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Field theories of nuclear forces predict the existence of
a spin dependent interaction similar in character to the
coupling energy between two dipoles. The purpose of this
paper is to study the influence of such spin-spin forces
on the behavior of the neutron-proton system. A phe-
nomenological theory is developed in which are adopted
simplified rectangular well potentials whose constants are
determined to fit the binding energy and quadripole
moment of the deuteron, and the scattering of slow
neutrons in hydrogen. The range of the forces is chosen
to be that deduced from proton-proton scattering. The

effects investigated include the magnetic moment of the
deuteron, the scattering of neutrons in hydrogen, the
radiative capture of slow neutrons, and the photo-dis-
integration of the deuteron. Most of the effects considered
can be understood as a simple consequence of the reduced
amount of the 3S& ground state of the deuteron occasioned
by the admixture of a small percentage of a 'D& state. The
phenomenological theory here employed adequately repre-
sents the experimental data, with the exception of the photo-
magnetic disintegration of the deuteron which would seem
to require a detailed knowledge of the charge-bearing field.
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INTRQDUcTIo N

C
QUANTUM mechanical concepts have been

remarkably successful in providing quali-
tative interpretations of nuclear phenomena.
Attempts to obtain quantitative correlations of
nuclear data have proceeded by the heuristic
introduction of novel interactions with exchange
properties. Several field theories have been
proposed to supply a physical foundation for the
particular forms of these empirical interaction
energies. Although these theories have been
beset by divergence difficulties, so that no
reliance can be placed on the detailed form of
the interactions they predict, the field theories
do constitute suggestive models for the under-
standing of the general nature of nuclear forces.

Current nuclear theories postulate equal
interaction energies between all pairs of nuclear
particles. There are six such types of inter-
actions, satisfying the physical requirement of
invariance under the rotation-reHection group
and not explicitly involving the momenta of the
interacting particles. ' In terms of the isotopic
spin formalism, the exchange properties of these
six interactions are symbolized by

~) &1'&2) S12) &1 &2) &1' &2'+1'&2) &1' &2S12

The interaction potential constructed from the
four operators not containing S12 is a linear
combination of the conventional Majorana,
Heisenberg, Wigner and Barlett forces. The
additional S12 interaction terms are not only
possible a priori, but appear naturally in any
field theory constructed to yield a spin depend-
ence of nuclear forces. It is the purpose of this
and a subsequent paper, to investigate the
inHuence of interaction terms of the type S»
and ~1 ~2S12 on the properties of the two
particle neutron-proton system.

GENERAL FORMULAE

The generalization of the interaction operator
produces, essentially, a modification of the
symmetry properties of the Hamiltonian, which
in the usual theory is evidently invariant under
rotations of the spin coordinates and space
coordinates separately, corresponding to the
existence of' stationary states characterized by
the quantum numbers L, S, ml. , mz. Interaction
terms of the type S», however, are invariant
only under the coupled rotation of the spin and
space coordinates. The rotational invariance of
the Hamiltonian with the more general inter-
action yields, therefore, only the total angular
momentum quantum numbers J and m for the
description of stationary states.

Although spin and orbital angular momentum
are not in general conserved individually, the
total spin of a two-particle system is a constant
of the motion. The possibility of describing
stationary states by the quantum number S in
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this case is a consequence of the symmetry of
the Hamiltonian in the spins of the two particles.
By virtue of this symmetry, stationary state
wave functions may be chosen to be either
symmetrical or anti-symmetrical in the spin
coordinates of the particles. The well-known fact
that symmetrical spin wave functions correspond
to triplet states while anti-symmetrical spin
wave functions correspond to singlet states
demonstrates the validity of this theorem. The
fourth quantum number, in addition to S, J
and m, necessary to completely describe the
stationary states of the neutron-proton system
is provided by the parity, the eigenvalue of the
reHection operator.

The singlet states of the neutron-proton
system exhibit no novel features in consequence
of the easily demonstrable fact that S» has the
eigenvalue zero in a singlet state. This is neces-
sarily true since the conservation of total angular
momentum becomes the conservation of orbital
angular momentum in singlet states. In triplet
states, however, new phenomena may be ex-
pected to originate in the nonconservation of
orbital angular momentum.

A triplet state of definite total angular
momentum J is conveniently regarded as a
mixture of all possible states of orbital angular
momentum I. consistent with the rules for
compounding angular momenta. Thus a state
with J=1 is a mixture of 'SI, 'P~ and 'D~ states.
The existence of the parity quantum number
permits a further classification into even and
odd states based upon the theorem that a state
of orbital angular momentum I. has the parity
quantum number (—1)z. The state J=1, for
example, decomposes into an even state which
is a mixture of 'SI and 'DI, and an odd 'P~ state.
We obtain in this way a complete classification
of al 1 triplet states, which is illustrated in

I able I for the first few values of J.
The investigation of the properties of these

states is facilitated by expressing the SI-Jm
eigenstates in terms of the eigenstates of SI.mz, m8.
It is not necessary, however, to utilize the
general formulae, for only the properties of the
state 'SI+'DI are of interest in this paper, and
in this case special methods are available. That
part of the wave function of the 'Si state with
magnetic quantum number m which involves

angular and spin coordinates is clearly (4w)
—1x,~,

where gI. denotes the spin wave function
appropriate to a triplet state with magnetic
quantum number rrl, . The factor (4m) 1 is
introduced for normalization purposes. The
corresponding part of the 'Di wave function is
proportional to S»yI."'. That this represents a
triplet state with J= 1 is evident from the
rotational invariance and spin symmetry of S».
To prove that it represents a D state, we need
merely note that V"(r'S~~g~") = 0. The normahzed
part of the 'D~ wave function involving angular
and spin coordinates is thus -', (2') 'S»g& .
Introducing the symbols u(r)/r and w(r)/r for
the radial wave functions of the S and D states,
respectively, we then obtain for the wave
function of the 'SI.+'D~ state the expression

I//=(47r) ** —+2 '*) —1
~

—X ". (2)

TABLE I. Classification of triplet states.

J
0

2
3

EvEN

3S1+3D1
3D

3D +3@

PARITY

ODD

3+0
3P1

3g +3P
3P

neutron and the proton, it is suf6cient for our
purposes to regard the interaction operator as a
mixture of ordinary interactions, spin exchange
interactions and interactions of the type S».
The inclusion of space exchange operators would
be a luxury of no consequence. These remarks
find their mathematical expression in the
following formula for the interaction operator:

In stating that only the 'Sj.+'D& state need
be considered in detail for the interpretation of
the experimental data relevant to the triplet
state, we have restricted consideration to
energies so small that only S states, and therefore
the 'D& state through its coupling with the 'Si
state, will be influenced by the neutron-proton
interaction. This restriction will be removed in
the sequel to this paper. Since these states are
symmetrical in the space coordinates of the



W. RARITA AN D J. SCH WI NGER

The quantities g and y will in general involve
the distance between the two particles.

In the singlet state the interaction assumes a
particularly simple form,

v.;..i., = -(1—2g) J(y),

which is readily obtained by replacing o2 with
—e&. The corresponding wave equation for the
relative motion of the neutron and the proton

EP = (h'/M) VPP (1—2—g) J(r)P,

is of standard Schrodinger type and deserves no
further consideration.

