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The Velocity of Longitudinal Waves in Cylindrical Bars*
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The velocity of longitudinal waves in cylindrical bars may be expressed as the velocity at
in6nite wave-length times a function of two variables: Poisson s ratio, and the ratio of the
diameter of the bar to the wave-length. This function is computed over the domain. of the
arguments which is of physical interest. Asymptotic values for the velocities at very short
wave-lengths are deduced, and the variation of the displacement as a function of the radius is
discussed. It is found that a similar analysis=-can be applied to torsional and Aexural waves.

'N the light of recent experiments dealing with
the propagation of ultrasonic elastic dis-

turbances in cylindrical bars, ' it seems desirable
to carry out a more complete numerical develop-
ment of the theory than is at present available.
Existing treatments of the subject are open to
the common criticism that, as they approach
rigor, they become too unwieldy to be of prac-
tical value, and the numerical computations
based upon them become prohibitiveIy long. It
is the purpose of the present article to provide a
concise and accurate method of analyzing the
results of experiments dealing with longitudinal
waves in slender cylindrical bars. Certain facts
pertaining to the propagation of other types of
disturbances will be touched upon. The solutions

upon which the present work is based are the
familiar ones due to L. Pochhammer, ' presented
in detail by Love, ' and discussed by several other
authors. "

Ke deal first with the velocity of propagation
of longitudinal waves in an infinitely long rod.
The frequency equation for this case is suggested

by Love. ' This equation asserts a functional
relation between wave-length, frequency, radius
of the bar, density, and the two elastic moduli

of the isotropic material under consideration. Ke

thus appear to be dealing with an equation
involving six variables, which we would like to
be able to solve explicitly for any particular
variable as a function of the other five. The situ-
ation is further complicated by the transcendental
nature of the functions involved. It is important
to notice, however, that, by a suitable choice of
parameters, the equation may be reduced to a
function of three variables, each of which is to
be determined as a function of the other two.
Such a functional relationship is readily ex-

pI essed 1n tabuIar fo1m by coIIlput1ng a coIII-

paratively small number. of roots. The simpli-
fication thus introduced is doubtless to be
anticipated from the standpoint of dimensional

analysis.
%e define the following quantities, and tab-

ulate their equivalents in terms of Love's
notation:

LovL» s
NorATIONDEscRlprloNSYM 13OL

P/v
(J-'/~)'

Velocity of the wave
"Bar velocity"
(1—20-)/(1 —o); cr = Poisson's ratio
(v/»)'(1+ ~)
Wave-length
Diameter of the bar
~(px —1)~

y(2x —1)&

yJo(y) P~(y)

vo

2x/y
2a
h'
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3 A. E. H. Love, Mathematic', cal Theory of Elasticit

(Cambridge University Press, 1927), fourth edition, p. 287
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"' R. Ruedy, Can. J. Research 5, 149 (1931).
'R f enc 3, p. 289.

VA'th these exceptions we adhere to Love's
usage. Clearly x is intrinsically positive. Ke shall

also assume that 0&/&1, a restriction which

implies 0 & 0 (2. If materials should be found
with o &0, our aIlalys1s would have to be
re-examined, and important modifications would

presumably be forthcoming.

588



VLI. OCI'I Y OF I.ONGITUDINAL WVAVLS 58')

The frequency equation, derived from Love's Eq. (54), p. 289, takes the form

O'Jp(ha) P'pX
2p, Jp(ha)

Ba' X+2@

8Jp(ha)
27

BG

plJ, (h a)
2p,p

BG

P p)

p)

=0

By means of suitable substitutions, and a
somewhat space-consuming manipulation, (1)
reduces to

(x —1)'p (ha) —(Px —1)[x—p(ha) ]= 0. (2)

Referring to the definitions, we see that the
latter equation is of the form F(x, P, ya)=0,
and that therefore the transformation to a
function of three variables has been accom-
plished.

In discussing the characteristics of Eq. (2),
the following properties of the function, pp(y),

are important:

p (y) = p( —y); p(0) =2;
lim q(iy) =y.

Zeros and poles of y correspond to zeros of Jo
and J&, respectively.

Let us now suppose Eq. (2) solved explicitly
for x, so that

are a and d/L. Numerical uncertainty should not
exceed 2 units in the last place, and interpolation
in the table should be accurate to four significant
figures up to d/L= 1.

