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The Interaction of Electrons in Metals and Insulators

C. W. UFFORD

Palmer Physical Laboratory, Princeton University, Princeton, Rem Jersey

(Received September 17, 1940)

The electrostatic energy of electrons in a lattice has been calculated by the Rayleigh-
Schrodinger perturbation method. This method gives a value which becomes logarithmically
infinite for a metal. For an insulator, however, the gap in energy above th» first occupied
zone leads to a finite result. Numerical values have been found for. the three cases in which
the gap is one-half the width of the first zone, equal in width, and twice as wide.

INTRoDUcTIQN

HE customary approximation for the solu-
tion of problems of atomic or crystal

physics is the Hartree-Fock approximation. The
question of deviations from this approximation
and of an improvement of the underlying picture
deserves therefore considerable attention.

We shall be concerned with the case of doubly
occupied orbits, i.e. , with such states in which
each orbit is either empty, or occupied by two
electrons with opposite spins. It is well known
that in this case, for the calculation of the
electrostatic and kinetic energy, one can use a
wave function of the form

$1(+1) ' ' ' kl(x-) pi(yi) . pi(y. )

$2(X1) ' ' ' f2(+ ) tl'2(yl) ' ' ' 4-(y )
0

n.I

4..(~1) 4-(x-) i4.(yl) 4-(y")

The number of electrons is 2n, the symbols

x&, , x„, y&, y„stand for three-space coordi-
nates each. The x denote coordinates of electrons
with one-spin orientation, the y coordinates of
electrons with opposite spin orientation. The

, P„are orthogonal and normalized wave

functions, representing the n occupied orbits.
The wave function (1) represents, of course, a
singlet state of the system.

Two methods have been tried so far to obtain
an improvement of the wave function (1). The
first one is essentially based on the variational
idea: The sum of kinetic and potential energies
of more general wave functions than given by
(1) is calculated and the functions and parame-

*On sabbatical leave from Allegheny College, Mead-
ville, Pennsylvania.

ters which occur in this wave function are
determined by the requirement that the total
energy be a minimum. The difficulty encountered
is that it is, in the case of many electrons, not
easy to find a wave function for which the total
energy can be calculated. For a small number of
electrons, on the other hand, the variational
method is relatively easily applied and converges
in many cases rapidly. ' Even in the case of many
electrons, in particular crystals, some success
has been achieved by this method. '

The second method which will be tested in the
present paper is the Rayleigh-Schrodinger per-
turbation method. The application of this
method encounters relatively small diffIculties
in the case of only doubly occupied orbits,
because the original state is not degenerate and
the successive approximations are easily obtained
in the form of infinite series. ' It is generally
assumed that the successive approximations
converge in the case of a small number of
particles, that is when n is small. In the case of
n large, with which we will be concerned, the
question of convergence is more complicated
and we first turn to a discussion of this question.

If the state considered is nondegenerate,
the first approximation for the energy in the
Rayleigh-Schrodinger scheme is given by the
expression

8&') =Bo= +o*II+„

' Cf. the well-known papers of Hylleraas and James and
Coolidge.' E.Wigner, Phys. Rev. 46, 1002 (1934);Trans. Faraday
Soc. 34, 678 (1938).'L. Brillouin, J. de phys. et rad. L7j 3, 565 (1932);
S. Flugge, Zeits. f. Physik 96, 459 (1935); S. Watanabe,
Zeits. f. Physik 113, 482 (1939).

The conclusions reached in the present paper are, however,
in many respects different from those of these authors.
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where II is the Hamiltonian. This is the energy
in the Hartree-Fock approximation. In the
second approximation, the wave function is
given by

+o'" =+o+2 ad+i, (3)

a( = )I '41( flap/Ep Et— (3a)

The summation over I must be extended in (3)
and (4) over all possible excited states, i.e. ,

over all wave functions in which the two de-
terminants contain any n orbits P.

