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tude of the binding can be determined by a
consideration of the oxides, which are isoelectronic
with the ions. For example, the vibration fre-
quency of the normal state of CaO is 843 cm™1.12
A correction for the difference of reduced mass
gives 790 cm™! as an approximate estimate of the
vibration frequency of CaF+, indicating con-
siderably stronger binding than in the CaF
normal state (w,”’ =587 cm™!). SrF and BaF give
similar results. It seems reasonable, then, on the
hypothesis that the excitation of the xo electron
alone determines the higher energy states of this
group of molecules, that those states should be
more firmly bound than the normal state
configuration.

2 P, H. Broderson, Zeits. f. Physik 104, 135 (1936).
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The continua that appear at the ultraviolet
limit of the spectrum in the case of every molecule
investigated can be reasonably attributed each
to its specific molecule. Some repulsive excited
states of relatively high energy are theoretically
predicted for most molecules, and only in ab-
sorption at high temperature can transitions
involving such states be observed in many cases.
Although the possibility exists that all the
continua are due to some persistent impurity, the
appearance of the A2180 continuum of CaF is
certainly characteristic, and probably the others
are also.

In conclusion the writer wishes to thank
Professor F. A. Jenkins, ‘whose direction and
criticism were of considerable assistance in this
investigation.
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The differential equation which describes the joint action
of diffusion and recombination of ions is solved, for the
one-dimensional case, by a method previously developed
by the author. In Section I, the decay of a given initial
distribution of ions is treated. The observable coefficient
of recombination, as modified by - diffusion, depends
strongly in the initial stage on the given distribution. For
later times it depends in a simple way on the density of
ionization and the distance between the collecting plates.

INTRODUCTION

N all measurements on recombination of ions

diffusion plays a noticeable and often an
important part. This holds whether the ionized
volume extends to the collecting electrodes or
not. For, in the former case, ions are lost to the
electrodes and, in the latter case, the ionized
volume increases by diffusion, thus affecting the
apparent coefficient of recombination.

- Langevin! was the first to recognize the im-
portance of diffusion in measurements on recom-
bination. As early as 1905 he solved the problem
of the steady state created by a constant pro-

1 P, Langevin, J. de phys. (4) 4, 322 (1905).

In Section II, the establishment of the steady state, with
constant production of ions, is calculated. Diffusion intro-
duces a linear term which may, for sufficiently small values
of the ionic density and the electrode distance, mask the
usual quadratic term. In Section III, it is shown that
anomalies observed by Gardner in the recombination
coefficient of oxygen and by Power in the establishment
of the steady state in air are explained, without further
assumptions, by diffusion to the walls.

duction of ions between parallel plates under the
joint action of recombination and diffusion. His
results do not seem to have found the attention
which they deserve. In quite a number of cases
where their application would have been of
value they were replaced by less accurate com-
putations. In more recent measurements on
recombination, all observers had to correct their
results for diffusion and did it somehow or other,?
but none of the formulae used are adequate.

2 A. D. Power, J. Frank. Inst. 196, 327 (1923); L. C.
Marshall, Phys. Rev. 34, 618 (1929); O. Luhr, Phys. Rev.
35, 1394 (1930); 36, 24 (1930); P. Kraus, Ann. d. Physik
29, 449 (1937); M. E. Gardner, Phys. Rev. 53, 75 (1938);
J. Sayers, Proc. Roy. Soc. A169, 83 (1938).
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Under these circumstances it seemed desirable
to the author to develop formulae for the non-
steady state, because Langevin’s results are of
no avail in cases where the change of ionization
with time is observed. The following calculations
refer to the case where the problem depends only
on one local coordinate, .’