Upon insertion of the wave function (2) into
the triplet state wave equation,

we obtain the following differential equations for
the 'S~ and 'D~ radial wave functions:

effects of the postulated interaction, . we shall
make the simplifying assumption that the
quantities g and y be constants and that J(r) be
a rectangular potential well of depth U0 and
range r0.

The wave function of the deuteron ground
state satishes the simultaneous differential
equations (6), with E=

I
E—p I

= 2.17 Mev.
Outside the range of interaction these equations
are readily integrable, yielding

u(r)rp) =Ae &" 'p' n=(cV IEpl/ipp)*',
(7)

w(r»p) = '-'"( + / r+3/(«)')

The differential equations descriptive of the
ground state wave function at distances less
than r0 are:

(d'/dr'+ «') u(r) = —X'w(r)
(8)

(dp/dyp 6/rp+ K~2)w(y) Xpu(y)

with the abbreviations:

d'I M M
+ [E+Jju—= —2ly —Jw,

dr'
(6)

p."=(zv/i'p')(vp —IEpl),

,' =yr/a)((1 —2~) V.—IE,I),
d'm 6m M M

+ [F+——(1—2—y) J$w = —2ly—Ju.
dr2 r2 fg2

The discussion, with the aid of these equations,
of the ground state of the deuteron, the scattering
of neutrons by protons, the radiative capture of
slow neutrons, and the photo-disintegration of
the deuteron forms the content of the remainder
of this paper.

THE GRoUND STATE oF THE DEUTERoN

Of the radial dependence of the neutron-proton
interaction, little is known but that it is of short
range. To facilitate the determination of the

TABLE II. Quadrupole moments.

X' = 2&y(iV/i'pP) Vp.

Although more elegant methods of treating
these equations undoubtedly exist, the procedure
adopted was the expansion of u and m in inhnite
power series,

u(r) =g A „x"+'+1nx P C„x"+',
0 0

w(r) =g B.x"+P+1n x Q D x"+' (10)

x=r/rp,

which provide solutions of the differential equa-
tions if the constants satisfy the recursion
formulae:

Vo/L"o

9.779
6.60
6.40
6.00
5.50
3.57
0—4.00—6.81

&Voi[uo)

0
4.79
4.96
5.30
5.72
7.14
9.42

12.0
13.6

0(iO» CM')

0
2.67
2.73
2.84
2.95
3.34
3,71
4.05
4,26

(n+1)(n+2)A„, g

+ (2n+3) C„+(arp) 'A„&———(Xrp) PB

(n+1) (n+2) C„+(~rp)'C -p = —(Xrp)'D —p,

(11)
n(n+ 5)B„+(2n+ 5)D„

+(e'rp)'B p
———() rp)'A„,

n(n+5)D„+ (N'r p)'D p
—(Xrp)'C„, ——



The solutions of these recursion relations may
be expressed linearly in terms of the two arbi-
trary constants Ao Rnd Bo. The reader will be
spared the sight of these solutions, for numerical
values of the constants are more conveniently
obtained by successive solution of the recursion
relations than by numerical substitution into an
explicit formula.

The continuity of the logarithmic derivatives
of I and m provides two equations„

(ro dn$
= —0/ro&

&u dr) ~=.,

pr, dwi p (nr, )'(1+nr&) y

I
——

I
=-12+

i w dr ) .=., & (nro)'+3nro+3&

which suSce to determine 80/A0 and Vo for a
given choice of ro and y. The continuity of n

and w then permit the constants A and 8 ol' P)
to be expressed in terms of Ao, which in turn
may be derived from the normalization condition:

1= it (I'+w')dr

A' 8' ( (1+nro) ')
(u+w )dr+ y i

1+6—
2n 2n ( (nro)' )

(13)

thus completi'ng the solution-of the ground state
prOble.

This procedure provides a relation between Vo

and y for a 6xed ro. To obtain a unique set of
constants p Rnd Vo, lt ls nccessRI y to clTlploy
some additional property of the neutron-proton
system, sensitive to the magnitude of the spin-
spin interaction term (Si2). Such a property is
embodied in the recently discovered electric
quadripole moment of the deutero. A non-
spherical distribution. of charge is a consequence
of the 'Bl state adjoined to the 'Sl state by the
spin-spin forces. Conversely, the experimental
cxlstcnce of Rn unsyITlmctrlcal chRI gc dlstl lbU"

tion in the ground state demands the introduction
of a noncentral force, for otherwise the ground
state would be pure 5 in character, The quadri-
pole moment Q is defined as the value of —',(3s' —r')
averaged over the asymmetrical charge distribu-
tion obtained from the wave function (2), in the

0.0

FIG. 1, 5 and 8 radial wave functions. I:NI'r) „ II:m(r)

p
Oo

Q=—' r'(Nw —2—''w')dr.
10 ~o

Nordsieck's evaluation' of the experiments of
RRbl Rnd his co-wol kcrs glvcs fo1 the VRlue of
the quadripole moment of the deuteron:
Q=+(2.73&0.05) X10 ~" cm2. The positive sign
indicates that the charge distribution is prolate
with respect to the direction of the deuteron
spin. Inspection of the interaction operator (3)
shows that the condition necessary for the
potential energy to be a minimum with the
relative position vector r aligned parallel to the
spin 18 that "f Vo bc posltlvc. Some sets of VRlues

for y and Vo, consistent with this condition,
were determined to fit the observed binding

energy, " and the quadripole moment was com-
puted for each set. The results of these calcula-
tions for ro=2.80&10 " cm are summarized in

Table II. The final set of constants, consistent
with both binding energy and quadripole
ITloment, ls thus:

Vo/iZoi =6.40, y=0.775, ra=2. 80X10 "cm.

The 5 and B radial functions appropriate to
these constants are plotted in Fig. j.. The
uncertainty in these values, arising from the
2-percent limit of error in the interpretation of
the quadripole moment measurements, is esti-
mated as 3 percent for Vo and 6 percent for y.

~ A. Nordsieck, Phys. Rev. 58, 310 (1940).
3 J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey and J. R.