Of particular interest are the values of x cor-
responding to pa=0 and pa= ~. When ye=0,
Eq. (2) yields at once

x(P, o) = (3—2P)/(2 —P) = 1+
but some manipulation is required to obtain
x(P, pp). We must suppose that for some large
value of ya, the arguments of the y functions
become and remain pure imaginaries as we move
out along the sheet, and also that the arguments,
ha and ka, increase without limit. Under these
conditions we have pp(ha)=' p'ha —and y(ha)='

pha, and E—q. (2) reduces to

x' —4x'+ (6 —2P)x+ (P —2) = 0. (4)

If we make suitable substitutions to eliminate x
and to express this result in terms of Poisson's

x=x(P, ya). (3) TAor. E I, v/v0 as a function of d/L and 0.

The surface described by Eq. (3) consists of
sheets over the (P, ya) plane. These sheets will

be designated as the zeroth, first, etc. , according
to their heights above the plane. The case of the
zeroth sheet is trivial, for Eq. (2) is satisfied
identically by x=0, independent of P and pa.
The first sheet is the one corresponding to the
ordinary propagation of longitudinal waves, and
is doubtless the most important, but the higher
sheets may be of some interest.

The first sheet is completely described by
Table I, over a reasonably wide range of the
independent variables P and ya and the results
have been plotted in Fig. 1. The parameters
of Eq. (2) are not particularly convenient except
for purposes of computation; accordingly more
conventional variables have been used in the
preparation of the final table. The dependent
variable is v/vp, while the independent variables

d/L

0.00
O.O.S
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
O. .S5
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.20
1.40
1.60
1.80
2.00

0.10

1.00000
0.99994
0.99975
0.99941
0.99890
0.99816
0.99710
0.99556
0.99323
0.98951
0.98296
0.97014
0.94487
0.90658
0.86493
0.82653
0.79306
0.76445
0.74013
0.71949
0.70196
0.65419
0.62836
0.61393
0.60565
0.60080

0.15 0.20 0.2 S

1.00000 .1.00000 1.00000
0.99986 0.99975 0.99961
0.99943 0.99899 0.99843
0.99868 0.99766 0.99638
0.99754 0.99568 0.99333
0.99591 0.99287 0.98909
0.99362 0.98899 0.98337
0.99038 0.98366 0.97572
0.98569 0.97627 0.96559
0.97866 0.96592 0.95220
0.96771 0.95133 0.93479
0.9S037 0.93119 0.91288
0.92436 0.90502 0.88681
0.89086 0.87432 0.85800
0.85471 0.84201 0.82841
0.82009 0.81074 0.79982
0.78893 0.78202 0.77332
0.76167 0.75644 0.74943
0.73812 0.73402 0.72826
0.71791 0.71454 0.70967
0.70058 0.69768 0.69344
0.65266 0.65030 0.64712
0.62623 0.62361 0.62048
0.61118 0.60815 0,60479
0.60236 0.59892 0.59S26
0.59707 0.59326 0.S8932

0.30

1.00000
0.99944
0.99774
0.99482
0.99054
0.98466
0.97691
0.96688
0.95410
0.93810
0.91854
0.89549
0.86964
0.84222
0.81466
0.78818
0.76357
0.74125
0.72130
0.70365
0.68814
0.64321
0.61687
0.60111
0.59139
0.58524

0.35

1.00000
0.99924
0.99694
0.99302
0.98732
0.97967
0.96979
0.95739
0.94218
0.92397
0.90277
0.87899
0,85341
0.82709
0.80110
0.77632
0.75330
0,73236
0.71355
0.69682
0.68203
0.63869
0.61284
0.59713
0.58731
0.58101

0.40

1.00000
0.99901
0.99602
0.99097
0.98373
0.97418
0.96214
0.94747
0.93007
0.91001
0.88758
0.86333
0.83806
0.81265
0.78792
0.76452
0.74284
0.72310
0.70532
0.68946
0.67537
0.63368
0.60844
0.59289
0.58304
0.57664

0.60213 0.59491 0.58804 0.58148 0.57S16 0.56903 0.56307
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+ 1.0 the equation

.8
where W is a function of the radius alone; vis. ,

Ci 8
W=AiyJO(kr)+ ——IrJg(kr) I.

r Br

.2 The ratio A/C in (5) was determined in the
course of obtaining Eq. (1). Utilizing this fact,
and converting into the notation which we have
introduced for the purposes of computation, we
find

.6

.8

-1.00 .6 z .8 l.0

FIG. 2. Axial component of the displacement as a function
of rju for various values of d/L, o =-';.

