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ments were made by the method of Bancroft and

Jacobs.® It will be seen that, within the experi-

mental error, the observed velocity as computed

from the assumed wave-length is independent of

the length of the specimen, and is a function of

the wave-length alone.

Except for the effects of the above-mentioned
discrepancy, which we have shown experi-
mentally to be slight in the case of longitudinal
waves, it is felt that the velocities determined
from Pochhammer’s solutions may be used with
perfect confidence.

In conclusion, it appears that the work of
Shear and Focke! is explained on a quantitative
basis. Table I reproduces the behavior of the

8 D. Bancroft and R. B. Jacobs, Rev. Sci. Inst. 9, 279
(1938).
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longitudinal vibrations which they observed
with remarkable fidelity. The flexural vibra-
tions behave in much the way one would ex-
pect in the light of Eq. (9), and it is note-
worthy that the experimental data suggest
that a common asymptote for the flexural and
longitudinal velocities at high frequency is not
improbable. The observed torsional vibrations
may possibly belong to one of the sheets of Eq.
(7). It also seems likely that the unexplained
points at high frequency lie upon one of the
higher sheets of Egs. (2), (7), or (9), for in a
qualitative way they lie in the region associated
with these more complicated vibrations.

It is a pleasure to acknowledge our indebted-
ness to Professor Francis Birch for his encourage-
ment and help, particularly in checking most of
the rather tedious algebraic work.
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The Coulomb repulsion between protons must give rise to a tendency for the proton density
to vary within a nucleus from a minimum value at the center to a maximum near the boundary.
A non-uniform proton density may be expected to create forces which distort the neutron
distribution and tend to make the two distributions vary in the same manner. If surface
cffects are neglected, it is possible to calculate the energy correction associated with the
non-uniform densities without making special assumptions about the nuclear forces. The
neglect of surface effects permits the assumption that the variations in density are small
departures from essentially constant distributions. It is found that the departure from uniform
density is appreciable in heavy nuclei, but the energy correction is negligible.

1. INTRODUCTION

HE Coulomb repulsion between protons

must give rise to a tendency for the proton
density to vary within a nucleus from a minimum
value at the center to a maximum near the
boundary. A non-uniform proton density may
be expected to create forces which distort the
neutron distribution and tend to make the two
particle densities vary in the same manner.
If surface effects are neglected, it is possible to
calculate the energy correction associated with
the non-uniform densities as well as the densitics

themselves in a comparatively rigorous and
simple manner. The neglect of surface effects
permits the assumption that the variations in
density are small departures from essentially
constant distributions. A suitable model for the
systematic neglect of surface effects is provided

by supposing the nuclear system enclosed in a

box of radius R. At the boundary the radial
derivative of the wave function with respect to
any radial coordinate must vanish :

J

— (Y181 - xayaza) =0, r1=R.
671

(1)
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This boundary condition makes the particle
densities have zero slope at »=R in contrast
with the correct boundary condition which makes
the particle densities vanish at = «. When the
Coulomb interaction is omitted, the boundary
condition implies essentially constant particle
densities throughout the nucleus. We postulate
the existence of a volume energy density,
&(py, pr), which depends only on the particle
densities. The total energy is

E(RNZ)=E,(RNZ)+E,(RNZ)4E.(RNZ)

with
Evszfg(p") p.,,.)d‘r,

Ec=62(z—1)/22f-fp,,(l)p,((Z)/hg'dTldTg

—e2(81/647r)”3fffp#/3dr, (4)

Eu=i2/8M- [ [ [1@0t 004 @02 0. )

(2)

(3)

The first term in Eq. (2) is the volume energy
which includes the major part of the kinetic
energy and all the potential energy derived from
the specifically nuclear forces. No special assump-
tion will be made in this paper about the nuclear
forces or the energy density & An exchange
term, calculated by the statistical method, is
included in the Coulomb energy.! The third
term, E,, is Weizsicker’s formula which gives a
lower limit for the additional kinetic energy
associated with non-uniform particle densities.!