Zacharias, Phys. Rev. 5'7, 677 (1940).
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In principle, a test of this assignment of
constants is provided by the measured magnetic
moment of the deuteron. The magnetic moment
associated with the 'S~+'D~ state is no longer
the sum of the intrinsic neutron and proton
moments, for the 'Dj state introduces an orbital
contribution proportional to the probability of
observing the deuteron in the 'D~ state, i.e. ,

Jt "w2dr To j.ustify this statement let us consider
the magnetic moment operator of the neutron-
proton system, expressed in units of the nuclear
magneton, eI'2/2'; vis. ,

or
3

pD —— 'N dt'
4 up

3 00

1 —— I m'dr
2J,

(19)

JI w2dr= 0. 03 9.

p

The wave functions of Fig. 1 imply a D state
probability

M =p„e„+p„e„+-2L, (15) The neutron magnetic moment inferred from

where p„and p, „denote the magnetic moments
of the neutron and proton in magneton units,
and L represents the internal orbital angular
momentum of the system in units of k. The
factor of 2 occurring in (15) stems from the fact
that, although two particles contribute to the
orbital angular momentum L, only one possesses
a charge. The expression for M is conveniently
rewritten as follows:

M=-;J+( „+~„—-', )S+-', ( „—u„)(~.„—~„), (16)

where to S and J we attribute their usual
significance. The magnetic moment of the
deuteron is then obtained by calculating the
average value of 3f, in the magnetic sub-state
of the deuteron with unit magnetic quantum
number. This evaluation may be simplified by
noting that all triplet state matrix elements of
(~ —o„) vanish, and that S may be replaced bv
its component in the direction of J, i.e. ,

Eq. (19) combined with the measurements of p„
and pD, p„=2.785 +0.02, p,D =0.855 +0.006,
namely, p,„=—1.908~0.02, differs but slightly
from that obtained by simple subtraction:
—1.930~0.02. The direct measurement of the
moment of a free neutron by Bloch and Alvarez4

gives p„= —1.935~0.02. Presumably the dis-

crepancy between these two results is not
significant, in view of the overlapping errors of
the direct measurements. Should increased
accuracy in the measurements reveal a definite
divergence, the concept of unperturbed intrinsic
moments implicit in these calculations, would

have to be abandoned. However, it should be
remembered that the possibility still exists that
a different radial dependence of the interactions
would yield a smaller D state probability. The
only information available on this question is
furnished by Bethe's calculations' on the "cut-
off" neutral mesotron potential which predicts

S ~ J J2+S2—L2 4 —L2
S~J =J —J-

J2 2J2
4 p

w'dr =0.06.

substituting for J' and S' their eigenvalue 2.
Hence, for the purpose of determining pD, the
magnetic moment of the deuteron, the magnetic
moment operator may be replaced by

JL~.+~. 4(~-+~. 2)L'j— (1&)—

From the evident fact that the average value of
L' is 6J;"w2dr, we obtain immediately the desired
formula for the magnetic moment of the deu-
teron; vis. ,

pD=p„+p„—2(p„+p„—-', ) I w'dr, (18)
p

Further evidence for the nonconservation of
orbital angular momentum, manifest in the
orbital contribution. to the deuteron magnetic
moment, is provided by the small, but real,
difference between the magnetic moments of the
deuteron and 3Li'. The slight difference between
the ground states of the two nuclei contemplated
in the usual theory is quite insufficient to
account for more than a negligible fraction of the
difference between y(qH2) =0.854 and p(2Li2)

- 4L. W. Alvarez and F. Bloch, Phys. Rev. 57, 111
(1940).

~ H. A. Bethe, Phys. Rev. 57, 390 (1940).
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=0.820. Indeed, according to current theory, the
magnetic moments of all the odd-odd nuclei
should be equal; whereas, in actuality, they form
a monotonically decreasing sequence vis'. ,
u(gH ) =0 854, u(3Li') =0.820, u( 8")=0.597
u(yN") =0.402. The explanation of this anoma-
lous behavior is to be sought in the increasing
admixture of states with higher orbital angular
momentum to the fundamental state 'S~. To
admit the validity of this interpretation, one
need merely note that the magnetic moment of a

member of this nuclear class is represented by

u = (u.+u.) (u—-+u. 2)—

x L(L').,—(s~)„+z]y4. (18')

Further, with increasing nuclear complexity,
one may anticipate a progressive relaxation of
the prohibition of singlet-triplet mixing, so
rigidly enforced in the deuteron, thus introducing
an additional nuclear moment variation with
atomic weight of the character demanded by
experiment.

NEUTRON-PROTON SCATTERING

The scattering of neutrons by protons has proved a fruitful source of information concerning the
neutron-proton interaction. Slow neutron scattering experiments in paraffin, and ortho- and para-
hydrogen have demonstrated the existence of spin dependent interactions which do not yield a
bound singlet state of the deuteron. An exacting test of any interaction designed to produce these
results is provided by the experimental values of scattering cross sections at higher energies. The
most accurate measurements available at present are those of Zinn, Seely and Cohen, ' and Aoki'
who obtain a scattering cross section of (2.40&0.10) X 10 24 cm2 for a neutron energy of 2.8 Mev.
The current theoretical value depends upon the range of interaction in the triplet state, which is
not known with certainty. Calculations on the binding energies of light nuclei indicate an interaction
range somewhat greater than 2)&10 "cm. Similar results have been obtained from experiments on
proton-proton scattering, although these experiments, in reality, are pertinent only to the interaction
of the 'S state. The theoretical value of the cross section at 2.8 Mev, calculated from the interaction
ranges thus obtained, is apparently larger than the experimental value. The first question which
presents itself, therefore, is whether the inclusion of the S» interaction term will serve to decrease
the theoretical value of the scattering cross section.

The interdependence of spin and orbital motion expressed by the interaction operator (3) com-
plicates the calculation of scattering cross sections. The orbital part of the incident wave corresponds
to a state with zero orbital magnetic quantum number in the direction of wave propagation. The
total component of angular momentum in this direction is consequently equal to the spin magnetic
quantum number of the initial beam. Although total angular momentum is conserved, spin angular
momentum alone is not, and one will therefore find scattered waves with altered values of the spin
magnetic quantum number associated with corresponding nonvanishing values of the orbital mag-
netic quantum number. A natural consequence of this nonconservation of spin angular momentum
is a dependence of the scattering cross section upon the spin magnetic quantum number of the
incident beam.

Confining our attention to the triplet state, which alone exhibits these phenomena, we may
write for the wave function of an incident wave propagated in the k direction with magnetic quantum
number m=1, 0, —1:

where

Oo gr. (kr)
exp Lfk r]xi"—— P (2I.+1)P Pi(cos 8)

I~=0 kr

gi. (p) = (Irp/2)Vr+l(p) sm (p I'LL)

(20)

(21)

S. Millman, P. Kusch and I. I. Rabi, Phys. Rev. 56, 165 (1939);M. Phillips, Phys. Rev. 5/, 160 (1940).
'W. H. Zinn, S. Seely and V. W. Cohen, Phys. Rev. 55, 260 (1939).' H. Aoki, Proc. Phys. -Math. Soc. Jap. 21, 232 (1939).
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and k is related to 2, the energy of relative motion, by

k = (MB)1/k. (22)

To simplify the calculations, we shall assume that only the even state in the continuum with
7=1 is perturbed by the neutron-proton interaction. The justification of this approximation has
already been presented. The wave function of this state is of the general form (2) with the S and
D radial functions determined by the simultaneous differential equations (6). Within the range of
interaction these equations assume the form (8) encountered in the solution of the ground state
problem, save that —}Zp} must be replaced by 8 in the definitions of &&' and &&

'. Methods identical
with those presented in the previous section may be employed for their solution. In the region
r) rp, the differential equations (6) may be integrated explicitly, &&is:

u(r) =sin (kr+&&p),

u&(r) = » }—sin (kr+5p) —(3/kr) cos (kr+&&p)+L3/(kr)'] sin (kr+8p) }.
(23)

Two relations between &&p, &&p and Bp/Ap are provided by the continuity of the logarithmic derivatives
of N and m. The third necessary relation can only be obtained from an examination of the conditions
necessary for the existence of a solution to the scattering problem.