If the Hamiltonian contains, in addition to
the kinetic energy, only terms each of which
involves the coordinates of not more than two
particles, i.e. , two-particle interactions alone, a
considerable simplification can be effected. In
this case, a~ vanishes if +~ contains more than
two orbits not contained in 00. This can be
seen directly upon writing down the integral
occurring in (3a). As a consequence hereof, the
wave function +o(2& contains only those states +&

in which not more than two particles are "ex-
cited" to states different from Pq, , P . (We
shall see later that only such states occur in
which two excited electrons are present in (3).)
This means, physically, that a measurement of
the number of electrons present in the states

, P„gives at least the value 2n —2, and
possibly the value 2n. For n large this is, of
course, an unreasonable result as one will expect

Here 4'~ are wave functions of the form (1) with
the difference, however, that the orbits occurring
in the determinants are not the occupied orbits
of +0 but at least partly other members of a
complete orthonormal set which contains

In the "excited states" +~, the two
determinants are in general different because in
these states the orbits are not all doubly oc-
cupied. E~= J'+~*IS%'~ is the first approximation
to the energy of the excited state /. The energy
of the lowest state becomes in the second
approximation

~
„f+i*II+o,'

E(&) =E&+P
Eo —EI

=Eg+Q (Eo E&) ,
'a(

~

-'. —

that the number of excited electrons is roughly
proportional to n. This is. also obtained when
the variational method is used. In addition to
this difficulty, in all cases in which calculations
have been carried out so far, the sum of the
squares of the a& increases, with increasing n,
beyond all bounds so that the wave function (3)
cannot be normalized. Not only does (3) fail to
contain all excited states which it should, but it
contains more of some than it. should. It is
evident, therefore, that in the case of n large,
(3) is not an approximate wave function in the
usual sense, and it could be used only if the
statistical interpretation is used in a modified
form. ' The reason for this difficulty is that +0
is not a good first approximation. Doubtless, for
the real stationary state, the probability is
vanishingly small that all electrons shall be in
the unexcited states P~, ~, P . Hence the
coefficient of +0 is vanishingly small in the
correct wave function while it is 1 in (3).

It will be seen that in spite of this, under
certain conditions, the expression (4) for the
energy gives a reasonable result even in the
case of n very large. This hardly can be inter-
preted as the expectation value of the energy
for the wave function (3)—because this wave
function cannot be normalized and would give
an entirely different result if it could be. It can
be considered, however, as the second-order
term in a power series expansion of the total
energy, in terms of the fictitious parameter with
which the perturbation energy appears to be
multiplied in the Rayleigh-Schrodinger scheme.

It remains, of course, questionable whether
this power series for. the total energy converges
for as large a value of the parameter as is
assumed in the actual problem. It is quite
conceivable that the radius of convergence of
the Rayleigh-Schrodinger series decreases with
increasing n so that, for n large, it is smaller
than the value which this parameter actually has.
It is also possible that the number of terms
needed in order to obtain a reasonable approxi-
mation increases with increasing n, while, in
practice, one can proceed only to the second term.

In order to test this method it has been applied
to two problems: the electron interaction in

4 This has been essentia11y proposed by Watanabe,
reference 2.
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metals and the electron interaction in insulators.
In the first case, it was assumed that the wave
functions occurring in (1) are plane waves, i.e. ,

that there is no lattice field present. Although
this corresponds to a fictitious uniform distribu-
tion of the positive charges, it is in reality for
many cases not a bad approximation to the true
Hartree-Fock wave function. In this case, the
series (4) gives a correction which increases, with
increasing n, more rapidly than n itself. Hence,
the energy correction per particle, obtained from

(4), increases beyond all bounds, with increasing
n—an evidently incorrect conclusion. We believe
that this result is independent of the approxi-
mations employed. In this case, the Rayleigh-
Schrodinger theory cannot be applied.

In the case of an insulator, the lowest E~ is at
a finite distance from Bo—the distance of the
gap between the first two Brillouin zones. In
this case Eo—2& cannot become arbitrarily small.
For the wave functions P~, P~, ~ we shall use
in this case the expressions given by Peierls for
the case of weak lattice fields. Although in this
way only a few wave functions are very different
from plane waves, those matrix elements which
were very large for free electrons are materially
reduced. The whole sum (4) becomes propor-

tional to n. This gives a constant energy cor-
rection per particle which is, furthermore, of the
right order of magnitude. This proves, of course,
only that our result is reasonable, not that it is
correct. In fact, it cannot be correct if the
condition for Peierls' approximation is satisfied,
i.e. , if the lattice potential is very nearly con-
stant. For a constant potential, we have again
the case of free electrons in which (4) breaks
down. In fact, we obtain an energy correction
per particle which increases beyond limits if the
lattice field becomes vanishingly weak, a result
which cannot be correct. Our result can be
correct, however, for moderately strong lattice
fields.

