can be made
when the vibrations in question are of wave-
length long compared to the lattice distance but
short compared to the size of the crystal. Under
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these conditions there exist two sharply defined
types of vibration, the longitudinal and the
transverse. It has already been demonstrated by
Lyddane and Herzfeld! and by Frohlich and
Mott? that in the case of the vibrations for which
oppositely charged ions move in opposite direc-
tions (polar vibrations) the frequency of the
longitudinal vibration is higher than that of the
transverse because of the accumulation of charge
near the nodes for the former. However, in these
calculations, the polarizability of the ions has
been neglected entirely or considered only in part.

The purpose of the present paper is to find the
ratio of the frequencies of the longitudinal and
transverse polar vibrations. It will be shown that
this ratio can be derived without making any
specific hypothesis about the detailed structure
of the crystal.

I

First we consider the force on an ion when a
crystal slab is placed in a uniform external field
E, perpendicular to the faces of the slab. This
force is defined as follows: If, in the presence of
the field E,, all the positive ions are displaced in
one direction and all the negative ions in the
opposite direction so that their relative displace-
ment is the infinitesimal quantity dx, then the
force on an ion is the total change in energy per
ion pair caused by this displacement divided by
the relative displacement dx.

When the ions are displaced as described
above, there is a dipole field at great distances
from the crystal corresponding to a dipole mo-
ment p of the crystal. The interaction energy
of the polarized crystal with the field E, is the
same as the interaction energy of the charges
giving rise to E, with the field of the crystal.
Assuming, then, that these charges are at a
great distance from the crystal, the interaction
energy is pE,. This result is independent of the
position of the charges giving rise to E, since it
must be the same for any uniform field of magni-
tude Eo.

Since all displacements x which are to be
considered are small, the dipole moment may be

(1;3%.) H. Lyddane and K. F. Herzfeld, Phys. Rev. 54, 846
2 H. Frohlich and N. F. Mott, Proc. Roy. Soc. Al71,
496 (1939).
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expanded in powers of x and only the first term
need be retained. Therefore the dipole moment
per ion pair, that is, p divided by the number of
ion pairs in the slab, is also proportional to x and
may be written e*x. The constant of proportion-
ality, e*, will be called the “‘effective charge’ of
an ion since for a crystal made up of nonpolar-
izable, infinitely small ions, e* is just equal to
the charge on an ion. The energy per ion pair is
pE, divided by the number of ion pairs; thus it
is equal to e*xE, and the change in energy per
ion pair due to the displacement dx is e*dxE,.
Dividing by dx, we find that the force on an
ion due to the external field is e*E,.

In addition to this force caused by the external
field, there is a restoring force acting on the ions
due to the presence of the other ions in the slab.
If the latter force is assumed to be harmonic with
force constant ¢, its contribution to the total
force is —qx. When the slab is allowed to come
to equilibrium in the presence of the field E,, the
total force on an ion vanishes, or

e*Eo=gx. (1)

The field E; may be expressed in terms of the
density of polarization, P, in the slab and the
dielectric constant, k, of the crystal. For the
electric displacement in the slab is numerically
equal to E, so that E, satisfies the relation

4rP=(1—1/k)E,. (2)

The polarization P is the sum of two terms. The
first is the contribution of the dipole moments
e*x and is equal to e*x/2a3 where a is the lattice
distance and 2a3 is the volume per ion pair. The
other is the contribution of the polarization in-
duced on the ions by the external field. This
may be measured in terms of the dielectric
constant ky obtained by extrapolating the square
of the index of refraction from high (visible) fre-
quencies to zero frequency. ko is the dielectric
constant that the crystal would have if the
atomic nuclei were held fixed in the positions
they had before the field was turned on. The
density of polarization under this condition is
equal to P —e*x/2a3 and this polarization satisfies
the equation

4n(P—e*x/20%) = (1—1/ko)E,. (2)
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Subtracting Eq. (2’) from Eq. (2), we obtain
(1/ko—1/k)Eo=4me*x/2a?,
and substituting for Ey, Eq. (1) becomes

q=PBkko/(k— ko), 3)
if B=2me*2/ad.

IT

We now consider a large crystal slab?® and
assume that there is no external field present.
The ions are displaced perpendicularly to the
faces of the crystal into positions corresponding
to the amplitudes in a longitudinal vibration
with nodal planes parallel to these faces. Then
there is a restoring force on each ion of magni-
tude —upwi®x where x is the relative displacement
of the positive and the negative ions, u the re-
duced mass of an ion pair, and w,; the frequency
of the longitudinal vibration. We wish to show
that the force constant ¢ defined above is just
equal to uwg? if the wave-length of the vibration
is long compared to the lattice distance.

Consider the crystal to be divided into slabs
parallel to the nodal planes and of thickness
small compared to the wave-length of the vibra-
tion under consideration but large compared to
the lattice distance. Then if the ions of the
crystal are displaced as described above, each
one of the slabs will be uniformly polarized.
Such a uniformly polarized slab is equivalent to
a parallel plate condenser so, disregarding end
effects,* it gives rise to no external field. Thus the
force on an ion pair in one slab is due only to
the displaced ions in that slab. Therefore this
force will be the same as that found in Section I
for a uniformly polarized slab, that is, —gx.
From this it follows that ¢g=pw?, and Eq. (3)
becomes

pwi=Bkko/(k— ko). (3

III

Those transverse modes of vibration of the
large crystal slab that have their nodal planes

31t can be shown that the results to be obtained are
independent of the shape of the crystal as long as the
crystal is large compared to the wave-length of the vibra-
tion. The crystal slab will be considered throughout since
the treatment in this case is particularly simple.