In consequence of the hypothesis that only the even state with unit angular momentum is per-
turbed by the neutron-proton interaction, the wave function representing the scattering of the two
particles will be obtained by replacing that part of the incident wave (20) which is of unit angular
momentum and even parity by a suitable multiple of the '5&+'D& wave function we have just
discussed. The requisite part of the incident wave is evidently of the form (2) with u and u& propor-
tional to gp(kr) and gp(kr), respectively. Inasmuch as the entire S part of the incident wave must be
included therein, we write the desired wave function as

gp(kr) (3&r& r&rp r )g, (kr)
+~}

kr
(24)

The constant P may be determined by demanding that (18) be orthogonal to the remainder of the
incident wave. Values of P thus obtained depend upon the manner in which the total angular mo-

mentum is quantized with respect to the direction of propagation of the incident beam. It is easily
verified that

1( 3eg F2 k
P= —-} m

8E
-I m }) (25)

and thus P= —,' for m=~1 and P=~p for r&p=0.

Consider first those scattering processes for which m= ~1. In accordance with our previous
remarks, the wave function describing this type of scattering is:

gp(kr) 1 gp(kr) u&'&(r) u&&" (r)
exp Lpk r]x&~' — ——S» &&+'+A&" —+2 &S»

kr 4 kr
(26)

where the superscript (1) is employed to distinguish quantities from the analogous, but different,
quantities encountered in the scattering process with m=0. The constants A&'&, and»&"& of (23)
are specified by requiring that (26) satisfy the boundary conditions of containing only diverging
spherical waves at infinity in addition to the incident wave. Utilizing the asymptotic formulae:

gp(kr) sin kr, gp(kr) —sin kr,

u"&(r) sin (kr+&lp&») u&&'&(r) —»"& sin (kr+i&, &'&),
(27)
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the desired asymptotic form of (26) is realized with the choice of constants:

g (I) gimp
(1)

1
&(1)— 2—i&i(~2 —&p )(1) (1)

(28)

This value of q(" provides the third equation of continuity necessary to completely specify the
wave function of the 'Si+'Di state, for it essentially determines the value of w&i&(r)/u&'&(r) outside
the potential well. It is important to realize that the occurrence of the imaginary i in the third
condition will result in complex values for Bo/Ao, and the phases ho&&& and h2"'. The complex nature
of the phases may be interpreted as an expression of the "damping" of the S and D states arising
from the interconversion caused by their mutual coupling.

The asymptotic form of the scattering wave function, obtained upon insertion of the constants
(28) into formula (26), is:

~ikr ~2ibp 1 1 g2ibg 1
(1) (1)

exp [ik r]&&i~'+ + S12 . X1
r 2ik 4 2ik

(29)

The square of the absolute value of the coefficient of e' i/r represents the scattering cross section per
unit solid angle, which, in terms of the real and imaginary parts of the phases,

may be written:

(1) —]( (1)+Z|(1) $ (1) —
lf (1)+g| (1) (30)

1 (» (»
0 ~~~=i(&1) =—{e '«(sin' &&0&'&+sinh' I' &'&)+-'(5 —3 cos' &1)e '«(sin' &&i&" +sinh' f. ' &)&

k2
(1) (» (1)+-', (3 cos' &1

—1)e ««[sinh I' &'& sinh f &"+sinh f' "&e «sin' &&
&'&

(1) (1) (1)
+sinh f &"e r' sin' &&2"&+e ««sin &&0«& sin K2& & cos (Ko&'& —K2&'&)]} (31)

By integration of this expression over all solid angles, we obtain the total cross section for neutron-
proton scattering with magnetic quantum number m = ~1:

4& (1) (1)
&r~~t=i ———Ie '«(sin' Ko&'&+sinh' l o&'&)+~ie '«(sin' &&i&'&+sinh' f 2&") }.k' (32)

The neutron-proton scattering with m=0 may be treated in a completely analogous fashion.
In place of (28) we must employ the constants

g (o) —gi&p g(o —2sgi(&2 —&p )
(o) ~ . (o) (o)

(33)

in order to obtain the correct asymptotic form of the scattering wave function; namely,

2ik

~ikr ~2ibp 1 1 g2ib2 1
. (o) . (0)

exp [ik r]x&0+ S12 . Xl ~

r 2 2ik
(34)

In deriving the scattering cross section from this asymptotic formula, it is necessary to evaluate
the diagonal matrix element of S» with respect to the spins of the two particles. This may be done
most easily by noting that the diagonal sum of S» vanishes. Inasmuch as S» has the eigenvalue
zero in a singlet state, it follows that the diagonal sum over the triplet states vanishes. Further, it
is obvious that the diagonal matrix elements of Sin in the states rr&= +1 have the value (3 cos &1 —1),
a fact which has been employed in the derivation of the scattering formulae for m= ~1.Therefore,
the diagonal matrix element of S» in the m=0 state, which is the desired quantity, has the value
—2(3 cos' &1—1)

With the aid of the result, we obtain the following formula for the cross section of the process
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in which the particles are scattered through an angle 6 into unit solid angle:

1 (0) (o)
o o(&7) =—Ie '«(sin' «o"&+sinh' 1 o&")+(3cos' &7+1)e '«(sin' Ko&o&+sjnh' 1 o&'&)

(0) (0) (0)
+2(3 cos'8 —1)e ««Lsjnh jo&'& sinh jo&o&+sinh go&"e ro sin Ko&

(0) (o) (0)
+sinh jo"&e ro sin «o&" +e ««sin Ko" sin Ko&" cos (Ko& & —Ko&'&)]} (35)

The total cross section for scattering in the m=0 state is then

4' (0) (0)
&y o

— {e—2«(sino K&&&o&+sjnho j o&o&) +2e r"- (sjn Ko& &+sjnho j o&o&) }
k2

(36)

The cross section actually observed in the triplet scattering of unpolarized neutron beams is
related to the cross sections with definite magnetic quantum number by

=2 1
Otriplet, 30 }m}=1+30m=0 ~ (37)

although this cross section would appear to involve eight constants, general conservation theorems

prpvide several connecting relations which serve to reduce to three the number of constants required
to describe this type of scattering process. The expression of the stationary state character of a
wave function of type (2) is:

du du* i t' dw dw*

{
«*—— u }+{w*——

dr dr ) 0 dr dr j (38)

describing zero flux across the surface of a sphere of radius r. This equation may alsp be recpgnized

as the generalized Wronskian condition for regular solutions of our system of simultaneous second-
order linear differential equations. When applied to the asymptotic forms of the S and D radial
functions for the two kinds of magnetic sub-states: m =0, ~1:

(m)
u&m&(y) ~eioo sjn (ky+ l&

&m'&)

(m)
w'm'(r) C'm'e'" sin (kr+ l&o™): C ' =2—l, C ' = —2l (39)

this Kronskian condition yields:

or
e '«sjnh 2j &m&+(C&m&)oe o«sjnh 2{«&m&=0

(m) (m)

(1 —e '«)+2(1 —e '«) =0 (1 e—«o )+z(1 e«—) =0.(0) (0) (&) y (&)
(40)