I. DEcAYy oF A GIVEN INITIAL DISTRIBUTION

We shall disregard the difference in mobility of
positive and negative ions. Let # signify, under
these conditions, their common density, D their
coefficient of diffusion and « the coefficient of
recombination. Then the problem to be solved
will be given by

on/dt=Do*n/dxt— an? (1.01)

with suitable boundary and initial conditions.
We shall assume that the volume under con-
sideration extends from x=0 to x=I/. Then it
will be required that

n=0 for x=0 and x=I, (1.02)

and that # reduces to a given initial distribution

n=mno(x) for ¢=0. (1.03)

The nonlinear partial differential equation
(1.01) can be solved by a rigorous method de-
veloped by Lichtenstein,® but the results are
involved and hold only for sufficiently small
values of {. The author, therefore, has preferred
to use an approximate method which was intro-
duced by him into the theory of columnar
ionization and which has been used since in
various cases.* Its usefulness lies in the fact that
it is applicable to all values of ¢ and all values of
the involved parameters.

The method is as follows. Let #’(x, £) be the
exact solution of (1.01) in the case where recom-
bination is disregarded (a=0). Then it is as-
sumed that the solution of the complete Eq.
(1.01) is of the form

n(x, £) =N@)n'(x, £). (1.04)
(1;2177.) Lichtenstein, J. f. d. reine u. angew. Math. 158, 80
"4 G. Jaffé, Ann. d. Physik 42, 303 (1913); 1, 977 (1929);
D. E. Lea, Proc. Camb. Phil. Soc. 30, 80 (1934); L. B.
Loeb, Fundamental Processes of Electrical Discharge in
Gases (John Wiley and Sons, New York, 1939), p. 134
and following.
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The function N(t) is determined by intro-
ducing (1.04) into (1.01), integrating with regard
to x from x=0 to x=1/ and thus transforming
(1.01) into an ordinary differential equation for
N(t), namely

dN/dt= — of () N?, (1.05)
where

1 1
f@® =f n’?dx/f n'dx. (1.06)

0 0"

We shall normalize #»" by the condition
l
f n'(x, 0)dx=1. (1.07)
0

Then N will represent the total ionization per cm?
section and N, the respective initial value.

The solution #/(x, t) is easily found by known
methods. If the initial distribution is supposed
to be given in the form of a Fourier series

W@ 0)=3 A sin (mrx/l)

(where the A,’s have to be subjected to the
condition resulting from (1.07)) we shall have

(1.08)

W)=Y Apemrsin (mrx/l), (1.09)
m=1

where

r=Dr /I (1.10)

Making use of (1.09) we can evaluate (1.06)
and then solve (1.05) by separation of the
variables. For our purposes, however, it is prefer-
able to introduce first the ‘“‘mean ionic density”’
defined by

!
a(t) = (N(z)/l)f n'(x, t)dx. (1.11)

Differentiating Eq. (1.04) with regard to ¢ we
find after some transformations

dn/dt= —an*— Dn, (1.12)

where

ool [/ ( [ves)]
o=o{((5).-(2))/ [re ]} oo

(1.13)

a
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F1G. 1. Representation of ¥ as a function of 7. The three
full curves correspond to constant initial ionization of
different breadth, the parameter p=a/! being given by 0,
1/10, 1/6 respectively. The broken line corresponds to the
parabolic initial distribution which results from diffusion
alone (see (1.26)).

Equation (1.09) then yields

a=amr2S1/8S;?, (1.15)
D=D7r252/l253, (116)
where 51, S,, S; represent the sums
Si= 2 A2 exp (—2m?7), (1.17)
m=1
Se=2_ 2u+1)A4sut1exp (—2u+1)27), (1.18)

p=0

Saizo (2u+1)""Asuprexp (= (2p+1)%r). (1.19)
—
Thus the mean ionic density decreases according
to a law involving a quadratic and a linear term,
and the respective coefficients, @ and D, are
average values depending on the initial distribu-
tion (the 4,s) and the time (7).