4 At great distances from the slab the end effects become
important and give rise to the dipole field discussed in
Section I.
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parallel to the surface of the crystal will now be
considered. In this case, the displacements of the
ions are parallel to the crystal faces. It is assumed
that the crystal wave-length is long compared to
the lattice distance, but short compared to the
thickness of the crystal.

A small slab with its faces perpendicular to
the planes bounding the crystal is cut from
within the crystal when its ions are in their
equilibrium positions. All dimensions of the slab
are chosen to be small compared to the wave-
length of the vibration under consideration but
large compared to the lattice distance. The ions
in the crystal are now displaced according to the
amplitudes in the transverse vibration and the
displacements are chosen to be perpendicular to
the face of the cavity. Then there will be a field
in the cavity.

We now put the small slab back into the cavity
and displace its ions in such a way as to complete
the transverse displacement of the crystal. The
force on an ion is then the sum of two forces, the
first of which is the force due to the other ions
within the slab. Since the ions in the slab are
uniformly displaced, this force is the same as that
discussed in the previous section, which is
—uwx. The second force is caused by the field
that was present in the cavity so the difference
between the longitudinal and the transverse
frequencies is due to this field.

To calculate the field in the cavity, we observe
that charges appear- on the edges of the large
crystal slab and the faces of the cavity. Since
the former charges are alternatingly positive and
negative, their field does not extend deeply into
the crystal and their contribution to the field in
the cavity may be neglected. The charge dis-
tribution on the face of the cavity is practically
uniform, since the dimensions of the cavity are
small compared to the wave-length. The corre-
sponding charge density, o, produces a field 4r¢
in the cavity. Since ¢ is numerically equal to the
density of polarization, P, in the neighborhood
of the cavity, the field in the cavity is 47 P.% The
value of P is not affected by the removal or the
replacement of the small slab because this slab
acts like a condenser and produces no external
fields.

8 Cf. R. H. Lyddane, K. F. Herzfeld and R. G. Sachs,
Phys. Rev. 58, 1008 (1940).
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All of the considerations of Section I may be
applied to the uniform field 4P, so, if the slab
is replaced in this field, the force on an ion in
the slab due to the field is 4we*P. Therefore,
when the ions have a relative displacement x,
the difference in force for the longitudinal and
the transverse displacements is

wlw—wd)x=4re*P. 4)

The density of polarization of the crystal
around the cavity is the same as that of the slab.
This polarization is made up of two parts. The
first is that which would be obtained if the ions

"in the slab were held fixed. Its magnitude is
(1—1/ky) /47 times the external field. The second
part is due to the displacement of the ions, and
its magnitude is e*x/2a® Since in the present
case the external field acting on the replaced
slab is 4P we obtain the equation

P=(1—1/ko)P+e*x/2a3,
so that
47e*P = Bkox.

Thus Eq. (4) yields
(w2 —w?) =Bko. #)

A relation that corresponds to the well-known
Born® formula may be obtained by subtracting
Eq. (4) from Eq. (3’). The result is

pwld=Bkd/(k—ko), (8)

which differs from the usual formula by the
factor e*2k¢2/e? where e is the electronic charge.
Dividing Eq. (3’) by Eq. (5) the quantity B
and with it the unknown charge e¢* drops out
and we get for the relation between w; and w;

wﬁ/w¢2=k/ko. (6)
6 M. Born, Preuss. Akad. Wiss. (Berlin) 29, 604 (1918);

Physik. Zeits. 19, 539 (1918). M. Born and M. Goeppert-
Mayer, Handbuch der Physik 24/2, p. 646.
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In the previous considerations, it has been
found convenient to define the effective charge,
e*, of an ion in terms of a polarized slab. It is
apparent that an effective charge can be defined
in the same way for a crystal of any other geo-
metrical shape. In general, the effective charge
will depend on the shape of the crystal con-
sidered. There are two configurations other than
the slab that are of particular interest in any
discussion of the dielectric behavior of a solid,
the needle and the sphere. If we define the
effective charges of the needle and the sphere
to be e, and e, respectively, and B,, Bs to be
2we,2/a® and 2me,?/a?, respectively, then all of the
calculations can be carried out in a manner
similar to the foregoing. The results of these
calculations are the following: Eq. (5) is re-
placed by

poi =B/ (k— ko) (5"
in the case of the needle and by
pori=Bs(ko+2)/9(k—ko) (5"

in the case of the sphere. In all cases Eq. (6)
remains, of course, the same.

It is of interest to note that Eq. (5') is of the
same form as the Born formula and Eq. (5”) is
the same as the corresponding equation given
by Wolf and Herzfeld” if the quantity that they
call p4 is set equal to e?/e?. In order that Egs.
(5), (5') and (5") be consistent, it is necessary
that the effective charges satisfy

en=koe*=es(ko+2)/3.

There is, of course, no generally valid reason
why ¢* e, or e, should be equal to the ele-
mentary charge.

7K. L. Wolf ‘and K. F. Herzfeld, Handbuch der Physik
Vol. 20, p. 517.