In justice to the Rayleigh-Schrodinger method,
it should be pointed out that (4) always gives
finite results in case of short range forces as they
occur in nuclei. Whether this finite result is
correct remains, in my opinion, an open question.

2. THE ELEcTRQN INTERAcTIQN IN METAL5

First the matrix elements a~ of (3a) must be
calculated for R=e'/r;; to find the electrostatic
energy of interaction of the electrons. Substi-
tuting the wave functions (1) in (3a) gives for
the integral

e2
0~"(x~) 0i*(x.) 0i*(y~) 0 *(y )

l12"(n 1) 2

P„'"(xg) P„*(x,.) 4t
"r

(y ~) 4"*(y»)

0~(») ' ' ' 4'~(x )
1

P„(xg) P„(x.„)

4i(yi) fi(y')

«x«y, (5)

4.(y~) 4»(y')

where dx=dx& ~ ~ ~ dx and dy=dy& ~ dy . For plane waves

P~(x;) = exp [ik x;$ and E~ ——h'k'/2m. . (6)

The components of k have the form 2am, /l. , 27m„/L„and 27m, /i. where n„n„and n, are integers'
and L is the length of an edge of the crystal, L'= V. The functions Pl.. are normalized and orthogona
so that

(1/ i')
~

4 (x )4: (x )«x' = ~ '
As will be shown presently, the matrix elements for which only one electron is excited vanish.
Therefore only those with two electrons excited will be considered. There will be two types of matrix

' R. Peierls, Ann. d, Physik 4, 121 (1930).' S, Watanabe, S. Flugge, reference 3.
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elements: those for which two electrons with parallel spin are excited, and those for which two
electrons with antiparallel spin are excited. As the greater contribution to (4) arises from the second

type, it will be sufficient to consider it alone.
Let k and k' be two wave vectors in the reciprocal lattice which represent unexcited or occupied

states, and 1 and 1' wave vectors representing excited states. In the sum over kk'll' to obtain the
energy of all the electrons in (4), k and k' must be vectors to all points inside the sphere of momentum
space whose radius represents the highest occupied state, and 1 and 1 must be over points outside
this sphere. The matrix elements (5) may then be written

e2

Ukk' l l '—
U2" J

4'4(») 04(X )

4'». (») ' '4'. (»)

44(y4) . 01(y-) —44'"(») 0 '(x )04*(y4) 0 *(y )dxdy
'x; —y,'I

4.(y4). 0 (y ) (8)

since the same terms are obtained from the diagonal of the complex conjugate matrices as are
obtained from each of the other terms. As there are n, ! terms in each matrix, the (n!)' cancels out.
Again

e2 i
Vkl O' —

I P, (~,.)Pi, (y,, ) $4*(x, )4f4 *(y, )dx,„dy4', .
V'-' ~

I
xir —yi„

I

as the integration over all coordinates except x& and yA gives unity because of the normalization
of the &4,.(x;)s. Here k and k' represent electrons with opposite spins. The parts of the matrix elements
with parallel spin, where both electrons have the coordinates x or both y, are neglected. Because
of exchange, these parts contain the diFference of two terms which are nearly equal at those points
where these parts have their largest value. Thus these parts are small compared to the onc calculated
in (9).

Now if plane waves are introduced and a transformation

of Jacobian 8, then

~i. —yf.'= 2P, X~+yi,'= -~

4 dad g
v4,-q ~~

——— exp I i(k —1+k' —1') 4r+(k —1—k'+1') ' pj—
U ~

dp
exp I j(k —1+k'+1') y]—5(k+k' —1 —1'),

U J ill

because of the orthonormality of thc o- waves.
If only one electron is excited, then 1'=k' and the factor 44(k —1) gives a factor zero, since if onc

electron is excited k/1. Thus all matrix elements with a single electron excited arc zero.
The integral over y gives

f
exp I:4'n gjdy/I pl = —4~/I n,'-', (13)

so that

Ukk~ll~ =—167re' b(k+k' —1 —1')