For comparison with experimental data (1.12)
can be written in the form

dn/dt= — a*i?, (1.20)

where _
a*=a(1+D/an). (1.21)
This &* can be interpreted as the ‘‘instanta-
neous coefficient of recombination’’ which varies
with time owing to diffusion.
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The quotient
ant/Dn=(a/D)nl%,
Il/ = 31/85253

(1.22)
(1.23)

where

represents the ratio of the loss by recombination
to that by diffusion. .

Let us now evaluate @ and ¢ in two special
cases.

(a) First case

The initial distribution is given by the fol-
lowing :

no(x)=0 for 0<x<a,
no(x) =const. for a<x<(1—a),
no(x)=0 for (1—a)<x<l1.

The constant is determined by the normalizing
equation (1.07). We obtain

Asyi1=[4/(r(l—20)(2u+1))]

Xcos (2u+1)ma/l), p=0,1,2--- (1.24)

and this solution includes the limiting case a=0
where the initial ionization extends to the collect-
ing plates. Upon introducing (1.24) into (1.15)
and (1.23) it is seen that @ and ¢ depend only
on 7 and the parameter

p=a/l. (1.25)

They are represented in Figs. 1 and 2 for the
three values p=0, 1, £ as functions of 7.

(b) Second case

The initial distribution is assumed to be

no(x) =qx(l—x)/2D, (1.26)

where ¢ is a constant. This assumption leads to
No=gqi3/12D (1.27)

and ' :

Asuy1=48/(m*(2p+1)%), w=0,1,2---. (1.28)

The corresponding curves for @ and ¢ are drawn
by broken lines in the Figs. 1 and 2.

The significance of (1.26) is that it represents
the steady state distribution if there is a constant
production of g pairs of ions per sec. and cm?®
and if conditions are such that recombination can
be disregarded.

In the more general case where diffusion and
recombination must be considered the steady



DIFFUSION AND RECOMBINATION OF

state distribution depends, according to Lange-
vin,! on a ‘reduced distance” for which we
choose?®

5=1(ga/36D). (1.29)

The steady state distribution is then given by
an elliptic function and the coefficients 4, can
be evaluted, even in this case, by harmonic
analysis. However, this necessity will rarely
occur. The above calculations give @ and ¢ in
the limiting case §<<1. In the other limiting case,
6>>1, the distribution will approach #,=const.,
i.e., case (a) with p=0. Thus the.curves for
variable 6 will lie between those limiting cases.
Furthermore, the points from which they start
at 7=0, can be determined from calculations
which the author has made in another connec-
tion.® Some such points are indicated in Fig.
1 and it will be seen that a fair estimate of ¥ can
be made for all values of 6§ and 7 by graphical
interpolation. The changes of & are unimportant.

Our Fig. 1 shows that, for small values of 7,
there are significant changes of ¥ with 7, depend-
ing on the initial distribution. For values 7>0.2
all curves approach the asymptotic value
¢¥=0.125 which holds for all distributions (see
(1.23)).

The initial stage of rapid changes does not
extend much beyond the period of initial recom-
bination which our theory - does not include.
Therefore, for small values of 7, our calculations
are not applicable and for larger values it will,
in most cases, be sufficient to give ¢ its asymp-
totic value. The relative influence of diffusion
can then easily be deduced from (1.22). This
formula brings out the influence of / and the
ionic density. For sufficiently large values of the
time diffusion will always be predominant owing
to the decrease of 7.

The changes in & are far less important, as is
seen from Fig. 2. The larger the parameter p,
the more marked is the initial decrease of the
apparent coefficient of recombination. This in-
crease is due to the broadening of the ionized
volume. It must be stressed that our calculations

5 G. Jaffé, Ann. d. Physik 43, 249 (1914).

6 Reference 5, p. 267 and following. Table I on p. 270
may be used but it must be mentioned that the indications
of this table are not sufficiently accurate for the present
purpose for values of §<0,4. Also the expansions (52) and
(56) must be carried further.
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(according to (1.11)) refer & to the total volume
extending from x=0 to x=/. If the volume is
referred to the part initially ionized, as is
generally done by experimenters, our values of
a have to be multiplied by .(I—2a) /I which makes
them start with the normal value &=« and then
decrease. The asymptotic value of & is given by
a=oan?/8 for all initial distributions.