To determine the nuclear radius, use is made
of the auxiliary quantity

R,=A'®((N—-2)/4) (6)
obtained by solving the equation
a
—E,(RNZ)=0. (7)
oR
From the minimum condition,
]
—E(RNZ)=0, (8)
dR

1C. F. v. Weizsicker, Zeits. f. Physik 96, 431 (1935).
Equation (50) of this reference lacks a numerical factor
(3/4m)% in the right-hand member of the equation.
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we obtain
R=R,(1+E,./E,”),
E,RNZ)=E,(R,NZ)+E,*/2E,”.

)
(10)

E,. is the Coulomb energy for the radius R, and

E.” =R,2(3°E,/R2).. (11)
In this discussion we take?
R,=0.54%e?/mc?), E,”=1004mc%. (12)

In Egs. (6)-(12), the particle densities are
assumed to be constant. After the energy cor-
rection for non-uniform densities has been calcu-
lated, it will be clear that the associated correc-
tion to the radius is negligible.

The perturbation method developed in Section
2 requires knowledge of the second partial
derivatives of E,(RNZ) with respect to N and Z.
Section 3 contains the derivation of relations
expressing the partial derivatives in terms of
total derivatives which can be evaluated from
empirical or semi-empirical data. Numerical re-
sults are obtained and discussed in Section 4.

2. THE PERTUBATION METHOD

The equations

47R3p,0=3N, 4nrR3p,c=37Z, (13)

pr=p(1+0,(r/R)), pr=pro(l+uv:(r/R)), (14)
express the particle densities in terms of functions
v, and v,. Consistency requires that v, and v,

satisfy the orthogonality conditions

1 1
f v,x%xr—f vx2dx =0, (15)
0 0
while the additional condition
dv,(x) /dx=dv.(x)/dx=0, x=0,1, (16)

follows from Eq. (1) and the continuity proper-
ties of the wave function. '
It is now possible to express the energy as a

2 E. Feenberg, Phys. Rev. 59, 149 (1941).



PARTICLE DENSITY

power series in v, and v, with the result

4
E, =—3—R38(pvo, pr0)

9

3 1 92
+—[(f v,,gx?dx)N“’*“
2 0 ION*
1 a‘l
+(f v,,?x?dx>22
0 YA
! g 0
+2(f v,v,xzdx)NZ— »—]EU(RNZ),
0 IN dZ an

E.=3e*2(Z—1)/5R

1
'[1 —0.76/2%— Z.Sf vrxtdx
0

1 z
—{—15f v,,xf vr(x")x"2dx'dx
0 0
1
—O.SlZ—§‘f v,,gx‘ldx], (18)
0

1
E,=3h*/8 MR- [Zf (0v,/0x)x2dx
0

+Nf (av,/ax)?x"’dx:l. (19)

All terms in v, and v, of order higher than the
second have been dropped in keeping with the
assumption that the particle densities do not
depart greatly from their average values.

Now we introduce a set of polynomials which
satisfy the conditions (15) and (16) and are
normalized and orthogonal on the interval
0=x=1 with the weight factor x% The functions
v, and v, are written as linear combinations of
these polynomials with coefficients determined
by the condition that the energy be made as
small as possible. Actual calculations have been
carried through with only two members of the
set:

v1=6.1675{1—3.75x2+2.5x%},
2=11.028{1—13.7879x2
+24.1819x3 — 11.2424x4}.