V
i
k —1—k'+1'

i

'
471.e' 1

5 (k+k' —1 —1') .
V I1—ki'

(14)

The energy may now be calculated by substituting (6) and (14) in (4). The second-order term is

kk'll'
+1'++1 +l

167I 2e'nz

U%'-'

b(k+k' —1—1')

I
1 1K14(1 1K) . (1 k')

'
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FIG. 1.Wave vectors
k and k' in the xy
plane for the normal
states inside the first
zone, and 1 and 1' for
the excited states out-
side the zone. It will be
seen that these vectors
satisfy the condition
that 1 —k=k' —1'.
is the vector to the
boundary of the first
zone.

I I

should be substituted for Er in (15). (The.
energy is normalized in (15a) in such a way
that it vanishes for k=k„,). The second term of

(15a) is unimportant in insulators, since there
the energy denominator will contain a finite

term (the energy gap between the zones),
compared with which the second term of (15a)
is negligible. However, in a metal, the second
term of (15a) is actually more important than

the first one, because it predominates in the
region 0 0 which gives the largest contribution

This sum can be evaluated as a special case
of the sum considered later for insulators. It is
found to approach infinity logarithmically. ' This
is due to the difference of the wave vectors of
the normal and excited states in the denominator
of (15). This denominator approaches zero as
the wave vectors approach each other at the
boundary of the occupied states. In insulators,
on the other hand, there is a gap in energy at
this boundary with the first energy band com-

pletely filled. The gap will introduce a term in

the denominator which will prevent the energy
from becoming infinite. This question of insu-

lators will be considered.
In (15), the energy of the free electron,

Eq=k2k'/2m, has been substituted for Eq. This
is, strictly speaking, incorrect, because the energy
of the system contains exchange terms in

addition to the kinetic energy of the electrons.
Hence, actually'

E =&'(k' —k-')/2m

+(e-'/2~k)(k' —k '-') ln I (k+k,„)/(k —k„,)
' (15a)

to the summation. If one wants to be quite sure
that the summation gives a divergent result,
one must substitute (15a) for (15) and carry out
the summation. This can be done, but the
calculation is not given here in detail. If the
summation is replaced in the usual way by
integration, the integrand is an expression the
leading term of which, in the neighborhood of
x =0, is (x In x) 'dx. This integral diverges,
although the divergence is much weaker than
that of x 'dx which is obtained if the second
term9 in (15a) is neglected. This means that,
strictly speaking, the second approximation gives
an energy correction which is, per electron,
proportional to In ln n rather than to ln n.
Although this is not a very bad divergence, it
shows, nevertheless, that the Schrodinger per-
turbation theory becomes increasingly worse for
metals as the number of particles increases.

3. THE ELECTRON INTERACTION IN INSULATORS

In order to introduce the gap in energy found
in insulators into the matrix elements of electro-
static interaction used to calculate the second-
order term in the energy of the electrons, a
method due to Peierls' will be followed. Because
of Bragg reHection of the lattice waves by the
crystal, the first-order wave functions are de-
generate. Therefore a linear combination of
first-order wave functions must be used. These
may be obtained by modifying the plane waves,
with the period of the whole crystal, by waves
with the period of the lattice constant. Here
only two waves will be used which correspond
to values of the wave vector in the two lowest
zones. The normal state is represented by the

FIG. 2. x' is to be integrated
throughout the cross-hatched
volume. x and x—X lie inside the
sphere with its center at 0.
x'+x —X lies outside this sphere.
x' lies inside and X outside the
sphere with its center at 0'.

