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process as well as the formula 0.=(i')i,a.' be-
comes doubtful. Relatively good results are to be
expected for high nuclear charges since, for these,
collisions with nuclei are unimportant. The
calculation of the nuclear stopping becomes
unreliable when the energy drops to such a value
that even the hardest collisions are strongly
inHuenced by electronic shielding.

This paper grew out of a discussion, last
summer, with Professor K. Lark-Horovitz about
the difference between the appearance of tracks
due to alpha-particles and hssion particles. We
are greatly indebted to him for his continued
interest. Discussions in the early stages of our
work with Professor H. A. Bethe have proved
most helpful.
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A theory is developed for the reaction of plates to forces of such short duration that the
waves reflected from the boundary may be neglected. It is found that the velocity of th'e point
of application of the force is proportional to the force, and hence the total displacement is
proportional to the impulse of the force. The theory is applied to the impact of spheres with
large plates. The coeScient of restitution is obtained as a function of the parameters of the
impact. Complete agreement is obtained with previous experiments.

ARGE plates react in a curious manner to
normal impulsive forces. A radial disturb-

ance is, of course, propagated outwards. How-

ever, the center of the disturbance, the point
where the impulse acted, remains stationary until
the return of the disturbance refiected from the
boundary of the plate. During the interim, the
center behaves as if the plate were perfectly
inelastic. The disturbance is shown diagram-
matically in Fig. 1(a).An analogous phenomenon

may be readily demonstrated with a loaded taut
string. The disturbance initiated by an impulsive
force is shown in Fig. 1(b) for this case. In each
case the displacement U of the point of applica-
tion is proportional to the impulse I',

by standard methods if the force with which the
sphere acts upon it were known. But this force,
in turn, depends upon the motion of the plate.
This dilemma is overcome by using the informa-
tion contained in Eq. (1). The analysis is given
in f2. The coefficient of restitution e of the
sphere depends upon the various parameters of
the collision, radius, mass, and initial velocity of
sphere, etc. , only through a single dimensionless
parameter X. We shall call this the inelasticity
parameter. It is defined by Eq. (17a). The
dependence of e upon X is given by the graph of
I ig. 2.

Raman published, in 1920, extensive experi-
ments on the coeScients of restitution of hard
elastic spheres rebounding off large thin glass

The theory of this effect is developed in (1. The
proportionality constant 0; is given by Eqs. (9)
and (10) for the plate and taut string, respec-
tively.

This property of plates enables us to solve the
problem of the bouncing of elastic spheres off

large thin plates. The motion of the plate, and
hence the energy it absorbs, could be calculated
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FIG. 1. (a) Propagation over a thin plate of a disturbance

caused by an impulsive force. (b) Propagation along a
string of a disturbance caused by an impulsive force.
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FIG. 2. Theoretical variation of coefficient of restitution
with inelasticity parameter. The nearly straight line has
been drawn through the four calculated points at ) =0,
0.5, 1.0, 1.5.

plates. ' He gave a semi-empirical formula which
fitted his data for values of e greater than 0.5,
but which diverged rapidly as e became smaller.
Recently this formula has been derived theo-
retically by an approximate method. ' Raman's
data are compared in ft3 with the theory here
developed. The coefficient of restitution obtained
by this theory agrees completely with these
data, as is shown in Fig. 4.

(DV4+2pkB'/Bt') U=Z. (2)

In this equation, p is the density, 2h the thickness
of the plate. The rigidity modulus D is defined by

D = (-,')k'2', 2' =8/(1 —o') (3)

where 8 is Young's modulus, 0. Poisson's ratio.
The operator P represents B'/Bx'+B'/By' Fi-.

' C. V. Raman, Phys. Rev. 15, 277 (1920).
2 C. Zener and H. Feshbach, J. App. Mech. 0, A—67

(1939).
'See A. E. H. Love, Mathematical Theory of E/asticity

(Cambridge, 1927), Fourth Edition, p. 487.

)1. ANALYSIS

In this analysis of the reaction of large plates
to localized impulsive forces, we shall use the
usual approximate theory of thin plates. ' In this
theory it is assumed that the radius of curvature
of the plate is everywhere large compared with
its thickness, and that the angle between the
plate and the original plane is everywhere small.
This approximate theory yields the following
differential equation for the transverse displace-
ment U(x, y, t) of the plate:

nally, Z(x, y, t) is the surface density of the
normal force.

The formal solution of Eq. (2) will be obtained
in terms of the eigenfunctions of the auxiliary
equation

I(D/2pk)'V2+o)} W(x y) =0, (2a)

and of the boundary conditions at the edge of the
plate. The eigenvalues and normalized eigen-
functions of these equations will be denoted by
co„and U„, respectively. In order to obtain the
coefficients in the expansion

U(x, &, ~) = P„C.(t) U.(x, y), (4)

we substitute this expansion into Eq. (2), mul-

tiply by U~, and integrate over the surface of
the plate. Using the orthogonality property of
the eigenfunctions, we obtain

(d'/d P+~ ~') C~ (2pk) 'J' U——~ZdS—. (5)

In the cases in which we are interested, the
force is localized about a point, so that we may
set

J' UcZdS= Ug(0) F(t).