(20)

It should be clear from the following table that
any reasonable variable particle density can be
represented rather well by a constant plus a

IN NUCLEAR STRUCTURE

595

suitable linear combination of v; and vs.

x 0 0.2 0.4 0.6 0.8 1.0
v 6.167 5366 3.454 1172 —0.740 —1.542
v, 11.028 6.881 0.603 —2.121 —0.349 1.672

A number of integrals involving v; and v, are
required. These are

1
fzv1x4dx= —0.1432,
0
1
f voxtdx =0.0428,
0
1 z
f v;xf v1(x")x"2dx'dx = 0.02470,
0 0

1 z
f 'szf vo(x")x"2dx’dx = 0.00827,
0 0

1 X
f lef va(a')x"2dx"dx = 0.05400, (21)
0 0
1 x
f vzxf v1(x")x"?dx’dx = —0.05201,
0 0
1
f(&zu/é)x)zxi’dx=20.378,
0
1
f(avg/ax)szdx=61.302,
0
1
f (8v1/0x) (9v2/0x)x?dx = —2.014.
0
We write
v, =a,01+ 0,0,
(22)

Ur =an’7"1+b7r7}2y
and obtain

r
Ev=?R"5(pyo, pro)

2

3
+_[(au2+bv2)N2
2 dN?

2

+(ar+b:2) 22—
A

Jd 9
+2(aya,,+b,.b,,)NZ_*]Ev(RNZ)» (23)
AN oZ
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TABLE 1. Partial derivatives of E,(R,NZ)/mc.
z A 9L,/aN? EIONEYA E,/dNoZ
24 50 1.070 1.384 —0.773
44 100 0.481 0.760 —0.379
62 150 0.295 0.543 —0.248
80 200 0.212 0.421 —0.183

E.=3¢2(Z—1)/5R-[1—0.76/Z}
+0.3580a¢,—0.10705,+0.3705a,2
+0.12415,24-0.0299¢,.b

—0.51Z7%a.2+0.%) 7], (24)
E,=156.24% R/R,)?
X[(2N/4)(a,*+3.015,2—0.20a,b,)
+(2Z/A4)(a,2+3.016,2—0.20a,b,)]. (25)
3. PARTIAL DERIVATIVES OF E, WITH

RESPECT Tc N AND Z

The only assumption required in this section is
that E, be given as a function of R, N and Z.
There is no need for the special assumption (3)
and the surface energy need not be neglected
since it does not appear explicitly in the calcula-
tion. To avoid any implication of dependence on
the assumption (3) new symbols E, R, are
introduced here in place of E,, R,. Equation (8)
is required in the form

d
—Ey(RNZ)=E./R. (26)
oR
We use a number of relations of the type
d
-—-—E oRNZ)
AN 9
d dR 9\ 9
=(——————- —E(RN2Z),
dN dN 0R/9dR
(27)
d dR 9\ 9 ‘
(45 — ) Eur2)
ON dN dR
d sd dR 9
=—(——————-)E0(RNZ).
dN\dN dN dR
These relations when combined with Eq. (26)

EUGENE FEENBERG

yield
9E, d*E, (dR 2 92F,
N2 dN® \dN/ oR?
d (E dR) dR d E.
dN\ R dN/ dNd4N R’
8*E, d*E, [dR\?9%E,
=)
0z dz* \dz] oR:
(28)
d /E, dR) dR d E,
diZ\Rdz/ dzdzZ R’
a 9 d d dR dR 32E,
— —Fy=— —Egt— —
ONdZ  dNdZ  dN dZ oR®
dR d dR d \E, E., d d
- — —+— ——— __ _R.
dNdZ dZdN/ R RdNdZ

To obtain the corresponding equations for
Ey(RoNZ) we replace R by R, in Eq. (28) and
omit the terms containing the Coulomb energy.
There results

(92E() d2E0 Eo (dR()
ON®  dN? dN
0E, d2E0 dR,
Sy e
oz aze
(9 6 d d E()” dRo dRO
ONOZ = dNdZ = Re dN dZ

If 8*/0R[E¢(RNZ)] is replaced by Ey’/Rs*
and only terms containing E,’ to the first and
zeroth powers are retained, the right-hand
members of the Egs. (28) become identical with
the corresponding right-hand members in the
Egs. (29). This means that the second partial
derivatives of E,(RNZ) in Eq. (23) may be
replaced by those of E,(R,NZ) without appre-
ciable error.