~ I am grateful to Dr. Conyers Herring for a discussion
of this case.' P. A. M, Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930).
Also L. Brillouin, J. de phys. et rad. 3, 565 (1932) and
J. Bardeen, Phys, Rev, 49, 653 (1936),

' I am very much indebted to Professor John Bardeen
for pointing out to me that it is necessary to include the
exchange term when the calculation is carried out for
the metal.
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wave vector k in the first zone combined with that for which the x component is k, —2k„„. The

y and s components are the same. Waves with k' and y component k„' —2k,„are combined for
the other occupied state. Similarly the x components of the two wave vectors of one excited
electron differ by 2k and the y components of the other excited electron differ by 2k . The
vectors for a simple cubic lattice are shown in Fig. 1 together with points which correspond to
the wave vectors with which they are combined. It will be seen that these vectors satisfy the
requirement (12) that k+1t'=1+1' or l, —k, =k, ' —l,', l„k,—=k„' l„'—, l. k,-=—k, ' l,'. —The z

components are all equal.
Thus for the normal electrons

il,„.= (1/Ul) {cos -', P exp [ik r~]+sin -', P exp [ik r~ —2k„,x,)],

Pk
——(1/ U'') {cos —,'P' exp [ik' r 2]+sin,'-P' exp [i(k' r..—2k„,y~) ]}

(16a)

and for the excited electrons

pl = (1/ U'*) {cos —.', r exp [il r~]+sin -', y exp [f(1 r~ —2k„,xj)]},

P& =(1/U*') {cos ',-y' exp [ll' r.]+sin —,'-y' exp [f(l' r, 2k„„—y.)5}.
(16b)

The energy corresponding to P& is

where

Eq ——(k'/2m)[k' -cos'- -', P+(k' 4k,k„,+-4—k„,
'') sin"-.';8]—-2 sin;P cos 2j9g

=(A' '/2')[k '+-2k„,(k„,—'-k, )(1—cos P).]—
q sin P,

P 8 "*'dxydyyd"zy

is the first Fourier coefficient: of the periodic lattice potential, I' . Similar expressions hold for F~„',

EE and El, . p is now chosen to make Ek a minimum

q cos P= k,„(k„, k,) s—in P, —
m

tan P =-
/i'k„, (k„, k,)— (20)

(m
tan {

——P }
=cot P =

E2 )

k'k (k —k.)
(21)

from which

Similarly
ii =!~ —k'-'k„, (k„, k,)/wr, approxi—mately. (22)

so that

k -k
&g (k ii~

—ky )
I

2 mn

k'k„, ll, —k„,)7= ——+
2

k 'k (l„' k„,)'-—
7'= —--+

2 mal

2mB

P —y ~ fz'k, „(l —k .) P' —g
' ~ ¹k,„(l„'—k„')

2 2 2m' 2 2
(24)

The wave functions may be substituted in (9) and the matrix elements Uzt, » calculated. Only
those four, of the possible products, for which k cancels out in the exponent give elements different
from zero. fdcntical integrals as given in (12) are obtained for each of these four products. With
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the values of these integrals from (14), the matrix elements of (9) become

VI, I, 11
= —(Cos g p COS 2-'y Sin ~p Sill k"r+Cos ~p 8111 2p Cos 2'r 8111 ~ r +Sill 2p COS 2p Sill 2'r Cos

= —cos cos

4+t." 1
+8111 2p 8111 2p CQS 2p COS g'y ) 8(k+Ir —1 —I ) (25)

V fl —Ir f'

b(k+ Ir' —I —1')
V fl —kf'

Ire'k'k ' (l, —k )(l„—k„)
6(k+lr' —1—1'),

Vm'll'
f

1—k f'

for the l»t line, (24) h» been used. As the matrix elelnents are complicated, (4) is difficult
to integrate. It may be seen that the maximum value of (l, —k,)(l„—k„)/fl —k f' is -'„so that the
maximum value of the matrix element is Ire'k'k '/2Vm'rp This .is the value when l=k, i.e. On the
boundary « th«rst &rillo«n zone. For large values of l, the matrix element is given by (14).
Hence an approximation ~vhich is valid at l =k and large I is

Ire' b(k+Ir' —I —I')

V
f

1—lr f'+8m's'/l'I'k, .' (28)

(4) will now give the second-order term in the energy. The energy diff'erence between the normal
and excited electrons may be found from (18).