If there exist two linearly independent regular solutions for a given magnetic sub-state, i.e., u, ~
up, mp, they must be subject to the {A'ronskian restriction:

due du * ) ( dwe dwo*

{
u.* — u, }+{w.* — we } =0,

dr dr ) ( dr dr ) (41)

for an arbitrary linear combination of n and p
must satisfy (38).The application of the rotation

operator J,+iJ„ to the m='0 wave function

produces a regular solution for the m = 1 magnetic
sub-state which divers only in its asymptotic
form from that represented in (39). Thus for the

m=1 state, two linearly independent solutions
exist, represented by

up ——u(0)

m =m(')

The phases describing the two magnetic sub-
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levels are thereby subject to the restriction

01
$ (0)+ $ (1) —$, (0)~ $ (1)

K(o) K() —K() K()Kp K2 = Kp K2

0
0 $2(0) —(2(1) Pp(1)

(4-')

Further, the complex conjugate of a regular
solution is again a regular solution, for the
fundamental differential equations (6) involve
only real coefficients. Hence an equally per-
missible pair of regular solutions is

24 =N, Q =Qa 2 p

m =m("; m =m(p"",a 2 p

which, when inserted in the Wronskian condition
(41), introduces the additional equality:

(0) . (0) . (1) . (1)e"iilp eofop e2(op e2ioo (43)

These relations, (40), (42) and (43), when suitably
combined, yield five independent restrictions;
VM. ,

(0) g ( 1) (0(I)
g

(0)

(0)
e 2ro CO—S (Kp(p) K2(i))

(1)=e '«cos (Kp( ) —K2('&) (44)

the first of (42) and either of the Eqs. (40). When
full advantage is taken of these relations, the
total triplet scattering cross section is reduced to
dependence on only three phase constants; vis. ,

pro»2)oo = (42r/ko) (e 2«(sino Ko "&+sin' K2'")

+(1-e-'" ) I. (45)

Although the cross section for the scattering of
neutrons with zero energy (8=0) may be ob-
tained from the previous results by suitable
limiting processes, it is more conveniently treated
anew. At zero energy only the 'S1+'D1 state is
extant. Concerning the form of the wave function
of this state within the range of interaction,
nothing need be added to what has already been
said. Outside the range of interaction, the S and
D radial functions obtained by integration of (6)
has the form:

suffice to determine the constants Bp/Ap and (2.

With the aid of these quantities, the constants A p

and b may then be determined from the equations
expressing the continuity of the S and D radial
wave functions. The scattering is obviously
isotropic, with the total cross section 4xa2.

We shall prove at this point that the S12 spin
forces do serve to decrease the neutron-proton
scattering cross section. For simplicity, we shall

consider the case of zero energy. It will be con-
venient to append the subscript (1) to all quanti-
ties associated with triplet states in the con-
tinuum; quantities associated with the ground
state will remain unmarked. With this notation,
the equation expressing the orthogonality of the
triplet wave function of zero energy and the
ground state wave function reads

j" (uui+wwi)dr =0.
0

(48)

Introducing the known forms of the S radial
functions outside the range of interaction (Eqs.
(7) and (46)), the orthogonality relation becomes

Within the range of interaction, the ground
state and continuum wave functions differ but
little. In addition, the behavior of the two
functions at distances greater than rp is almost
identical in the regions which contribute ap-
preciably to the integral J;"wwidr. It is therefore
permissible to replace ui and wi in Eq. (41) by u

and m. In terms of the quantity e, de6ned by

+rp oo

u dr+ W «= 22rp(u ) =rp,
0 0

(50)

the formula obtained from (41) for the total
scattering cross section, 4m.a12, may be written

rp ~
oo

0= ~' uu, dr+ wwidr+(uui). =,
0

1 1
X—1+ —. (49)

a (2(ro+(2))

u(r) ro) = r+(2; w(r) rp) = b/r' (46).
The equations of continuity,

4~52 p 1 2

+nr, f.
MfBof )1+',(r, )- (51)

(rp du) rll

(u dr) r=. ro rp+(2

(rp dw)
(47) In the absence of the spin forces under discussion,

I w « ~ r=ro the value of 2 is close to unity, for the 5 wave
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function I has the form of a sine wave which
reaches its maximum amplitude at approxi-
mately rp, and the D wave function m is identically
zero. Upon including these forces in the neutron-
proton interaction, m assumes finite values while

u, as a numerical investigation shows, still
preserves the general form of a sine wave. As a
consequence, e will become larger than one,
resulting in a decrease of the scattering cross
section since (43) is a monotonically decreasing
function of e. This demonstrates that the spin
forces of type S~& are capable of at least a partial
explanation of the experimental data.

The result thus obtained is supported by
numerical calculations of the scattering cross
section utilizing the simplified potential we have
adopted for analytical convenience. The calcu-
lated cross section at zero energy: at„;»«(B=O)
=4.21&(10 "cm', differs from that obtained by
the usual potential well calculation, 4.30' 1.0 '4

cm', by only two percent. This small decrease is,
of course, attributable to the quite small magni-
tude of 10"w'dr. The depth of the singlet
potential well, and therefore the quantity g, is
obtained by requiring that the cross section for
scattering of slow neutrons in hydrogen

~0 =
& ~~. ,i«(~ =o)+ & ~--.|«(&=o) (52)

assume' the value 20)(10 "cm'. The measure of
the relative strength of the spin exchange inter-
action, g, thus calculated, is g=0.0715. It is of
some interest to note that had the range been
chosen four percent smaller, i.e. , rp=2. 7)&10 "
cm, the value of g would have been zero. That is,
with this choice of range, the data may be
represented by an interaction operator composed
of an ordinary and a spin-spin interaction term,
with no spin-exchange interaction. The difference
in singlet and triplet potential energies then
arises entirely from the spin dependence em-
bodied in Si~. A neutron-proton force of this
character bears a suggestive resemblance to that
of the symmetrical pseudo-scalar mesotron
theory.

Neutron-proton scattering experiments em-

ploying the mono-energetic neutrons available
from the D—D reaction have been performed in

' V. W. Cohen, H. H. Goldsmith, J. Schwinger, Phys.
Rev. 55, 106 (1939);H. B. Hanstein, Phys. Rev. 5V, 1045
(1940).

the energy interval 2 5—3 0 Mev. The most
accurate experiments in this region, those of
Aoki' and Zinn, Seely and Cohen, v are in fair
accord and give (2.40+0.10)X10 " cm2 at the
energy 2.82 Mev, adopted for theoretical calcu-
lation. The theoretical cross section is sensitive to
the range of forces which, consistent with the
fundamental concept of charge independence of
the forces, has been chosen as rp ——2.80)&10 "
cm, the value derived from the analysis of
proton-proton scattering experiments. 'p The ordi-
nary potential well model predicts a total cross
section o(2.82 Mev) =2.56X10 "cm'. The com-
putations with the spin-spin interaction, em-

ploying the methods outlined earlier in this
section, result in the following values for the
phases:

Kp(P) = —0 9454 a ('& =0.00812,

Pp(o) = —0.01144
(53)

I G. Breit, H. M. Thaxton and L. Eisenbud, Phys. Rev.
55, 1018 (1939).