Here U~(0) is the value of U~ at the point of
application of the force, which is denoted by
F(t). The force will be taken as first applied at
t = 0. Then the solution of Eq. (5), corresponding
to the plate being initially stationary, is

Ccs(t) =(2pkcvq) "Uc(0) F(j,') sin &vc(t —t')dt'.
~0

The formal solution of our problem is now ob-
tained by substituting this coefficient into the
expansion (4). This substitution gives for the
displacement at the point of application

U(0, t) = (2 pk)-' P. co„-'U„'(0)

t

&( F(t') sin ~ (t t')dt'. (6)—
0

This solution will now be simplified by per-
forming the sum

'U 2(0) sin cd„(t—t')

before integrating with respect to t'. This sum
will obviously not depend upon the shape of the
plate, or upon the nature of the boundary condi-
tions, as long as 5 is so small that the disturbance
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has not been reflected by the boundaries. By
choosing a square plate, and by imposing the
condition that the plate is free to pivot about
fixed lines on its edges, we obtain the eigen-
functions

(2/I) sin (mix/L) sin (prmy/L), 0&x, y&I.
m 1 I 2 f

We first sum over all states for which P +m' lies
within a narrow range. The effect of this summa-
tion is to replace U„'(0) by its average value
1/L'. The expression (7) may thus be replaced by

L, 'Q„(u "—sin co„(t—t').

This summation is now converted into an integra-
tion by making the plate indefinitely large.
From the relation

f2 A. PPLICATION TO IMPACTS OF SPHERES
WITH PLATES

One application of the preceding theory is to
the elastic normal impact of spheres with plates
so large that the impact is over before the return
of waves reflected from the boundaries.

In this application we must solve simultane-
ously the equations of motion of the sphere and
of the plate. The first equation is

d's/dt' = m'F, —

where s will be taken as the displacement of the
center of the sphere from its position at contact,
m is the mass of the sphere, and Ii is the reaction
of plate on the sphere. The motion of the plate
in the contact region is given by Eq. (1), which
we shall write in the form

(D/2 pk) '(2pr/X)' = pp

U= n I'dt. (12)

~
pp

' sin rs(t —t')d~=m/2,

we obtain for the summation of (7)

(2pk/D) '*/8.

Substituting back into Eq. (6), we obtain finally

with

U(o, t)=n I F(t')dt'
0

In the case of a taut string, it may readily be
shown that

n = (2mc)-'

where m is the mass per unit length, and c is
the velocity of transverse waves.

between wave-length X and co, which may be
obtained from Eq. (2a), we find that the number
of states associated with a range d~ is

I L'(2 pk/D) *'/4~ }d(u.

The combination of a two-dimensional medium
with the dispersion associated with flexural vibra-
tions has rendered the coefficient of des inde-
pendent of cu, as in a taut string. This is why
plates and taut strings react similarly to normal
impulsive forces. Noting that

We may thus obtain a single equation in only the
one dependent variable s by differentiating Eq.
(12) twice with respect to time, and then sub-
tracting this equation from Eq. (11).

d's/dt'+m 'F(s) +ad F(s) /d—t =0. (13)

In order to obtain the appropriate boundary
condition for this equation, we observe that U is
constant when Ii is zero, that is, at the beginning
and end of the collision. The appropriate bound-
ary conditions are thus

s=0
ds/dt = vp

at 5=0, (14)

where vo is the incident velocity of the sphere.
The velocity of rebound, evo, is then given by
ds/dt where s has again returned to zero.

The reaction of the plate on the sphere is
'given explicitly as4

where
F(s) =ks',

k = (4/3)r&IEI'Zp'/(EI'+Zp') I.
4 Reference 3, p. 198.

The displacement U refers strictly to the dis-
placement of the mid-plane of plate.

The force F is a function only of the relative
displacement of sphere and plate, namely of

s= 3—U.
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plate, respectively, while the velocity v' is de-
fined by

J

/L. 0.4

Equation (15) has been integrated numerically
for several values of the inelasticity parameter.
The coe%cients of restitution, e, thus found are
given in Table I. Intermediate values may be

TAaI.E I. Coegcient of restitution.
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1 0,44 0.18
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0.067
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FIG. 3. Force exerted by a sphere upon a large plate
during impact. FBI denotes the maximum force in the case
of a plate of infinite thickness.

Here r is the radius of the sphere, B~' and E2'
refer to the elastic moduli of Eq. (3) for the
sphere and plate, respectively.