Zo EI= (k'/2m) [—k'+2k, (k —k,) (1—cos P}+k"+2k (k„—k„)(1—cos P') —l'

—2k (k —l,) (1—cos y) —l"—2k (k„—l„)(1—cos y') j
—Il(sin p+8111 p —sill r —Sill 'r )

= —(k'/m) (1—lr} (1—k') —41t (30)

since on the boundary of the first Brillouin zone where l, =l„=k,=k„=k, (23) shows that p=p'
=Ir/2, y=y'= —ll/2. This is a valid approximation since it is only for small values of Eo Fl-
that the terms in the energy sum of (4) are large, and 20 EI is smallest on —the boundary. Therefore

&=XI (&o «) I~—II'= —Zkl I

Vlk1(fi —I fl+8m2&I/k4k. 2) I[(I—I ) (I—I ')+4m~/k'j
(31)

This value of the energy reduces to (15) for metals if S=0, i.e. , when there is no periodic lattice
field. In order to carry out the summation of (31), the simple cube of Fig. 1 will be replaced by a
sphere of radius k„,. The sum over the wave vectors is then replaced by integration over k and k'
inside, and over 1 and 1' outside this sphere. The change from sum to integral gives a factor V'/(2Ir)'.
Let

A = —16Ir'e'm V/k'(2II)', n =8m'/k'k, ,2, (32)

dkdk'dl

" ( fl k f'—+n'k '/8)'[(1 —k) (1 I)+rkn'/2g—
(33)

The integration of (33) may be simplified by setting k equal to 1, and integrating with the unit
sphere as the boundary of the occupied states. This may be done by setting

Il =k/k, x' =R'/k and x = I/O,
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which gives

E=Ak '
~ ({2—x}2+n2/8)2[(X —x) P —x')+n/2]

(35)

Thele ale thlee cases to be considered:

(c) 2 —l~-
I (36)

The integration will be carried out for case (a) first: with respect to x' Iet.:

{3 —x~ =u, 2X (2 —x) =b', and }x'+x—1{=c.
Then

2x'. (2—x) = K"+u' —c' and b =2X +2u —2 K'-.

(3&)

~ is a vector to points inside a sphere of radius 1 in Fig. 2. x —2 will also be a vector inside the same
sphere since {2—x}—1. 2, however, must be a vector lying outside a sphere of radius 1. This second
sphere may be drawn with x —2 as a center. From the end of x —2, x will be a vector lying inside
the second sphere. Finally since 2' = (x'+x —2) must be a vector lying outside the sphere containing
&, the volume of integration for ~ is outside the first sphere and inside the second, and is shown
cross hatched in Fig. 2. Using for x' elliptic coordinates K' and c with the volume element 22r K'dK'cdc/u

gives for the part of (35) depending on x'

1 ~«'+a—
J KdKJ

b2+C2 —C2+o.—ft "

—(2r/4u2) {[4u2 (b2+n)'2] ln (2g+b2+n)+4u2(b2+n u2) ln (b2+n u2)

+(b'+n+2u —2u')(b'+n —2a, —2u') In (b'+n+2u —2u')+2u'(b'+n+2u —u') }=f(b'+n, u). (39)

For 1—~X —x} 2, (39) becomes

CdC CdC
—

} =f(b'+n, a) (40)
6~+C~ —C2+n —ff:

2 ~

as before. For 2 ~
~

2 —x
}

f2 1 P e+Z' CdC
ff, a~

u ~0 ~, „. b'+C' —a'+a —
ff.
"

= (2r/4u') {[4u' —(b'+n)"-][In (b'-+n+2u) —ln (b'+n 2u)]+4u(b'+—n) } =g(b'+n, u). (41)

dkdk
E=Ak ' I [f(b'+n —u)+g(b'+n, u)],

(u'+ n'/8) ' (42)

where f is used for 0—u —2 and g for 2—u.
The integration with respect to 2 must be carried out outside the sphere 0 of Fig. 2. Using elliptic

coordinates f2 and X again gives

r dx r'+" udu I"+" ada p +'
p 2 gp, Jl

I

~
f(b. u)gdg+ . i f(b u)lid'

~ ~, . ("+,'8)- &, & .. (u'-'+ '/8)'~. —.