lengths depends on the stability of the mode of
vibration with which it is associated. It is pos-
sible that beyond some limiting value of the
frequency, velocities corresponding to one of the
higher sheets of Eq. (3) will prevail. At the
present time these sheets appear to be of purely
academic interest. It may be shown that they
all approach asymptotically the plane x= -', when

pa becomes infinite, and that they do so from
above. For extremely small values of pa, the
values of x become infinit. Thus each of the
higher sheets contains a curve corresponding to
the velocity of corn pressional waves in an
infinite medium (as a function of P). For any
particular value of P, this curve determines a
discrete value of ya, a circumstance which has
been pointed out by Field. ' The solutions for thc
displacements corresponding to velocities given
by the higher sheets always involve one or more
nodes as a function of the radius; the problem
of verifying the existence of such nodes of
vibration appears somewhat difficult.

It seems worth while to give brief attention to
the displacements corresponding to the first
sheet. The axial component, u„ is described by

1 —x Jp(kr) Jo(kr)
W= 8 + (2x —1)&, (6)

(Px —1)l Jg(ku) A(ka)

where 8 is arbitrary, and is proportional to thc
amplitude of vibration. It will be noted that the
signs in (6) are independent of the choice of sign
in the extraction of the square root, for the
radicals occur only in conjunction with J&'s

having the same radicals for their arguments.
Similar considerations exclude the possibility of
a complex solution. The latter point is of interest
in that it implies that the displacement is in

phase at all points of the bar.
We have plotted W as a function of r/a for

various values of the wave-length in Fig. 2,
using values of the velocity taken from Table I,
with 0 = -', . Each curve for W(r/a) has been
adj usted to make the maximum amplitude &1.
When d/L = 0, we have of course a uniform dis-

placement. But as the wave-length is decreased,
the displacement at the center of the bar rapidly
decreases, and vanishes when d/L is about
Then for a small range of wave-length the dis-
placements at the center of the bar are of op-
posite sign to those on the surface, and at some
point along the radius, we encounter a node.
This situation is altered as d/L becomes slightly
greater than 0.4, when the displacement at the
surface of the bar vanishes. As the wave-length
is still further decreased, the displacement reap-
pears at the surface, and when d/L = 1, it is
nearly uniform once more. After this, the dis-
placement at the center of the bar gradually
decreases, until finally, when the wave-length
becomes infinitesimal, the motion is confined
strictly to the outside surface. The Rayleigh
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y(ka) —2 =0 (7)

which yields the velocities not only for the

wave velocity obtained for the limiting case of
Eq. (2) corresponds to these surface waves.

The reduction of the frequency equation to a
function of three variables can be carried out as
above for the cases of both torsional and flexural
waves. In both cases, the parameters and func-
tions required are the same as for the longitudinal
waves,

For a torsional disturbance, we find at once

familiar case where the displacement is propor-
tional to the radius, but for the more complicated
cases as well. For these cases we find

/ C(L/d)'+-. &

V/Vp =
)

where vp is again (E/p)l, and C is a constant ob-
tained by solving Eq. (7).

For the case of flexural waves, even the sim-

plified frequency equation is probably too com-
plicated to be of much use, but it seems worth
while recording it; vis. ,

x —1

p(ka) —2 q (ka) —2

p(ka) —1 —(x —1)L pp(ka) —1j
—2[@(ka)—2j —(ya)'(2x —1) =0.

A partial check on the accuracy of (9) was ob-
tained by substituting the first few terms of the
series expansion for the p functions, to obtain
the simple formula for the approximate velocity
of flexural waves. Construction of a table of
roots of (9) similar to Table I would involve a
considerable expenditure of time. If limiting
values of the p functions of an imaginary argu-
ment are substituted in (9), we again obtain
Rayleigh's equation. The form of the displace-
ments for this limiting case has not been at-
tempted, but it seems likely that here also the
displacement becomes confined to the surface.