Yo | ————]
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F1G. 2. Representation of &/a as a function of =. The
three full curves correspond to constant initial ionization
of different breadth, the parameter p=a/!/ being given by
0, 1/10, 1/6 respectively. The broken line corresponds to
the parabolic initial distribution which results from diffu-
sion alone (see (1.26)).

II. ESTABLISHMENT OF THE STEADY STATE

We will assume that there is no ionization up
to =0 and that, from {=0 on, there is a constant
production, of ¢ pairs of ions per sec. and cm?, in
the whole volume. The differential equation then
becomes

on/ot=q+Dad*n/dx*— an?, (2.01)

with the same boundary conditions as in Sec-
tion L.
Let us assume

Mo (%) = f: B, sin (mwx/l)

m=1

(2.02)

as the solution for the steady state. Then we
attempt to solve (2.01) by putting

n(x, t) =n,(x) —Ni()n'1(x, ).  (2.03)
Here Ni(#), a function of time only, is normal-
ized by
N1(0)=1 (2.04)
and

n(x, )= 3" Bue~m" sin (mra/l)  (2.05)

m=1
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is that solution of

on.'/ot=Dao*n’1/dx?, (2.06)

which reduces, for t=0, to %. (x).

It is evident that (2.03) satisfies the initial
and boundary conditions. To determine N;(f) we
use the same procedure as in Section I and find
the ordinary differential equation

le/dt= - Zafl(t)Nl—!-afg(t)Nl?,
where

fl(t)=flnwn1’dx/flm’dx
falt) = f i / f . (2.09)

Introducing again the “mean ionic density”

(2.07)

(2.08)

and

ﬁ1=(N1(t)/l)f ni'dx (2.10)

we find

d'l.’l—1/dt= —(2&1ﬁw+D)ﬁ1+&ﬁ12. (2.11)

Here @ and D are defined as in (1.13), (1.14)
(n1’ replacing #') and & is given by

&1=al[flnwn1’dx/(flnmdx-flnl’dx)]. (2.12)

To compare conditions with those prevailing
in the absence of diffusion we solve the differ-
ential equation

dn/dt=q—on? (2.13)
by

N=Np— N1 (2.14)

Here #, represents the solution for the steady
state

e =(q/ )%, (2.15)
and #; is subject to the condition:
n¢=n; for ¢=0.
Substituting (2.14) into (2.13) we find
dny/dt= —2anni+ang, (2.16)

and this equation has to be compared with
(2.11).

From (2.16) we see that, even in the absence
of diffusion, the rate of change dn;/dt (= —dn/dt)
can be represented by the sum of a linear and a
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quadratic term. If, now, diffusion is taken into
account comparison with (2.11) shows that the
linear term is increased by a term involving D.
Thus the establishment of the steady state will
tend to deviate from the quadratic law towards
a linear law. The larger D is in comparison with
2&M., the more the linear term will prevail.
The conditions of experiment will then determine
whether we obtain a better representation by a
quadratic law

it/ di= — a7t (2.17)

using the time-dependent coefficient of recom-
bination

ot = (Zalﬁw+D)/ﬁ1—&, (218)
or by a linear law
dny/dt= — B*n,, (2.19)
where
' B* = 2@, —an;+D. (2.20)

For large values of §, only thin layers near the
plates are affected by diffusion. For é larger than
2 or 3, n, in (2.02) can be replaced by its limiting
value (2.15). Under these conditions we have,
from (2.12)

ai=au.

(2.21)

III. COMPARISON WITH EXPERIMENT

The preceding formulae were developed to
yield adequate corrections for measurements on
recombination. Their application clarifies anom-
alies in previous measurements.

