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obtained value 0.75. The agreement is as good
as the accuracy of the experiments would lead
us to expect.

VI. SUMMARY

The absence of a constricting effect in a
uniform longitudinal magnetic field has been
confirmed. The primary electrons from the
cathode formed a collimated beam which bore
the imprint of cathode structure and which
disappeared rather abruptly into a general glow.
““Abnormal”’ electron distributions were found
to be transmitted with decreasing amplitude
along the arc in the direction of the anode.

A magnetic field of 70 oersteds distorted probe
characteristics at 5.4X10™® mm pressure so
badly as to make them uninterpretable. There-
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fore attention was confined to a 50-oersted field.
The stable cross-sectional distribution of electron
density was the same with this field as without
field and a distribution which differed from the
“normal”’ tended to become normal in the
direction of the anode.

The abnormal distribution was found to obey
a modified Boltzmann distribution in accordance
with the theory of an arc in a longitudinal field.

Unfortunately the magnetic field distortion of
the probe characteristics began in the range
where the effects on the arc were just becoming
large enough to exhibit significant differences
from the zero field condition. As a consequence
the experimental results did not exhibit the
magnetic effects as vividly as could be wished
and the test of the theory was a rather mild one.
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The distribution of ions and electrons in the cross
section of a uniform positive column is maintained by the
radial motions of these particles. This distribution is
designated as ‘““normal.” A disturbance of this distribution
at some point in the column is followed on the anode side
by an asymptotic approach to the normal. In the absence
of a longitudinal magnetic field the recovery of a normal
distribution occurs within a very short distance, but a
longitudinal magnetic field slows down the readjustment
by decreasing the radial mobility of the electrons. By
making certain simplifying assumptions a theory for the
approach of a disturbed column back to normal when the
disturbance is cylindrically symmetrical has been worked
out. The distribution is developed in a series of zero order
Bessel functions, and it is found that the first term, which

1. INTRODUCTION

N the uniform positive column of a low
pressure discharge there is a normal distri-
bution of electron (and ion) density in the cross
section which maintains a balance, in each
element of volume, between the new ions and
electrons formed there and the net rate at which

corresponds to the normal distribution, approaches a
constant amplitude along the column whereas successive
terms have successively greater space decrements. The
decrement of the ¢th term approaches the constant value
(xt=x:)a(Te+Tp)
(1 - a)Teaz(— e)

where x; is the 7th root of Jo(x) =0, « is the factor giving
the reduction in transverse electron mobility, T and T,
are the electron and positive ion temperatures, a is the
radius of the column and e is (e/k7T.)(8V/dz). When com-
pared with the experimental results of Cummings and
Tonks, the theory calls for a reduction of the second term
of the series expansion to 50 percent in 12.5 cm of arc
length whereas experiment gave 33 percent.

these particles escape radially under the influence
of the electric fields and concentration gradients.
The net longitudinal outflow is zero because of
the axial uniformity of the arc. Such a normal
distribution exists whether the column be in a
finite uniform magnetic field or none at all but
the distribution will of course be different de-
pending on the orientation and strength of the
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magnetic field. Experiment! indicates in agree-
ment with theory? that the normal distributions
for no field and for uniform longitudinal field are
identical.

With no field the distribution reaches the
normal in very short distances, evidence of which
is found in the uniformity of the positive column
even close to the cathode or to the point where
a change in column diameter occurs. This does
not mean that deviations from the normal elec-
tron temperature may not extend along the
column for some distance, but that the charge
reaches its normal distribution quite promptly.

The presence of a longitudinal magnetic field,
however, reduces the transverse mobility of the
electrons and thus decreases the ease with which
an abnormal distribution disappears. The elec-
trons, moving longitudinally with ease and
transversely with difficulty, propagate the mal-
distribution along the column. Such effects have
been definitely found in experiments on a
mercury arc column reported by C. S. Cummings
and L. Tonks.! It therefore becomes of interest
to analyze the problem theoretically to gain, if
possible, a quantitative understanding of the
phenomenon. The problem is that of dealing with
a non-uniform column in which longitudinal
transfer of ions and electrons do play a part.

2. A Priori LIMITATIONS OF THE THEORY

The present application of the theory will be
only to the case for which the plasma extends to
within a short distance of the tube wall. The wall
sheath is supposed to be thin, so that the positive
ions originating in the plasma flow freely to the
walls. Any case in which the column has been
pulled away from the wall, as by a sharply
increasing magnetic field, a constriction in the
arc tube, or by a cathode of limited area brings
in factors which will not be considered here. The
present treatment is concerned rather with what
goes on beyond the point at which such a con-
stricted column first expands to fill the whole
cross section.