)co udu 6+K

+ ' g(b', u)XdX . (43)
(g 2+n2/8) 2g
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Now let

~tf(b', a)XdX=F(», X), Jt g(b', u)XdX=G(», X).

f' dc {'~+' QdC
E.=2m Ak., I]I — — LF(», e+«) —F(«, 1)]

(a-"+n'/8) "-

ada cdc
+ LF(»,—u+«) —F(«, a —«)]+ '

LG(«, a+«) —G(«, a —»)j . (45)
I+ (a'+n'/8)' (a2+n2/8) 2

The integration with respect to x is next carried out within the unit sphere,

ada
z=8~'Ab„,

I I «d»t F(», a+») —F(«, 1)j(u'+ n'/8) '&I,
edc

+ I
»d»t F(«, e+«) —F(«, 1)j(e'+n'/8)' „ I

udu
+ I

——
I «d»t F(«, a+«)'—F(«, a —«)1(a'+ n'/8) '~ 0

ada
+

~

- — «d«LG(«, a+«) —G(«, e —»)3 . (46)
J (u2+nm/8) 2$ ~

FI(», a) = ~~[F(», e+ «) —F(«, 1))«d»,

F (,a)=)l P'(, u+ ) —F(», a —«)3»d»,

which gives for the energy"

G,(», a) = )LG(», a+ «) -G(», a —«) j«d»,

Gds
F-=8II'Ak„.'

I

— --LFI(1, a) —FI(1—a, u) j
"o (a'+n'/8)'

cdG cd'
+i~ LFI(1 a)+F2(a-1 u) —FI(u —1 a) j+ I GI{1,a), (48)J I (u 2+nR/8) 2 JI (u2+n2/8)0

sIIlcc F«(0, u) =0 RI111 GI(0, u) =0. Now I't tUI'lls ollt tllR't

FI(1, a) —FI(1—e, a) = FI(1, e) +F1{a 1, a) —FI(e—1,a)—
adc Qdc

8=8~'Ak ' LFI(1, a) —F,(1—a, a) j+ il GI(1, a)
"0 (u'+n'/8)' {u'+n' /8)'- {50)

Tllc 111'tcgiRls of (47) hRvc bcc11 cvRlURtcIl bp clcmclltRtY 11ltcgfRtloll Rlld dcpclld oil u RIlcl n. Tllc

integrates were divided into two parts, those containing logarithms and those containing polynomials
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only. The latter were integrated except for certain terms which it was convenient to combine with
the logarithmic integrals to prevent their becoming too large to integrate graphically. This gives
E in the form

km'~' P' du
X=A {2 (4a+ n) '( —16a'+12an n—') ln (4a+ n)

60 ~ o 4a4(a'+ n'/8) '

+(2a'+4a+ n) '[16a' —12a(n+2a') +(n+ 2a-') '] ln (2a'+4a+ n)

+ (—2a'+4a+ n) '[16a' —12a(n —2a') + (n —2a') '] ln (—2a'+4a+ n)

+20a'(a'+ 2a+a)'( —a'+6a —n) ln (a'+2a+n)

+20a'( —a'+2a+ )'( —a' —6a+ ) In (—a'+2a+ )+80a' 'In }

+ {—256 —16n+ (3v2 ——)n + (a2+32) (—n —8a3+232n —1280n+ 1536)

+169v2 tan ' (442/n)+(232+3n'/2) ln (n'+32)/n'}

dQ

+ (2a'+ n) '[(2a'+ n) ' —80a'] In [1—16a'-'/(2a'+n) '-']

4a'(a'+ n'/8) '

1+4a/(2a'+ a)
+64a'[16a' 5(2a—'+n) '] In +128a'

1 —4a/(2a'+ n)

+4{4v2[3+(56/n)+(128/n')][-'7r —tan "(4'/n)]+32/n
—32(a~+32)—'[—3n —32+ (160/n)]} . (51)

If in (51) a =0, then the value of the energy as given by (15) for metals may be evaluated. The
integration may be carried out and gives

E=Ak„'(s'/3) {—32[1—(-,') In 2] lim ln a —(32/5)(ln 2)' —(448/15) In 2+4m' —204/5}, (52)
a-+0

which is logarithmically infinite as has been mentioned in Section 2.
The integrals still remaining in (51) were evaluated graphically for q=k'k„'/2m, k'k '/4m, and

k'k '/8m. These values of q correspond to gaps between the first and second Brillouin zones equal
to twice, once, and one-half of the energy width of the first zone, respectively. From (32) the corre-
sponding values of n are 4, 2 and 1.The integrand for n =0 at a =40 differed by only 12 percent from
that for +=2, and was approaching it. The integral from 40 to ~ made up 40 percent of the result.
Therefore the integrals from a=40 to ~ were computed for all values of o. by setting +=0.