In order to introduce dimensionless variables,
we make the transformation

0-=0
do/dr = 1. at v =0.

The coeScient of restitution will be the value of
do/dr where o. returns to zero. The constant T
will be so chosen that the first two coefficients in
Eq. (13) are unity, that is, so that Eq. (13)
becomes

s= Tvoo,' I= T7,

where T is a constant with dimensions of time.
The boundary conditions then become

quite accurately found by interpolation on semi-
log paper, as demonstrated in Fig. 2. In Fig. 3
the force F is shown as a function of time for
these same values of X. As X increases, the force
is seen to decrease with time in a nearly expo-
nential manner, This behavior may be seen as a
direct consequence of the equations of motion
(11) and (12). For when the coefficient of
restitution is small, the sphere and plate move
almost with the same velocity during the latter
part of the impact, or

d' U/dt' d's/dt'—
From this it follows directly that

d F/dt (1/mt5) —F—

)3. COMPARISON WITH EXPERIMENT

Raman's experiments with hard steel balls
rebounding off glass plates are compared in
Fig. 4 with his semi-empirical formula, and with

We find

d'o/dr'+ (1.+Ad/dr) a'* =0. (15) I.O
0.8-
06—

which is 0.311T~, where T~ is the duration,
calculated by Hertz, of the impact in the case
of a plate of infinite thickness. 4 The inelasticity
parameter X is given by

X =um/T. (17)

~5/5 ( r y
2

p V ) 1/5 ( p ) 5/5 ( g ~ ) 2/5

3'/' &2hl E V'J 4 p, l EZ, '+Z, ')

Here p~ and p2 are the densities of the sphere and

The dependence of 3 upon the parameters of the
impact is best seen from the following product of

.dimensionless factors:
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FIG. 4. Comparison of Raman's data with theory. The
dashed line is given by Raman's formula, the full line by
the present theory. Only those data are shown for which
e(0.5. For e&0.5, the observations are in agreement with
both theories.
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the present theory. His formula agreed with
experiment for values of e above 0.5. The present
theory agrees with experiment over the entire
investigated range. The present theory shows
that e approaches zero only asymptotically as P

increases. The several cases of zero e recorded by
Raman must be attributed to experimental
difficulties in measuring small rebound velocities.

In our notation, Raman's formula is

e = (1—0.88K)/(1+0.88K).

(1+e)vp ——fm 'Fdt. - (18)

Likewise, according to the definition of e, the
energy lost by the sphere during impact is
(1—e') mvo/ 2.2But this is equal to the energy

In view of the success of this formula for small
values of P, it is of interest to see the relation
between this formula and the present theory.
This relation is given below.

According to the definition of e, the change in
velocity of the sphere during impact is (1+e)vo.
It is also equal to J'm 'Fdt Hence.

and hence

where

(1—e)/(1+e) =R,

e = (1—R)/(1+R)

R=2mn J'F'dt/( J'Fdt)'

or, by Eq. (17),

R=2X f J'03dr/( J'&r'dr)'}

When the inelasticity parameter A, is small, the
bracketed ratio will be only slightly different
from its value for X=O. The value of this ratio
has been calculated numerically for the case
X=O, and found to be 0.42. Hence in the limit
of small A, ,

R =0.84K,

which is nearly the value used by Raman.

absorbed by the plate, namely, J'F(d U/dt)dt, or
by Eq. (1), n J'F'dt He. nce

(1 e')—mv0'/2 =n J'F'dt (19)

Upon dividing Eq. (19) by the square of Eq.
(18), we obtain
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On the Polar Vibrations of Alkali Halides
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The long wave-length, polar lattice vibrations of alkali
halide crystals are. discussed without making any specific
assumptions about the detailed interactions between the
ions. This is made possible by the introduction of the
effective charge, e*, of an ion defined as follows: All of the
positive ions in a crystal slab are displaced by an equal
amount in a direction perpendicular to the faces of the
slab and all of the negative ions in the opposite direction.
Then e* is the ratio of the dipole moment per ion pair
induced in the slab by this displacement to the relative

displacement of the positive and the negative ions. Ex-
pressions are obtained for the frequency, co&, of the longi-
tudinal vibration and the frequency, cot, , of the transverse
vibration in terms of the dielectric constant, k, of the
crystal, the dielectric constant, k0, obtained by extrapo-
lating the square of the index of refraction of the crystal
from high frequencies to zero frequency, and e*. The ratio
of the two frequencies is found to be independent of e*
and given by co&/co&= (k/k0)&.

'HE calculation of a property of an ionic
crystal which involves the lattice vibrations

usually requires that detailed assumptions be
made about the microscopic behavior of the

*Now at Purdue University, Lafayette Indiana.

crystal. However, statements that are inde-
pendent of such a full knowledge can be made
when the vibrations in question are of wave-
length long compared to the lattice distance but
short compared to the size of the crystal. Under