In applying the solutions of Eqs. (2), (7), and

(9) to bars of finite length, only torsional waves
yield a solution which permits rigorous satis-
faction of the boundary conditions on plane
surfaces at the ends of the bar. For the torsional
case, then, we may expect that the solution
applies regardless of the length of the bar, even
when it is so short as to become a disk. For the
other two cases, it is possible to determine the
wave-length so as to make the normal traction
across the end surfaces vanish, though a small
shearing traction remains. Experimentally, we
know that this shearing traction is zero when
resonance conditions obtain. If we consider a
slender bar, vibrating so that it contains many
wave-lengths, we expect Pochhammer's solutions
to be exact, except in the neighborhood of the
ends. Here we may suppose that the wave-length

LENGTH
(CM)

15.235
5.083

15.235
3.812

15.235
2.540

WAVE-LENGTH
(CM)

10,157
10.166

7.518
7.624

5.078
5.081

RESONANT
FREQUENCY

50473
50426

67184
67162

100390
100364

VEI.OCI TY
(KM/SEC. )

5.126
5.126

5.118
5.120

5.098
5.099

becomes slightly altered, and if we attempt to
compute it by dividing the length of the bar by
the number of waves it contains at resonance, a
small error will be introduced. This discrepancy
has led to considerable confusion as to the
precision which may be expected of Pochham-
mer's theory in any specific case. It is certain
that the failure makes it impossible to develop
a solution for a thin disk from the solution for a
cylindrical bar, for in the case of the thin disk,
the boundary conditions on the flat surfaces are
of paramount importance, while those on the
curved surface are trivial —quite the reverse of
the situation for the bar. On the other hand,
experimental evidence indicates that when the
ratio of diameter to length is less than 0.4, the
error involved in neglecting these stresses is less
than 0.05 percent. Table II gives velocities of
longitudinal waves in a set of specimens cut froni
a single length of -8-inch drill rod. The measure-

Time. E II. Observed velocity of longitudinal waves in steel
bars of dQ"erent lengths.
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ments were made by the method of Bancroft and
Jacobs. " It will bc seen that, within the experi-
mental error, the observed velocity as computed
from the assumed wave-length is independent of
the length of the specimen, and is a function of
the wave-length alone.

Except for the effects of the above-mentioned
discrepancy, which we have shown experi-
mentally to be slight in the case of longitudinal
waves, it is felt that the velocities determined
from Pochhammer's solutions may be used with
perfect confidence.

In conclusion, it appears that the work of
Shear and Focke' is explained on a quantitative
basis. Table I reproduces the behavior of the

' D. Bancroft and R. B. Jacobs, Rev. Sci. Inst. 9, 279
(1938),

longitudinal vibrations which they observed
with remarkable fidelity. The flexural vibra-
tions behave in much the way one would ex-
pect in the light of Eq. (9), and it is note-
worthy that the experimental data suggest
that a common asymptote for the Hexural and
longitudinal velocities at high frequency is not
improbable. The observed torsional vibrations
may possibly belong to one of the sheets of Eq.
(7). It also seems likely that the unexplained
points at high frequency lie upon one of the
higher sheets of Eqs. (2), (7), or (9), for in a
qualitative way they lie in the region associated
with these more complicated vibrations.

It is a pleasure to acknowledge our indebted-
ness to Professor Francis Birch for his encourage-
ment and help, particularly in checking most of
the rather tedious algebraic work.
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Non-Uniform Particle Density in Nuclear Structure
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The Coulomb repulsion between protons must give rise to a tendency for the proton density
to vary within a nucleus from a minimum value at the center to a maximum near the boundary.
A non-uniform proton density may be expected to create forces which distort the neutron
distribution and tend to make the two distributions vary in the same manner. If surface
effects are neglected, it is possible to calculate the energy correction associated with the
non-uniform densities without making special assumptions about the nuclear forces. The
neglect of surface eEects permits the assumption that the variations in density are small
departures from essentially constant distributions. It is found that the departure from uniform
density is appreciable in heavy nuclei, but the energy correction is negligible.

1. INTRoDUcTIQN

HE Coulomb repulsion between protons
must give rise to a tendency for the proton

density to vary within a nucleus from a minimum
value at the center to a maximum near the
boundary. A non-uniform proton density may
be expected to create forces which distort the
neutron distribution and tend to make the two
particle densities vary in the same manner.
If surface effects are neglected, it is possible to
calculate the energy correction associated with
the non-uniform densities as well as the densities

themsel ves in a comparatively rigorous and
simple manner. The neglect of surface effects
permits the assumption that the variations in
density are small departures from essentially
constant distributions. A suitable model for the
systematic neglect of surface effects is provided
by supposing the nuclear system enclosed in a
box of radius R. At the boundary the radial
derivative of the wave function with respect to
any radial coordinate must vanish:

8
tl (+ly»il »y~s~) = o, « =~

Bf~