The energy is thus made up of a series of terms

2 40 00- 2 00-

E=Ak 3(n'/60) ~t +~( +Jt (logarithmic terms)+ Jt +J (other terms)
0 2 40 0

=2k '(s'/60)( —509.28 —366.36—17.58+539.00+399.12)

(53)

for a =2. From (32), A = —16m'e'm V/k'(2~)9= V/16+7 if the energy is to be in Rydberg units. If r,
is defined by V= (4/3)mr, '2n where 2n is the number of electrons, then k '=97r/4r, ' and

E = —(4/3) (m.r, '/16~') (97r/4r 3)x-'0 748 = —0.0142 Ry.
per electron.
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Thus the following values of thc energy have been obtained:

L'= —0.0394 ky
L& = —0.0142 Ry
I' = —0.0073 Ry.

(56)

The correlation energy as given in (35) depends only on n =8m'/k'k ' rather than on both q

and k„, since V which occurs in A is inversely proportional to k„,'. This shows that (35) cannot be

quite correct, because thc correlation energy will be independent of g when q is very small, but will

still depend on k . This is, of course, the limiting case of metals where, as shown in Section 2, the
method breaks down. Again if k is very small, i.e. , r, very large, the correlation energy should

approach zero, because the whole electrostatic energy (the partial absence of which is represented
by the correlation energy) goes to zero. This is not manifest in (35) or (54).

Wigner' gives —0.58((r,+5.1) .Ry as the correlation energy. If r, =4 Bohr units is taken as a
reasonable value, this gives —0.064 Ry so that the values in (56) are of the same order of magnitude.
The values in (56) are nevertheless somewhat smaller than the —0.045 Ry estimated by Wigner
to be correct. This is reasonable because onc would expect the correlation energy to increase further
with decreasing g even if it did not increase as drastically (to infinity) as (52) for this limiting case
indicates.

I am grateful to Professor Wigncr for suggesting this problem and for his assistance in solving it.
I also wish to thank the Physics Department of Princeton University for their hospitality and
Allegheny College for a leave of absence.
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A Determination of the Elastic Modulus s&3 of Beta-Quartz

A. W. LAwsoN
1&andal morgan Laboratory of Physics, University of Pennsylvania, Philadelphia, Pennsylvania

(Received January 23, 1941)

The adiabatic Young's modulus of beta-quartz along a direction at 45 degrees to the optic axis
has been measured as a function of temperature. These data, in conjunction with that of
Atanasoff and Kammer, and of Perrier and de Mandrot, yield a value for the adiabatic elastic
modulus s» of beta-quartz equal to —0.226X10 "cm'/dyne at 600'C and indicate that the
value reported by Osterberg and Cookson for c44 is inconsistent with the stability of beta-quartz.

HE crystal structure of beta-quartz is
hexagonal holoaxial. " In virtue of the

particular symmetry characteristic of such a
structure, beta-quartz may be piezoelectric. The
possible nonvanishing components of the piezo-
electric tensor expressed in Voigt's' notation are:

0 0 0 d14 0 0
0 0 0 0, —d14 0
0 0 0 0 0 0

' W. Bragg and R. E. Gibbs, Proc. Roy. Soc. London
A109, 414 (1925).' R. W. G. Wyckoff, Am. J. Sci. 11, 112 (1926).

3 W. Voigt, Lehrbnch der Kristallphysik (Teubner,
Leipzig, 1928), pp. 830—831.

The fact that the piezoelectric modulus d14 is not
evanescent has been established by Osterberg and
Cookson4 who succeeded in exciting shear vibra-
tions in beta-quartz by applying an alternating
electric field parallel to an axis of diagonal
symmetry (X axis). From a knowledge of the
fundamental frequency of free vibration of a
thin crystal plate and the dimensions and density
of the plate, Osterberg and Cookson, employing
a theory analogous to that developed by Mason, ""

4 H. Osterberg and J. W. Cookson, J. Frank. Inst. 220,
361 (193S).

5 W. P. Mason, Bell Sys. Tech. J. 13, 446 (1934).