In the actual calculations, no use was made of the
connecting relations between the phases, which
were reserved for use as checks of the final
numbers, with completely satisfactory results.
Inserted in the formula (45), these phase con-
stants imply a triplet scattering cross section

%triplet 2.403 X 10 "cm'. Suitably averaged with
the singlet cross section, o-,„-„,i,~=2.910X10 '4

cm', there ensues the total neutron-proton cross
section, o (2.82 Mev) = 2.53 X 10 "cm'. Again we

have succeeded in obtaining only a two-percent
reduction in the triplet cross section.

It is difficult to decide whether a definite
discrepancy exists. Although the theoretical value
lies but barely higher than the upper limit of the
experimental result, the experimental observa-
tions have been invariably less than the theo-
retical prediction appropriate to the range
derived from proton scattering. It must be
remembered, however, that successive experi-
ments have shown a tendency to yield pro-
gressively higher values. If the present experi-
mental magnitude of the cross section be ac-
cepted, the range in the triplet state must be
reduced to 2.3X10—"cm, thoroughly violating
the postulate of charge independence of the
forces.
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It is not without interest to examine the non-
isotropic angular distribution of the scattering
demanded by the S» interaction. The angular
distributions in the separate magnetic sub-states
are appreciably nonspherically symmetrical:

o. i„,i,(8) = (1 —0.0263 cos' 6)
X(2.381/4o) X10 '4 cm'

(54)
o. =o(6) = (1+0.0559 cos' 8)

X (2.444!4o-) X 10—"cm-',

although the triplet angular cross section for
unpolarized beams:

o.„„;„i„(8)= (1+0.0017 cos' 8)
X (2.402/4m) X 10 '4 cm' (55)

exhibits but negligible deviations from isotropic
scattering.

RADIATIVE CAPTURE OF SLOW NEUTRONS

The theory of radiative transitions between the
discrete and continuum states of the neutron-
proton system is of added interest in view of thc
multiplicity of processes which become possible
when the general interaction (3) is employed. The
simplest situation realized is that of the radiative
capture of slow neutrons in hydrogen, for only
continuum S states are involved. In addition to
the usual magnetic dipole capture from the
singlet state, 'S0—+'S~, we now have the possi-
bilities of magnetic dipole transitions from the
triplet state; i.e. , 'S~—&'S~, 'D~—+'D~, and electric
quadripole transitions from the triplet state;
'S~~'D~, 'D~~'S~, 'D~—&'D~. Moreover the con-
ventional treatment of the magnetic dipole

capture from the singlet state as modified for the
'S& wave function now constitutes only part of
the ground state wave function, thus reducing
thc capture probability.

The probability per unit time of a magnetic
dipole transition from an initial state 0; to a final
state 0'f, with emission of a light quantum of
energy kar in the solid angle dQ about the direc-
tion of the unit vector x, is given by the well-
known formula;

(e'/Ac) (k&u/PIc') 'co

X
~
(C~, ooXe MO;.) }'(dQ/So-). (56)

Here M denotes the operator of the magnetic
moment in nuclear magnetons, and e represents a
unit vector in the direction of polarization of the
light quantum. To calculate the total transition
probability between degenerate states, this ex-
pression must be averaged with respect to the
magnetic quantum number m of the initial state
and summed over all magnetic quantum numbers
m' of the final state.

Slow neutron capture from the singlet state
occurs between the nondegenerate zero energy
state:

4', = [uo(r)/r]xoo, u (r) r+ao (57)

and the triply degenerate deuteron ground state:

4, = (4o.)
—iI (u/r)+2 —&S»(w!r) I x,"'. (2')

To evaluate the required matrix elements we
note that, of the three terms contained in the
expression (16) for M, only the third contributes
to transitions between states of different total
spin. Therefore,

(4 f, uX e.M%;) = (p„—u„) (4o )*J uuodr(&X e) ' (xP' o (+ eo)xo ).
0

(58)

The summation over the three final triplet states may be extended over all states, since the diagonal'
matrix element of e —e~ vanishes in the singlet state. Hence

El&Xe'(x|" o(«)xo') }'=(xo' (ooXe'o(«r))'xo') =(xo' (&Xe'& )'xo') =1 (59)

(~i) c', f (&o}& ' [&o} e
w...„„,=4~—(,„-„,) }

—
} }

uoudr },
fic E iVc') fi g o ) (60)

by the completeness relation and the fact that x)&e is a unit vector. This is an explicit demonstration
that the emitted radiation is isotropic and unpolarized. By summing over the two independent
polarization directions, and integrating (56) over all emission directions, we obtain the total capture
probabili ty:
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introducing
~
Eo ~, the binding energy of the deuteron, for the energy of the light quantum. The

superscript, denoting the spin transition, distinguishes this type of magnetic dipole capture from that
involved in capture from the triplet state. The cross section for the process is obtained from the
transition probability through division by the incident neutron current density. Inasmuch as the wave
function (57) of the initial state is normalized to unit particle density, the current density in the
singlet state is numerically equal to the neutron velocity (2E/M)'*, where E denotes the neutron
energy. Therefore the total neutron current density equals 4(2E/M)'. The capture cross section
thereby obtained may be written

&0 &&
&' ( (Eo( &

'*((Eot &

(p. —&„)'(— f ( f f
uou«f,

I'ic ( 2E ) &,I&fIc' )
where u is defined in (7).

The matrix element of the magnetic moment operator between the initial state:

(61)

Qy Qfy—+2—iS,g
—xi", u, (r) - r+ri,

r r
(62)

and the final state (2') determines the probability of magnetic dipole capture from the triplet state. In
computing this matrix element the operator M may be replaced by (17), the form utilized in the
evaluation of the deuteron moment. It should be noted that the term (i&„+«&„)J contained therein
gives no contribution to nondiagonal matrix elements. Therefore

(0 f, i& X e M+, ) = ——,
' (4ir) i(p +ii„——',) ~t wr&f, drv Xe (xi 2i (&r +cr )x\ ). (63)

As before, the summation over the three final triplet states may be extended over all states. The
justification in this situation proceeds from the diagonal nature of —,(&r„+&r„).—=S. Hence,

P ~
(&Xe) (xi"', -';(&r.+&r„)xi ) I

'= (xi", (uX e -', (&r.+&r,))'xi ),
m'

which has still to be averaged over the three initial triplet states. We may again use the artifice of
extending the summation over all states. The result is a diagonal sum of (rXe S)-'; i..e. ,

—',, 2 ~(i:Xe).(xi ', l(~'+~, )xi") ~'=-', &P(axe 2(~.+~,))'=-'. .
mm'

(64)

We obtain the total capture probability by the same discussion presented for singlet state capture:

&i-i; ~-', , ()Eol ) ' IEO[ (
~„„,,'„=6 —(,.+,„--;)

~

Pic &Mc' ) fi &, 0 )
(65)

The total neutron current density corresponding to the triplet wave function (62) is obviously
(4/3) (2E/M)l. Upon performing the required division, we obtain the following formula for the cross
section corresponding to magnetic dipole capture from the triplet state:

&i-i) ~~ &', (IEOI& "(IEOI&' (..a;, =——(u.+u, —2)'] I ] I (
uiu'i« I .