"The theory to be developed will suffer from
one of the same errors as the present theory of
the positive column, namely that arising from
the assumption that the ions drift with a velocity

1 C. S. Cummings and L. Tonks, preceding paper.
2 L. Tonks, Phys. Rev. 56, 360 (1939).
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proportional to the electric field. We know that
in the range of pressures and fields which exist
in the plasma their motion is more nearly propor-
tional to the square root of the field.? But such a
law would result in nonlinear equations whose
solution would be practically impossible. Only
disturbances which have cylindrical symmetry
will be treated because it has not been found
possible to solve the equations which include
azimuthal variation.

Other limitations of the theory, which are con-
sequences of mathematical necessity, will appear
as the theory is developed.

3. THE FUNDAMENTAL EQUATIONS

For definiteness let the positive z direction be
toward the anode so that it is the direction of
electron drift.

As usual, equality of electron and positive ion
densities 7, and #n,, respectively, is assumed :

Ne=1p, (1)

so that where necessary these quantities can be
used interchangeably and the subscripts can be
dropped.

There are six other equations which form the
system which will be used to describe the be-
havior of the plasma. The first four are the drift
equations for the transverse (#) and longitudinal
(w) drift velocities of the electrons (subscript e)
and ions (subscript p):

on, e aV
uez_aDe +— y (2)
n.dr kI, or
on, e OV
Uy = —D,,( ———“-), 3)
n,0r kT, ar
o, e aV
we=—De( +——), 4)
ndz kT, 93
mn, e oV
Wp= ——Dp( —————). (5)
np,0z kT, 0z

Here D, and D, are electron and ion diffusion
coefficients in the absence of magnetic field and
a is the fraction giving the decrease of transverse
electron mobility due to the magnetic field.?

3 K. H. Kingdon and E. J. Lawton, Phys. Rev. 56, 215
(1939).



524

The other two equations are those of con-
tinuity for electrons and ions, respectively :

d(nuer) I(n.aw.)
=\n,, (6)
ror 9z
6(71 U ,7') a(n W ))
PP + Ve o )\ne’ (7)
ror 0z

N\ being the rate of production of ion-electron
pairs per electron per second.

Even on the simplest theoretical grounds an-
other relation giving the relation between \ and
the arc gradient should be included. Our knowl-
edge of this relationship is meager, however. In
addition, its introduction would create great
mathematical difficulties, and there is a suf-
ficiently satisfactory detour around this com-
plication, which will be introduced later.

Finally, besides the usual boundary condition
that # be zero at the tube wall, we must seek a
solution in which (1) 8 V/dz becomes constant for
large enough z and (2) the wall current is small
so that the total arc current does not change
rapidly along the arc length.

4. NECESSARY APPROXIMATIONS

In order to solve the six equations in con-
venient form it is necessary to make certain
simplifications. First, we shall assume that the
“partial” drift arising from longitudinal diffusion
is small compared to that arising from the electric
field so that the quantities dn/ndr may be
dropped from Egs. (4) and (5). If the diffusion
terms are left in these equations, a 9%1n/9z® term
appears later in Eq. (11) which makes the solu-
tion under the assumed conditions far more
difficult.

Second, we assume that the arc gradient is
essentially constant, an assumption that will be
connected with the question of the relation
between X and 9V/dz.

The various simplifications result in the fol-
lowing two equations as a consequence of sub-
stituting Eqs. (2) to (5) into Egs. (6) and (7):

d dn on
—aD V. 2n— aDe—(rn—) —D.,e—=n, (8)
ror ar dz
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D,T. o an
—D,V.2n+4— —~(m-)
Tp ror ar

D, T, on
e—=, (9)
Tp 03z

where V,? is the Laplacian with respect to 7 only,

and
n=eV/kT,,

Note that e is intrinsically negative for electron
flow toward the anode.

These equations contain the two dependent
variables # and #. Multiplying the first by
D,T./T,, the second by aD, and adding gives

e=97/93. (10)

V.,2n+Pon/dz+ Q=0 (11)
with
(1—a)T e
=, (12)
a(Te+Tp)
oD T,+D,T,
= (13)

= DTty

The form of Eq. (11) suggests zero-order Bessel
functions as appropriate solutions. It is already
known that the function whose first root lies at
the wall, namely J,(2.40 7/a), is the solution
when 9n/9z is zero. This normal solution, as has
already been stated, just balances the net radial
outflow of ions and electrons from each ele-
mentary volume against the creation of new
particles. As a consequence, N, the number of
electrons per cm length of arc, which is.given by

a

N= 27rf nrdr
0

Now it is obvious that any distribution other
than the normal will fail to maintain such a
balance. For example, a distribution in which the
relative concentration at the axis is larger would
result in a slower escape of electrons and hence
an increase in N toward the anode. The con-
stancy of the arc current then would require
that the gradient decrease, and this in turn
would cause a decrease in T, and A, thus bringing
compensating. factors into play. The faster A
changes with T, the smaller would be the actual
changes in 7", and e which would accomplish the.
compensation. Actually \ varies rapidly with 7,

