Radiative X-Ray Transitions Within the L Shell

D. H. Tomboulian and Willoughby M. Cady
Cornell University, Ithaca, New York

(January 17, 1941)

Abstract

Whereas $N-N$ and $M-M$ lines have been observed in the x-ray spectra of several elements, $L-L$ lines have not been identified. However, isolated lines of sodium (375A), magnesium (317A) and aluminum (290A) reported by Skinner are here designated as $L_{I}-L_{I I, I I I}$. Thus the L_{I} term in these elements may now be evaluated, and reliable predictions of L_{I} may be made for the elements silicon to chromium.

THE x-ray lines most easily observed are those for which the initial and final states differ in the quantum number n. Many transitions have been observed, however, in which $\Delta n=0$. Thus Magnusson ${ }^{1}$ has identified as $N-N$ transitions the lines of several elements in the ultra-soft region, and Siegbahn and Magnusson ${ }^{2}$ cite several $M-M$ lines. Transitions within the L shell have apparently not been reported, although two are allowed: $L_{I}-L_{I I}$ and $L_{I}-L_{I I I}$.

Among the competing processes whereby a missing L_{I} electron may be replaced, the radiative $L-L$ transitions should be very weak in heavy elements, since the energy released by $L_{I^{-}} M$ is so much greater than that released by $L_{I}-L_{I I, I I I}$, that an L_{I} ionization is almost always followed by the former process instead of the latter. In light elements, however, this inequality is less emphatic. We are therefore led to seek the $L-L$ radiation in the spectra of the lightest elements having completed L shells.

The wave-length of such transitions can be predicted with the aid of the screening-doublet law. This law, as relating the term values T of L_{I} and $L_{I I}$, may be written either in the form

$$
\begin{equation*}
\left(T_{L I} / R\right)^{\frac{1}{2}}-\left(T_{L I I} / R\right)^{\frac{1}{2}}=\mathrm{constant} \tag{1}
\end{equation*}
$$

or in the form

$$
\begin{equation*}
\left(T_{L I} / R\right)-\left(T_{L I I} / R\right)=\text { linear function of } Z \tag{2}
\end{equation*}
$$

Table I illustrates the application of (1) and (2) to the prediction of the transition $L_{I}-L_{I I}$. Here the known terms for elements $Z \geqslant 26$ are as evaluated by Siegbahn; ${ }^{3}$ the remaining term

[^0]values are based on the observations of Skinner. ${ }^{4}$ Column 2 of Table I gives in parentheses predictions of L_{I}, made with the aid of column 4 (cf. Eq. (1)). Similarly, predictions in column 5 are based on column 7 , where $\Delta T / R$ is estimated by graphical extrapolation (cf. Eq. (2)). Column 8 presents the final prediction of L_{I}, in which column 2 has been weighted twice as heavily as column 5 . In column 9 is listed the wave-length of the $L_{I}-L_{I I}$ transition, predicted from columns 6 and 8.

Skinner, ${ }^{4}$ in his exhaustive description of the L spectra of Na, Mg and Al , lists as unidentified one line for each of these elements. These lines are listed in the last column of Table I. The wave-length agreement is excellent, and strongly points to the identification of Skinner's lines as the $L-L$ transitions. One of these lines appears on two of our own sodium spectrograms; ${ }^{5}$ our value for the wave-length is 376.5 A , the halfwidth at half-maximum being some 3A.

The line $L_{I}-L_{I I I}$ should lie very close to $L_{I}-L_{I I}$, and should be the brighter of the two. Indeed Skinner's lines are more correctly designated $L_{I^{-}} L_{I I I}$.

With this identification one can now for the first time evaluate the level L_{I} of Na, Mg and Al . This evaluation is presented in Table II. The values of $\Delta(T / R)^{\frac{1}{2}}$ are also given, the parentheses indicating interpolated values for the elements $14 \leqslant Z \leqslant 25$. The last column gives the $L_{I}-L_{I I I}$ line as observed and rough predictions for the elements in which it has not been observed.

The width of the $\mathrm{Na} L_{I}-L_{I I I}$ transition implies

[^1]Table I. Prediction of the line $L_{I}-L_{I I}$ for Na, Mg and Al .