(a) Experiments on decay

The most accurate measurements of « con-
cerning a well-defined pure gas are presumably
those of Gardner’ on oxygen. These measure-
ments show the striking fact that the observed
values of a depend strongly on the time of ex-
posure, ¢, and on the ionic density. After the
first large drop (due to initial recombination) the
observed values become practically constant, but
the apparently constant value decreases as '
increases. Furthermore, the values belonging to
different ¢”’s move apart if the pressure, or the
distance between the plates, is decreased. Loeb?
has shown that these phenomena cannot be
explained by his theory of initial recombination

7 M. E. Gardner, reference 2.
8 L. B. Loeb, reference 4, p. 136 and following.
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TABLE 1. The values of a observed by Gardner are compared with values calculated from formula (1.21).

a* X108 CALC. a X108 OBs.
t=0.1 t=0.3 t=0.1
14 SEC. SEC. SEC.
V=190 cm?®
=3 cm 0.5 1.00X10¢ 2.00 2.03 1.99
a=0.3 cm 0.25 6.45X10° 2.03 2.06 2.12
P=76 cm Hg 0.0625 1.79 X105 2.20 2.22 2.25
a=1.98X10"¢
D=47X10"? 0.0313 0.90 X 10° 2.42 2.45 _—
V=190 cm?®
I=3cm 0.5 6.07 X 10° 1.61 1.65 1.58
a=0.3 cm 0.25 3.45X10° 1.72 1.75 1.64
P=38cm Hg 0.0625 8.93 x10* 2.41 2.44 2.07
a=148X10"6
D=9.4x10"? 0.0313 4.4610¢ 3.32 3.37 —_—
V=700 cm?
=7 cm 0.5 1.84 X105 1.05 1.06 1.04
a=1cm 0.25 9.42X 104 1.32 1.33 1.56
P=10cm Hg 0.125 4,72 X104 1.87 1.88 2.55
a=0.85X107¢
D=3.57X107! 0.0625 2.37X10* 2.96 2.98 4.86

unless improbable values for the coefficient of
diffusion are assumed.

Our formulae show that the observed phe-
nomena are due, at least to a considerable part,
to diffusion to the walls. In order to apply our
exact formula (1.21) we should know accurately
the initial distribution of the ions. Now, this
initial distribution depends strongly on the time
of exposure #. It would be possible to calculate
the distribution of the ions as a function of ¢’ by
the method of Section II. Such a calculation,
however, would hardly be worth while because
the initial distribution affects mainly the changes
in « for those intervals of time where initial
recombination is prevalent and masks the
changes foreseen by our theory. We have, there-
fore, applied the approximate asymptotic for-
mulae.

Some of the results of our calculations are
compared, in Table I, with the observed values
as taken from Gardner’s diagrams. As the exact
values of the ionic densities were not known,
they were calculated under the assumption that
no=1X10° for atmospheric pressure and that ¢ is
proportional to the pressure. For this purpose
the observed apparent values of a were substi-
tuted into the simple law (2.13).°

? The author is very much indebted to Professor Loeb
and Professor Gardner for furnishing him information
concerning the measurements.

The values of D used and the true values of «,
as corrected for diffusion, are also indicated in
the table. From the calculated values it will be
seen that diffusion, under the conditions of
Gardner’s experiments, has a very marked in-
fluence on the coefficient of recombination. It
will be noticed that the values of «* may appear
to be constant over a considerable interval of
time though they are different from the true
value a. Furthermore, the apparent values move
apart with decreasing ' and #,, as observed.

The numerical agreement is about as good as
might be expected from the approximate nature
of the calculations. The theoretical deviations are
too large for the pressure P=38 cm Hg and too
small for P=10 cm Hg. The former deviation is
probably due to the fact that the assumed values
of ny are too small, the latter deviation to the
fact that initial recombination (at P=10 cm Hg)
is not yet quite over at t=0.1 sec.

