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On the Magnitude of Electronic Charges
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A charged point particle is characterized first by its classical rest energy ep ——mc2, second
by the characteristic wave period tp ——4m.e'/3mc' that occurs in the classical formula @,/p
= t 1+(tp/r)'g ' for the ratio of the scattering cross section for light of period r compared with
the Thomson cross section @ for light of period ~. Quantum theory asks that the product ep$p

be as small as h/210 as the smallest eigenvalue of a proper value problem. The classical values of
cp and tp together with their quantum product yield the value e = 1/140 for Sommerfeld's fine-
structure constant. The discrepancy may be due to our classical treatment of the interaction
between light and charged matter. The Lorentz invariance of the energy transmission coefficient
R, = @,/@„makes R„apt to serve as a reduction factor in the theory of radiation for avoiding the
usual infinities. As a first example, the energy reduction R, leads to a modified Coulomb energy
together with a finite electrostatic self-energy corresponding to an electrostatic mass m„t,t ——m.

HE velocity of a particle can be found in
two ways; first, by measuring the energy e

and the momentum p so that

v/c =pc/e whereby e' —(pc)'= 6o (1)

if eo stands for the rest energy; and second, by
measuring the path r during a time interval t

so that

quantum theory. The probability amplitudes
p(r, t) and x(p, c) comply with the quantum rule

(for free particles) that they are Fourier expan-
sions of one another. At the same time ~ is
determined by p and eo, and t is determined by r
and to by virtue of (1) and (2). The Fourier
integrals' read

if to stands for the rest value of the interval t.
The quantities p and e can be measured

optically if the particle is charged. The Compton
scattering effect yields p and e within certain
margins of accuracy since p and e change during
the observation. The universal rest energy eo

which also is the critical photonic energy for the
pair production, has a definite value so=me'
without uncertainty.

The quantities r and t can also be measured
optically by means of light waves scattered
by the particle. The Lorentz rest system in
which the scattering process takes place is
defined by the system of interference fringes of
the incident and reflected light and matter
waves that move through the distance r during t.
The position of the maxima cannot be measured
exactly at any time. Therefore r and t are de-
termined within a certain margin only, although
the rest period $0 has a definite universal value
(see (7)).

The two uncertainties (corpuscular p and e,

wave r and t) are reciprocal in the sense of

4

Xexp [i/A(P r —et) ]dxdydz(t, /t)',

Xexp [ i/h(p r —et) jdp, dp—„dp,(~0/~)'*

The square roots on the right provide for in-
variant volume elements. The factors h '' are
chosen so that the two integral equations are
mere inversions of one another in the non-
relativistic limit. The integrals are carried over
positive and negative values of the square roots;
they are soluble only for certain proper values of
the quantity

f030/0 =p.

'The integrals are modifications of Born's integrals.
Born modified the writer's original wrong integrals. See
A. Lande, J. Frank. Inst. 228, 459 (1939). M. Born, Proc.
Roy. Soc. Edinburgh 59, 219 (1939). The proper value
theory of Born and Fuchs, Proc. Roy. Soc. Edinburgh 60,
100, 141 (1940) starts from a different background and
arrives at different results.
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The smallest proper value of p, turns out to be'

p = 0.02985037 (4')

as the smallest root of the transcendental equa-
tion 2pruLYp(u)]'=1.

The smattness of the product pptp $n terms of k,
namely pptp/k=1/Z10 must be considered as the

chief reason for the smallness of the Sommerfeld

Pne struct-ure constant a. Indeed, the latter is

e2e e tpep p
A= 'p=

ck ctpf p fl c$pmc'

if y is the numerical factor expressing tp in terms
of e'/mc'- by the formula

ct p ye'/mc—-'—. (6)

' A. Lande, J. Frank. Inst. 229, 767 (1940). Part I.

A tentative value of y is obtained by identifying
t p with the characteristic period tp that occurs in
the scattering cross section p, for light of period
7., as compared with the Thomson cross section
p„ for light of period ~. The classical theory of
the scattering of infinitely weak light waves
yields the formula

@,=p„f1+(r/tp)'] ' where tp=4pre'/3mc' (7).

From identifying tp of (2) with tp of (7) we learn
that y is 4s./3, hence

o.=u/y =0.0298 (3/4pr) =1/140 (8)

instead of the experimental value=1/137. The
discrepancy may be due partly to the value of
p„which was obtained from the classical scatter-
ing of infinitely weak light waves, as against
quantized waves of zero-point energy. A uniform

theory is wanted in order to replace the two in. -

coherent sections of computing n=u/y from a
quantum calculation of p and a classical calcula-
tion' of p. The not quite convincing classical
reasons for choosing y = 4m/3 will be discussed in

a paper, Part III, in the Journal of the Franklin
Institute (1941) to which we also refer for the
following remarks.

The ratio 2t!,=@,/tt„ is apt to serve as a
reduction factor to rid the radiation theory of
infinities. R is Lorents-invariant since P„ is a
universal constant, and p, depends on the scat-
tered period r and the speed of the scattering
particle in the following way. The light may
have the period 7 for an observer who is at rest
together with the particle. If the observer moves
with velocity v' relative to the former rest
system he will observe a different period
But the scattering cross section, that is, the
ratio of the scattered to the incident intensity
per unit area will be the same as in the rest
system namely R, rather than R, . Indeed, the
scattering cross section can be thought of as the
cross section of a (missing) column of light cut
out of the incident parallel light rays, the walls
of the column being light rays.

A first application of this reduction factor for
the energy transmission .is offered by the Dirac-
Fermi wave theory of the electrostatic inter-
action between particles and light. This theory
leads to the Coulomb energy e;e&/r;p and to an
infinite self-energy. If one assumes, however,
that the energy contribution of the waves of
period 7 is reduced by the invariant factor R,
=P,/P„of (7), then one obtains a modified
Coulomb energy

mat@t =m~ (9')

since, according to Abraham, any spherical
electric field of energy E,&,& has an inertia
m.p,p ——E.p,p (4/3c'). The reduction of the infinite
self-energy through radiation damping is prefer-
able to an arbitrary cutting-off process, and
perhaps also to those theories (Born-Infeld and
Born's reciprocity) tha. t yield the correct finite
self-energy only with a certain selection of an
adjustable parameter r p called "electronic radius"
(determination of the factor y a posteriori)

(e;etj./r;p) I 1 —exp ( r;p3mc'/2e'—)j (9)

and a finite electrostatic self-energy of value
E,t,,t,

——4 mc'. This corresponds to an electro-
static mass