TaBLE 1I. Energy correction and density coefficients.

Z A4 e by g, b, B e (R)ep(® o, B/, 0)
24 50 —0.0215 0.0031 —0.0092 0.0006 —0.7 mc2 1.15 1.07
44 100 —0.0368 0.0063 —0.0167 0.0016 —3.4 mc? 1.27 1.12
62 150 —0.0481 0.0092 —0.0222 0.0026 —7.8 mc? 135 1.16
80 200 —0.0580 0.0119 —0.0269 0.0037 —14.3 mc2 1.43 1.20
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To evaluate the total derivatives we use the
energy formula

E,(R,NZ)/mct= —ad

+[96| N—2Z| +25(N—2)*]/4, (30)

which contains Wigner's linear term in | N—Z|.
The quadratic term comes partly from the
kinetic cnergy and partly from the potential
energy. Wigner’s more general formula® reduces
to Eq. (30) for even values of N and Z. The
major contributions to the second derivatives
come from the quadratic term 25(N—2Z2)%/4. If
the numerical coefficient 25 is too small, which
seems likely, our results for the energy correction
and the deviations from uniformity will come
out too large. Another approximation tending in
the same direction is that involved in the use of
Weizsicker’'s E, for the extra kinetic energy
term. Thus the energy correction and the devia-
tions from uniform density given by this calcu-
lation must be interpreted as upper limits on
the true values. Table I contains numerical
values of the partial derivatives computed from
Egs. (29) and (30).

4. NUMERICAL RESULTS

The energy correction produced by the quad-
ratic and linear terms in a,, a., b,, b, can be
written as

OE=Calln — Gobr+ P20+ +q:bs+ P2+ ¢,0,°

— 2t (ayan+0,07) —24,a,b, — 2t,a.b,  (31)
with coefficients in mc? units defined as follows:
€a=0.430Z(Z—1)/ A",
=0.128Z(Z—1)/ A%,

3 92E,
p,,=E?QE;+1S6A%(2Z,/A)+0.44IZ(Z—1)/A‘§
—0.6112%Z—1)/4%,

3 E. Wigner, Phys. Rev. 51, 947 (1937).
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3 9%E,
q”=522 o 4704222/ A)+0.1492(Z — 1)/ A
EYA
—0.6112}(Z—1)/4%, (32)
3 0%,
b, =—N>—+156A}2N/4),
2 9dN?
3 9%2E,
¢ =—N*— + 4704} (2N/4),
2 4N?
3 a 9
twr__' *—"Evy
2 9Nz

t,=15.44%2N/A),
1, =15.44%2Z/A)—0.018Z(Z—1)/ A

Equation (31) can be reduced to diagonal form
by a repeated application of the process of com-
pleting squares. The numerical results of mini-
mizing 6F are listed in Table II.

Certain features of the results in Table II can
be understood without calculation by examina-
tion of Eq. (31), remembering that ¢, and ¢, are
almost negligible. It is evident that e, must be
negative and b, positive. Also a,a, and b,b, must
both be positive which makes a, negative and b,
positive. The negative wvalue of &2E,/dNoZ
requires the neutron and proton particle densities
to vary in a parallel manner resulting in a
tendency toward the formation of a hollow
center within the nucleus. The dependence of §E
on N, Z is very similar to that of the Coulomb
“expansion’’ energy E,Z2/2E,”, but the latter
correction is three to four times the size of the
former. Finally it must be stressed that approxi-
mations in this calculation make the computed
magnitude of §E somewhat greater than the true
value. Also the coefficients a., b., a,, b, are all
somewhat too large in absolute value. Satis-
factory convergence is indicated by the small
values of the b,/a,, b./a, ratios.

E. Wigner has estimated §E by another method
with results similar to those stated in Table II.
The writer wishes to thank Professor Wigner for
information about his calculation in advance of
publication.