2 kc E 2E ) &,I&IIc') & o ) (66)

The third mechanism eAective in the radiative capture of slow neutrons is the electric quadripole
capture from the triplet state. The probability of an electric quadripole transition between the initial
state (62) and the final state (2') is represented by

(c'/Sc) (kcv/I&fIc-")'o~(Ii/3IIc) 4& (4f, -', e ru. r% ) )

'—d0/87r
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The required matrix element is found, by integrating over angles, to be

(2m)l
(@,, —,'e ru r+;) = r'(uw, +wu, —2-lww, )dr(x, "', (e ~,~ s,+u e,e s,)x,").

40 ~p

By proceeding as before, we obtain the total quadripole capture probability:

(i i) ~ e'(I&ol & '!&oI t' 2

r (uw, +wu, 2 'ww—,)d-r-l .
300 &c E3Ic' )

(69)

l he cross section for electric quadripole capture from the triplet state is therefore

(~-~) ~ e'fl&ol&'t'l&ol&', (.~ 9 .d= —
( l ) l

~'l r'(uwl+wuy 2 l—ww, )—dr
l

.
400 kc & 2B ) (1UIc' ) l. , ) (7o)

The theoretical cross section for the magnetic dipole capture of thermal neutrons (p =pT =0.023
ev) «om the singlet state, predicted by the customary theory, is r, =0.312X 10 ~4 cm~. The modi fica
tion embodied in our formula (61) reduces this value to 0, =0.302 X 10 "cm', which is approximately
the reduction to be expected from the four-percent probability of the D& state. The two additional
modes of radiative capture discussed in this section, magnetic dipole and electric quadripole capture
from the triplet states, have but a negligible influence on the total capture cross section. Indeed, even
if the very existence of these transitions did not depend on the small fraction of Dj state adjoined to
the 'S& state, transitions from the triplet state could hardly be expected to compete successfully with
a transition from the singlet state, for a neutron-proton system in the singlet state is in approximate
resonance at small energies.

The radiative capture of slow neutrons by protons has been extensively investigated. "Although
the results of the various experiments are not completely harmonious, those of apparently greater
accuracy agree in obtaining a cross section equal to ~, = (0.27&0.02) X10 " cm'. This value sup-
posedly refers to a thermal neutron energy L+'=kT, but in actuality, the principal error in these
measurements arises from the necessity of defining an effective energy by averaging over the uncertain
energy spectrum of the thermal neutrons. The experiments are therefore insufficiently accurate to
make the comparison with the theoretical value (0.30 X 10 "cm') unsatisfactory. It should be stressed
that even this measure of accord has been achieved only by employing the value of 20X10 "cm' for
the neutron-proton scattering cross section. The capture cross section is quite accurately proportional
to the scattering cross section, and is effectively independent of the range of the forces. Thus, had the
scattering cross section obtained by some investigators" ( 14X10 "cm') been used the capture
cross section would be 0-, 0.22 X10 "cm' which is in apparent disagreement with the experimental
measurement, particularly since the assumption of thermal equilibrium, used in defining the effective
neutron energy, tends to underestimate the experimental capture cross section.

PHOTO-DISINTEGRATION OEi THE DEUTERON

Transitions from the ground state of the deuteron to the dissociated continuum states, induced by
y-ray absorption, may proceed by essentially four types of radiative processes: electric dipole,
magnetic dipole and electric quadripole transitions to triplet states, and magnetic dipole transitions to
singlet states. Ke shall confine our attention to low energy y-rays, and therefore we shall neglect the
magnetic dipole and electric quadripole transitions to the triplet state, Further, we shall adopt the

"E.Amaldi and E. Fermi, Phys. Rev. 50, 899 (1936); C. H. Westcott, Proc. Camb. Phil. Soc. 33, 122 (1937); O. R.
Frisch, H, von Halban, Jr. and J. Koch, Kgl, Danske Vid. Sels. Math. -fys. Medd. 15, 10 (1938); A. H. Specs, W. F. Colby
and S. Goudsmit, Phys. Rev. 53, 326 (1938)."L.Simons, Kgl. Danske Vid. Sels. Math. -fys. Medd. 17, 7 (1940);E. Amaldi, D. Bocciarelli, G. C. Trabacchi, Ricerca
Scient. 11, 121 (1940).
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usual approximation which disregards the eEect of nuclear forces on the 'P states arising from electric
dipole absorption.

Photoelectric absorption corresponds to a transition from the initial state described by the wave
function (2), +;, to the I' part of the plane wave exp [ik rjx~"', i.e. ,

(k rq g&(kr) (5'k'
xx"', ! =@~—I~01 !.( kr ) kr ( M

(71)

The cross section for the absorption of a light quantum'of energy &co described by the unit vectors
e, x, with the emission of the disintegration products into the solid angle dQ about the propagation
vector k, is represented by:

e' Mk dQ
k l Z!(+y, le r+')I"-—

Ac 5', ~' 4x
(72}

The required matrix element, simplified by performing the angle integrations, is composed of the
terms describing the transitions 'Sj—+'P, 'D~~'P:

r~( 6 k 2 & (3 k 3 k e kq
(4r, —',e r4;) = i —!y—, ', rg, udr+ !

—e, —e, e+-e~ em~ —— ! rg, wdr g~" !.(73)
kE k ~p 5 E2 k 2 k k )~p )

The technique of averaging over the magnetic sub-states, described in the previous section, permits a
simple derivation of the result:

(t" l' ', (&"
! (O'I, 2e r4„)!'=—cos' 0! ii rgiudr ! +—(3+cos' 0)! ygzwdy ! (74)

Here cos 0=e k/k, with 0 thus representing the angle at which the emitted particles emerge with
respect to the polarization vector of the light quantum. The experimental situation pertains to an
unpolarized beam of y-rays, which necessitates the replacement of cos' 0~ by its average over all
directions of e perpendicular to x, vis. , -', sin' 8, where 8 denotes the angle of emergence of the
disintegration products with respect to the direction x of the y-ray. The cross section for electric
dipole absorption, with emission into the solid angle dQ is thus:

~ e'M~ ( f" p
' 1 ( t" q 'dQ

sin' a! I rg»dy I +—(6+sin')! rgb~dr !2kc kk ~~, »5 &~0 & 4~ (75)

It is noteworthy that the spin-spin forces demand a spherically symmetric term in addition to the
usual sin' 8 photoelectric angular distribution. The total photoelectric cross section is then

m. e'Ma& ( p" $' 2(
o,/, $; ———— ! ~ yg»dy ! +—

! ygygrdy
3kc kk EJO & 5I&o ) (76)

l he permissible transitions induced by magnetic dipole absorption to the singlet state are: S&~ Sp,
'D~—+'D2. The latter transition would be of little interest were it not that it interferes with the
transition to the 'Sp state and therefore modifies the angular distribution of the particles. The cross
section for magnetic dipole absorption is obtained from (72) by replacing the component of the
electric moment in the direction of the electric polarization vector, i.e. , (e/2)e r by its magnetic
analog, vis , (ek/2Mc. )y.Xe M. Therefore,