(14)

‘is constant.
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and for present purposes it will be assumed that
this variation is so great as to bring about com-
plete compensation with only infinitesimal, and
hence negligible, changes in 7', and e. Accordingly
\ is to be treated as a function of z in Eq. (11),
and is to be determined by the condition that N
remain constant, if there is no net current to the
wall, or by the actual variation in N which is
consistent with a wall current.

5. SOLUTION OF THE EQUATIONS™*

We suppose that the actual charge distribution
is analyzed by a Bessel-Fourier analysis into the
sum of a set of Bessel function distributions, each
with its unique dependence on z, represented by

Z,'Z
=00 X7
n= Z nijo(—)Zi.

i=1 a

(15)

Here x; is the 4th root of Jo(x)=0 so that the
wall-boundary condition, #=0, is automatically
fulfilled. If each term in the series of Eq. (15)
satisfies Eq. (11), substitution reveals that

X7 2 rxd
n=y niJo(~~) exp [P”lf (——Q)\)dz], (16)
a o \a?
where, as has been remarked, X is a function of z.
With insulating walls NV is constant, so that
oN 278 po
0=—-=

= nrdr
0z dz Jy

z A i 12
=2ma? exp [f }()2 dz] > %(%-Qk)

Ny esp (52
X X;) exp (—)
' a’P

and solving for \:

> maxiJ1(xs) exp (x:%2/a?P)
- > maxi W i(xs) exp (xﬁz/azP)'

a*Q\ (17)

Turning now to theé transverse gradient in the

column, Eq. (16) is to be substituted into either

* T am indebted to Dr. A. V. Hershey for valuable help
in solving the differential equations.
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Eq. (8) or (9) giving
D.D(Ty+aT)xs—aND,Ty+D,T.)
aD.D,T(1—a)

n; X o
X2 —Jl(—) +n—=0,
a ar

Xi

(18)

where

ni =n;exp [P‘lfz(x—i—@\)dz], (19)
0 a’

is the amplitude of the ith partial distribution
at the axial distance z.

6. INTERPRETATION

The reasonable expectation is that the ampli-
tude of each of the partial distributions, except
the normal, will decrease with distance, and that
the normal will approach a constant value. It
will now appear that the solution describes just
such behavior. It is necessary that dn/dr shall
be negative or zero at r=a. At 2=0, then,

0=0n/0r |a=—a 1 2 nixiJ1(x:),

which assures a positive or zero numerator in
the right member of Eq. (17). The denominator,
being proportional to N, is positive. It follows
that A is initially positive or zero. Now each
successive term in the two sums decreases more
rapidly than the last because of the increase in
x; from term to term and the fact that P is
negative. This assures that even if A was initially
zero, it becomes and remains positive as z
increases, and approaches the limiting value

A\—x2/a?Q. (20)

Examination of Eq. (16) then shows that the
normal (z=1) term of the sum approaches con-
stancy, whereas every subsequent term decreases
with a variable ‘‘absorption coefficient’ «; which
approaches the value — (x,2—x:2)/a?P.

Using Eq. (12) we have

a(T.~+Tp)

—_— 21)
(1—a)Ta?(—e¢ (

v (xd —x1%)

From Bessel function tables it is found that
the coefficients for successive v’s have the values:

1: 2 3 4
(x2—x12): 24.7 69.0 133.3
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7. LIMITATIONS OF THE SOLUTION

For zero magnetic field « is unity and Eq. (21)
becomes meaningless.  As this condition is ap-
proached by decreasing the magnetic field the
limiting values of the v’s become so large that
the original neglect of longitudinal diffusion is
seen to be no longer justified. This approximation
therefore limits the wvalidity of the present
analysis to cases where the magnetic field is not
too small. Since the longitudinal diffusion is
relatively more important for the higher order
components of the disturbance, the analysis is
also limited in that direction and ceases to apply
for values of 7 that are too great.

The more crucial of the two places where dif-
fusion has been neglected is in Eq. (4). There the
assumption was that

€ (1 —a)Tee?
< = .
ni o /0z  a(Te+Tp) (x:2/a?—QN)

As this condition is chiefly of interest for ¢ greater
than unity the particular value of X used makes
little difference. We therefore choose its limiting
value from Eq. (20). Since T+ 7T,= T, the con-
dition becomes

(1—a)e%a?
— 1. (22)
a(xﬁ —'QC12>

8. THEORY FOR NON-INSULATING WALLS

The case to which attention has been confined
so far is that in which the arc current remained
constant along the length of the column, that is,
the case of insulating walls which impose the
condition that #.,=u, at the wall. Equation (11)
was derived, however, without any such assump-
tion, so that it is valid even when a net wall
current flows. Only N\ depended on that assump-
tion, so that a change in A should take care of its
abandonment.