1	2	3		5	6	7	8	9	10
2	$\left(\frac{T}{R}\right)^{\frac{1}{2}}\left(L_{I}\right)$	$\left(\frac{T}{R}\right)^{\frac{1}{2}}\left(L_{I I}\right)$	$\Delta\left(\frac{T}{R}\right)^{\frac{1}{2}}$	$\frac{T}{R}\left(L_{I}\right)$	$\frac{T}{R}\left(L_{1 I}\right)$	$\Delta \frac{T}{R}$	$\frac{T}{R}\left(L_{I}\right)$	$\begin{aligned} & \lambda\left(L_{1}-L_{1}\right) \\ & \text { CaLC. }(\mathrm{A}) \end{aligned}$	$\stackrel{\lambda}{\text { OBS. (A) }}$
50	18.09	17.46	0.63	327.4	304.9	22.5			
45	15.83	15.21	0.62	250.7	231.2	19.5			
40	13.66	13.04	0.62	186.6	170.0	16.6			
33	10.61	10.00	0.61	112.6	100.0	12.6			
30	9.40	8.78	0.62	88.4	77.1	11.3			
28	8.65	8.04	0.61	74.8	64.6	10.2			
26	7.91	7.29	0.62	62.5	53.2	9.3			
13	(2.92)	2.318	(0.60)	(9.0)	5.372	(3.6)	(8.68)	(275)	290
12	(2.51)	1.913	(0.60)	(6.9)	3.658	(3.2)	(6.50)	(321)	317
11	(2.10)	1.504*	(0.60)	(5.0)	2.263*	(2.7)	(4.61)	(388)	375

* Estimated from $L_{I I I}$ by the spin doublet law.

Table II. The L terms and $L-L$ lines of light elements.

Z	$\left(\frac{T}{R}\right)^{\frac{1}{2}}\left(L_{I}\right)$	$\left(\frac{T}{R}\right)^{\frac{1}{2}}\left(L_{I I}\right)$	$\Delta\left(\frac{T}{R}\right)^{\frac{1}{2}}$	$\frac{T}{R}\left(L_{I}\right)$	$\frac{T}{R}\left(L_{11}\right)$	$\frac{T}{R}\left(L_{1 I I}\right)$	(A)
26 Fe	7.91	7.29	0.62	62.5	53.2	52.2	$88 \dagger$
25 Mn	(7.56)	6.95	(0.61)	(57.2)	48.3	47.4	(93)
24 Cr	(7.17)	6.56	(0.61)	(51.4)	43.0	42.3	(100)
23 V	(6.81)	6.20	(0.61)	(46.4)	38.5	37.9	(107)
22 Ti	(6.44)	5.83	(0.61)	(41.5)	34.0	33.6	(115)
21 Sc	(6.10)	5.50	(0.60)	(37.2)	30.3	30.0	(126)
20 Ca	(5.68)	5.08	(0.60)	(32.3)	25.8	25.5	(134)
19 K	(5.26)	4.66	(0.60)	(27.7)	21.7	21.5	(147)
17 Cl	(4.45)	3.86	(0.59)	(19.8)	14.9	14.8	(182)
16 S	(4.06)	3.480	(0.58)	(16.5)	12.11	12.02	(203)
15 P	(3.69)	3.112	(0.58)	(13.6)	9.68	9.60	(228)
14 Si	(3.31)	2.716	(0.59)	(11.0)	7.378	7.325	(248)
13 Al	2.913	2.318	0.595	8.485	5.372	5.343	290
12 Mg	2.552	1.913	0.639	6.513	3.658	3.638	317
11 Na	2.163	1.504*	0.659	4.678	2.263*	2.248	375

* Estimated from LIII by the spin doublet law.
+ Not observed.
\dagger Not observed.
a voltage spread of nearly one-half electron volt. Since $L_{I I I}$ is known to be sharp, this width must inhere almost wholly in L_{I}.

An objection to the proposed identification of $L_{I}-L_{I I I}$ may be raised: the value of $\Delta(T / R)^{\frac{1}{2}}$ rises suddenly at low Z if the identification is correct. This is, however, not surprising, for $\Delta(T / R)^{\frac{1}{2}}$ is proportional to the difference between
two screening constants, and it is known that screening constants vary irregularly with Z in the region of low energies; the value of $\Delta(T / R)^{\frac{1}{\frac{1}{2}}}$ for the $M_{I} M_{I I}$ screening doublet, calculated for the elements ${ }^{6} \mathrm{~K}$ to Co shows a somewhat similar behavior.

[^2]
[^0]: ${ }^{1}$ T. Magnusson, Zeits. f. Physik 79, 161 (1932).
 ${ }^{2}$ M. Siegbahn and T. Magnusson, Zeits. f. Physik 88, 559 (1934).
 ${ }^{3}$ M. Siegbahn, Spektroskopie d. Röntgenstrahlen (Springer, Berlin, 1931).

[^1]: ${ }^{4}$ H. W. B. Skinner, Phil. Trans. Roy. Soc. 239, 95 (1940).
 ${ }^{5}$ W. M. Cady and D. H. Tomboulian, Phys. Rev. 59, 381 (1941).

[^2]: ${ }^{6}$ M. Siegbahn and T. Magnusson, Zeits. f. Physik 95, 133 (1935).