-', (e'/kc) (k~/Mc') k-', Q ! (%y, y Xe M%;)!'(d Q/47r)
m'

(77)
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describes the cross section for a magnetic dipole transition to the nondegenerate final state,

u, (r) 5 ( (lt ry '
p g2(kr)

4 f — e "o ——
(

3
( (

—1
) xo, uo(r) sin (kr+ 80).

kr 2 ( L. kr ) ) kr
(78)

Here we have written only the perturbed '50 continuum state" and the 'D portion of the plane wave
exp t alt rjxoo. Upon performing the summation over the magnetic quantum number m of the initial
state, and averaging the result with respect to the polarization vector of the light quantum, one
obtains the formulae:

(~-—I ~)—' —(, »o«) —2 ''«»o) i' »0«)] i~ g2wdr ((3cos'e —1)
3 kc Mc'k (so ) EJ& ) E&0 )

1 ( p" )2dg
+—(5 —3 cos' a)

~

~ g,wdr
~

—, (79)
& 0 ) 4~'

me' km 1 (~, a;, =——(p.—y„)'- —
(

~ u,udr
~ +~ ~ g.wdr [

3 kc M'c'k & &p ) &a„) (80)

which represent, respectively, the differential and
total cross sections for the photomagnetic tran-
sition to the singlet state.

Numerical calculations have been performed
for &co=2.62 Mev, the strong y-ray line of Th C".
The kinetic energy of the disintegration products
is therefore 0.45 Mev. At this small energy the
functions g~ and g2 are minute within the region
in which m is appreciably different from zero, and
thus no significant contribution is to be expected
from the transitions initiating in the 'Dj state.
Indeed, the principal modification is to reduce the
cross sections for these two processes propor-
tionately to the reduction in the integral f&"I,'«,
the S state probability. The total cross section
for the photoelectric process is found to be
0 & Q'p 11.99&( 10 ' cm', which is to be com-
pared with 12.31X10 " cm', computed from a
simple rectangular well. The angular distribution
represented in (75) differs but slightly from a
sin' 8 distribution: sin' 8+0.0007. However, we
shall show in the sequel that consideration of the
interaction in I' states, combined with large
p-ray energies, produces an appreciable relative
intensity in the forward direction. The total
photomagnetic cross section is 0 g p'p 3 28
&(10 " cm', while the angular distribution:

"The phase factor e '~0 is introduced to make the asymp-
totic form of +f correspond to a plane wave and a converging
spherical wave. Cf. N. F. Mott and H. S. %, Massey, The
Theory of Atomic Collisions (Oxford University Press, 1933),
p. 258.

1 —0.0035 cos' 6 is slightly altered from spherical
symmetry by the interference with the 'D state.
The latter effect increases rapidly with energy
and at the higher energies considered in the
subsequent paper produces a significant reduction
in the forward intensity of the photomagnetic
particles.

The quantities to be compared with experi-
ment are the total cross section: o.phog0=15 27
)&10 ' cm', and the net angular distribution:
(sin' 8+0.182).The experiments of von Halban"
reveal a most disturbing contradiction with this
theory. The measured total cross section is only
(10&0.8) X10 "cm', while the intensity of the
photo-neutrons ejected in the forward direction
is at most 5 percent of that at right angles, in
contrast with the theoretical expectation of 15
percent. Experiments of Chadwick, Feather and
Bretscher" have provided confirmatory evidence
by showing that a similar situation exists for the
angular distribution of the photo-protons. These
discrepancies could be removed if the photo-
magnetic cross section were much smaller than
current theories predict. One point which should
be mentioned is the weak 3.2-Mev y-ray line
which according to Ellis, "accompanies the main
2.6-Mev line of Th C". This fact, however,

'4 H. von Halban, Jr. , Comptes rendus 206, 1170 (1938).
'~ J. Chadwick, N. Feather and E. Bretscher, Proc. Roy.

Soc. A163, 366 (1937),"C.D. Ellis, Proc. Phys. Soc. 50, 213 (1938).
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provides but little solace, for to explain the
angular distribution the 3.2-Mev line would have
to be the principal component of the spectrum.
This is a rather serious situation since the photo-
disintegration process is simply the inverse of the
magnetic capture process, which is in good
accord with experiment. The only evident expla-
nation is that there exists a further contribution
to the magnetic moment operator arising from
mesotron exchange currents. However, it is not
clear why the small energy difference between
the two continuum states involved in capture and
photo-disintegration (450 kev) should have such
a marked effect.

The general conclusion to be drawn from the

preceding sections is that a satisfactory phe-
nomenological theory of the neutron-proton
system can be developed, with the exception of
the magnetic photo-disintegration process, where
for the first time we meet a phenomenon whose
explanation apparently demands a detailed appli-
cation of a field theory.

This investigation was begun by one of us

(J. S.) at the University of Wisconsin while the
recipient of a Tyndall Traveling Fellowship from
Columbia University (1937—1938). He wishes to
thank Professors Breit and Wigner for the benefit
of stimulating discussions. We are also indebted
to Professor J. R. Oppenheimer for his interest in

this work.
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X-Ray Diffraction Maxima at Other Than Bragg Angles
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Photographic observations of molybdenum Ea lines internally reflected from (111)planes of
diamond show that the angle of deviation is not constant with angle of incidence but varies in

qualitative agreement with Zachariasen's theory of diffuse scattering and with observations of
Raman and Nilakantan. Observations of the variation of line intensity and width with angle
of incidence do not agree well with the theory in the cases observed. Spectrometer observations
of reflections from calcite with slightly ground and with untreated cleavage surfaces upon
which monochromatic radiation was incident at angles differing from the Bragg angle show
detectable reHection over an 11' range of angles of incidence in the former case but only 2' in

the latter. The large difference between these ranges indicates that disordered crystal particles
are the principal source of reflected intensity at other than Bragg angles with the predominant
crystal planes in the former case. The presumption is strong that this source has operated as a
partial or complete explanation of some of the reflections hitherto reported as anomalous.

'HE fact that x-rays may diffract from
crystals in directions not precisely assign-

able to Bragg planes has been repeatedly dis-
covered during the past thirty years. A frequent
experience has been the observation of unex-
pected spots or radial streaks on Laue-spot
photographs located close to, and presumably
causally associated with, the ordinary and more
readily explicable ones. '

The effects are usually such as to suggest that
the reflecting planes, or some of them, possess in

' Many references are given by I.E. Knaggs, K. Lonsdale,
A. Muller, A. R. Ubbelohde, Nature 145, 820 (1940).

addition to the usual reflecting or distracting
characteristics the ability to reflect incident radi-
ation in directions such that the angles of
incidence and reflection are not precisely equal
or that the latter angle is not limited to a single
well-defined value. Such characteristics might
result, it has been or may be suggested, from
wavy "planes" having reflecting areas not
sharing the general inclination, from mosaic
blocks slightly askew, or from transient disorder
accompanying thermal vibration. The latter
suggestion, advanced in general terms of Faxen, '-

' H. Faxen, 7eits. f. Physik 17, 226 (1923).