To apply the theory to this case we assume
that the cross section distribution is normal so
that #s, #s, etc. are zero. Any other assumption
presents great complications. Also, for simplicity,
we suppose that the current variation is expo-
nential, that is, in terms of N,

N = Nyéfs. (23)
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Comparison with Eq. (16) shows that
x:%/a?—QN=Pg. (24)

If now this is used to eliminate A from Eq. (18)
we find that

I x1J1(x17/a)

—_—=Ty , (25)
or aJo(x17/a)

where

aDe—D,,+a2xf"’6(— G) (De+DpTe/Tp)

Ta= . (26)

aD,+D,T./T,
Integration of Eq. (25) gives

Jolxir/a) =€ ¢, (27)

a result of the same form as has already been
derived? without considering longitudinal effects.

These results, of course, are consistent with
the continuity of current in the arc and to the
walls. A calculation to demonstrate this simply
serves as a check on the mathematics and tells
us nothing new.

We can, however, confirm a previous assump-
tion? that the ratio of u, to %, is a constant over
the cross section of the column under these con-
ditions. From Egs. (2) and (3):

o= —aDxi(ra—1)J1(x1r/a) /aT o(x17/a),
wp=—Dpx1(\+7,Te/Tp) J1(x17/a)/aTo(x17/a)

with the previous definition of u,?

Ue aD,(1—1,)

p=—=

—_— (27)
upy Dp(1+7.T/T)

, a constant,

and the previously given value for 7, (= in the
reference) is confirmed:

aD,—uD,

e — (28)
aDo+uD,T./T,

9. COMPARISON WITH THEORY

The only experimental results which are
available for comparison with this theory are
those of Cummings and Tonks. Their Fig. 8
shows the approach to a normal distribution with
increasing z of a distribution which was initially
peaked at the axis. We assume that of the ab-
normal partial distributions, only %, is appreci-
able and that in the range shown v is a constant.
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It would be simplest if the 47-ma normal distri-
bution contained the same total number of
electrons as the abnormal distribution. Then it
could be shown,? in terms of the values in the
figure, that

251 = (51 —47)/(59 —47)
whence
y2=0.088.

We know, however, that N for the 59-ma plasma
is 10 percent greater than for the 47-ma plasma.t
But since this difference is itself proportional to
the magnitude of #,, it will be proportionately
less with increasing z so that the above result is
not affected.

To calculate v, from Eq. (21) we take the fol-
lowing values from Cummings and Tonks:
T.=18,500°K, 7,=350°K, «=1.92X 1073, 2 =2.3
cm, —e=0.28%X11,600/18,500. It follows that

Y= 0.052.

The agreement, though not close, is reasonable
in view of theoretical approximations and experi-
mental uncertainties.

Finally, it is necessary to find to what degree
the condition of (22) is fulfilled. It appears that
the left member 'has the value 3.4 for the #,
distribution and would be only 1.2 for the #,.
Therefore the neglect of the diffusion term from

4 See Appendix.
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Eq. (4) introduces considerable inexactness in
the present calculation, and the analysis becomes
exact only when larger magnetic fields giving
considerably smaller values of « are used.

APPENDIX

Calculation of absorption coefficient of second partial
distribution from axial concentration measurements.

Let ny=axial concentration at first point, with field.

ns=ditto second point.

no=axial concentration with no field but for same
total charge in cross section.

ni1=axial concentration of first partial distribution
at first point.

ne=ditto second partial at first point.

n1’ =ditto first partial at second point.

ns’ =ditto second partial at second point.

f=e€"22=fractional decrease in second partial between

points.

Equating total charges in the cross section gives,

mJ (1) /51— 12T 1(%2) /%2 = moJ1(%1) /%1,
w1/ J1(21) /21— n2' T 1(%2) /%0 = o 1(%1) /%1.

The axial concentrations at first and second points are:

Mtng=ny; '+ ne’ =n,.

By definition, ny’=fn,. By using the last equation to
eliminate #,’ and substituting X for x:J1(x2)/x2J1(%1) :

n1— M2 =n,"— Ao =1y,
mtne=nys, n'+fro=ns
From these
ns—no=f(1+Nn2; nr—no=(1+Nn,,
whence )
f=(ms—n0)/(ns—mno) =%