It must be emphasized that the only numerical
values assumed arbitrarily in the preceding calcu-
lations are the true values of a which are to be
determined. The apparent increase in the ob-
served values is due to the fact that, at the time
when the initial recombination is over, diffusion
to the walls has become important. Because of
the decrease of 7, the observable o* ought to
increase slowly afterwards (see (1.21)) and should
pass through a very flat minimum. This mini-
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TABLE 11. The values of o and B observed by Power are compared with values calculated from formulae (2.18) and (2.20).
The value underlying the calculations is a=1.6 X 1078,

a* X108 CALC. B* X108 CaLc.
a X108 B X108 t=120 t=120
Group Heo q OBs. OBs. t=0 SEC, t=0 SEC. ’
I 1070 11.8 4.53 6.61 5.05 13.3 5.40 -5.70
11 1620 21.9 3.65 8.00 4.13 11.6 6.70 7.52
111 2680 33.8 2.12 8.46 3.31 10.3 8.85 11.0

mum has been observed by Gardner with his
smaller condenser (=3 cm) at P=76 cm Hg.
In all other cases it should have occurred at
times ¢ larger than those observed.

Concerning the influence of the initial density,
no, our formula predicts a change of 3.5, 17, 272
percent for 76, 38, 10 cm Hg, respectively, if #g
is changed from 10% to 10® at atmospheric
pressure. These numbers refer to conditions in
Gardner’s larger vessel (I=7 cm) where the
influence of diffusion is less marked. They agree,
approximately, with the observed changes except
at P=76 cm Hg where a discrepancy remains,
the theoretical change being too small (3.5 per-
cent as against about 20 percent).

(b) Establishment of the steady state

It was first pointed out by von Schweidler!?
that the establishment of the steady state is, in
cases of weak ionization, described more accu-
rately by a linear law than by the usual quadratic
law. This fact has been confirmed by Power!! and
suggests strongly that diffusion is active.?

As Power’s values show considerable fluctua-
tions we have formed three groups out of the
data contained in his Table VII. The first group
with 6 observations where #n, (as corrected by
Power for diffusion) ranges from 1480 to 1780,
the second includes 6 values from 2130 to 2720
and the last group 5 values from 3490 to 4560.

10 E. von Schweidler, Akad. Wiss. Wien 127, (2a), 953—
967 (1918); 128, (2a), 947-955 (1919).

11 A, D. Power, J. Frank. Inst. 196, 327 (1923).

12 The author is indebted to Professor J. W. Broxon for
making accessible to him, at the University of Colorado,
a Doctor’s thesis by G. T. Merideth on recombination at
high pressures. In the measurements of Dr. Merideth the
same fact was observed.

The calculations are based on the exact for-
mulae (2.18) and (2.20), respectively, and on
the normal values D=0.035, a=1.6X10"¢ The
geometrical conditions required /=12.6 cm,a=0;
o* and B* were calculated for =0 and (=120
sec.?

It will be seen from Table II that the calcu-
lated values of 8* are much more nearly constant
than those of o* and that they agree within
reasonable limits with the observed values
though no constant has been chosen so as to
obtain agreement. A better agreement might be
attained by making « different from 1.6X10-®
but there can scarcely be a doubt that the
apparent high values of « in Power’s experi-
ments are largely due to diffusion, in spite of
the relatively large distance between the plates.

However, it must be pointed out that von
Schweidler and Power report measurements with
very much larger condensers in which the value
of a appears to be as high as 1 X10~%. Under these
conditions the observed values cannot be ex-
plained by diffusion to the walls alone. These
discrepancies at large volumes, as well as the
discrepancy mentioned above, indicate that some
other influence is active. It seems reasonable to
assume that besides diffusion in molecular dimen-
sions (initial recombination) and diffusion in
macroscopic dimensions (the factor studied here)
some intermediate inhomogeneity in the initial
distribution may play a part. It is, however,
premature to assert such an influence before
further measurements in this direction have been
carried out.

13 For ¢t=120 sec. asymptotic values and the legitimate
approximation (2.21) were introduced.



