Radiative X-Ray Transitions Within the L Shell

D. H. TOMBOULIAN AND WILLOUGHBY M. CADY Cornell University, Ithaca, New York (January 17, 1941)

Whereas N-N and M-M lines have been observed in the x-ray spectra of several elements, L-L lines have not been identified. However, isolated lines of sodium (375A), magnesium (317A) and aluminum (290A) reported by Skinner are here designated as $L_I-L_{II,III}$. Thus the L_I term in these elements may now be evaluated, and reliable predictions of L_I may be made for the elements silicon to chromium.

THE x-ray lines most easily observed are those for which the initial and final states differ in the quantum number n. Many transitions have been observed, however, in which $\Delta n = 0$. Thus Magnusson¹ has identified as N-Ntransitions the lines of several elements in the ultra-soft region, and Siegbahn and Magnusson² cite several M-M lines. Transitions within the L shell have apparently not been reported, although two are allowed: L_T-L_{II} and L_T-L_{III} .

Among the competing processes whereby a missing L_I electron may be replaced, the radiative L-L transitions should be very weak in heavy elements, since the energy released by L_I-M is so much greater than that released by $L_I-L_{II,III}$, that an L_I ionization is almost always followed by the former process instead of the latter. In light elements, however, this inequality is less emphatic. We are therefore led to seek the L-L radiation in the spectra of the lightest elements having completed L shells.

The wave-length of such transitions can be predicted with the aid of the screening-doublet law. This law, as relating the term values T of L_I and L_{II} , may be written either in the form

$$(T_{LI}/R)^{\frac{1}{2}} - (T_{LII}/R)^{\frac{1}{2}} = \text{constant}$$
 (1)

or in the form

 $(T_{LI}/R) - (T_{LII}/R) = \text{linear function of } Z.$ (2)

Table I illustrates the application of (1) and (2) to the prediction of the transition $L_{I}-L_{II}$. Here the known terms for elements $Z \ge 26$ are as evaluated by Siegbahn;³ the remaining term

values are based on the observations of Skinner.⁴ Column 2 of Table I gives in parentheses predictions of L_I , made with the aid of column 4 (cf. Eq. (1)). Similarly, predictions in column 5 are based on column 7, where $\Delta T/R$ is estimated by graphical extrapolation (cf. Eq. (2)). Column 8 presents the final prediction of L_I , in which column 2 has been weighted twice as heavily as column 5. In column 9 is listed the wave-length of the L_I-L_{II} transition, predicted from columns 6 and 8.

Skinner,⁴ in his exhaustive description of the L spectra of Na, Mg and Al, lists as unidentified one line for each of these elements. These lines are listed in the last column of Table I. The wave-length agreement is excellent, and strongly points to the identification of Skinner's lines as the L-L transitions. One of these lines appears on two of our own sodium spectrograms,⁵ our value for the wave-length is 376.5A, the half-width at half-maximum being some 3A.

The line $L_I - L_{III}$ should lie very close to $L_I - L_{II}$, and should be the brighter of the two. Indeed Skinner's lines are more correctly designated $L_I - L_{III}$.

With this identification one can now for the first time evaluate the level L_I of Na, Mg and Al. This evaluation is presented in Table II. The values of $\Delta(T/R)^{\frac{1}{2}}$ are also given, the parentheses indicating interpolated values for the elements $14 \leq Z \leq 25$. The last column gives the $L_I - L_{III}$ line as observed and rough predictions for the elements in which it has not been observed.

The width of the Na L_I - L_{III} transition implies

¹ T. Magnusson, Zeits. f. Physik 79, 161 (1932).

² M. Siegbahn and T. Magnusson, Zeits. f. Physik 88, 559 (1934).

³ M. Siebahn, Spektroskopie d. Röntgenstrahlen (Springer, Berlin, 1931).

⁴H. W. B. Skinner, Phil. Trans. Roy. Soc. 239, 95 (1940)

^{(1940).} ⁵ W. M. Cady and D. H. Tomboulian, Phys. Rev. 59, 381 (1941).

1 Z	$\left(\frac{T}{R}\right)^{\frac{1}{2}}(L_I)$	$\left(\frac{T}{R}\right)^{\frac{3}{2}}(L_{II})$	$\Delta \left(\frac{T}{R}\right)^{\frac{1}{2}}$	$\frac{5}{\frac{T}{R}(L_I)}$	$\frac{6}{\frac{T}{R}(L_{II})}$	$\Delta \frac{T}{R}$	$\frac{8}{\frac{T}{R}(L_I)}$	9 λ(<i>L1-L11</i>) Calc. (A)	10 λ Obs. (A)
50	18.09	17.46	0.63	327.4	304.9	22.5			
45	15.83	15.21	0.62	250.7	231.2	19.5			
40	13.66	13.04	0.62	186.6	170.0	16.6			
33	10.61	10.00	0.61	112.6	100.0	12.6			
30	9.40	8.78	0.62	88.4	77.1	11.3			
28	8.65	8.04	0.61	74.8	64.6	10.2			
26	7.91	7.29	0.62	62.5	53.2	9.3			
13	(2.92)	2.318	(0.60)	(9.0)	5.372	(3.6)	(8.68)	(275)	290
12	(2.51)	1.913	(0.60)	(6.9)	3.658	(3.2)	(6.50)	(321)	317
11	(2.10)	1.504*	(0.60)	(5.0)	2.263*	(2.7)	(4.61)	(388)	375

TABLE I. Prediction of the line $L_I - L_{II}$ for Na, Mg and Al.

* Estimated from LIII by the spin doublet law.

TABLE II. The L terms and L-L lines of light elements.

Ζ	$\left(\frac{T}{R}\right)^{\frac{1}{2}}(L_I)$	$\left(\frac{T}{R}\right)^{\frac{1}{2}}(L_{II})$	$\Delta\left(rac{T}{R} ight)^{rac{1}{2}}$	$\frac{T}{R}(L_I)$	$\frac{T}{R}(L_{II})$	$\frac{T}{R}(L_{III})$	(A)
26 Fe	7.91	7.29	0.62	62.5	53.2	52.2	88†
25 Mn	(7.56)	6.95	(0.61)	(57.2)	48.3	47.4	(93)
24 Cr	(7.17)	6.56	(0.61)	(51.4)	43.0	42.3	(100)
23 V	(6.81)	6.20	(0.61)	(46.4)	38.5	37.9	(107)
22 Ti	(6.44)	5.83	(0.61)	(41.5)	34.0	33.6	(115)
21 Sc	(6.10)	5.50	(0.60)	(37.2)	30.3	30.0	(126)
20 Ca	(5.68)	5.08	(0.60)	(32.3)	25.8	25.5	(134)
19 K	(5.26)	4.66	(0.60)	(27.7)	21.7	21.5	(147)
17 Cl	(4.45)	3.86	(0.59)	(19.8)	14.9	14.8	(182)
16 S	(4.06)	3.480	(0.58)	(16.5)	12.11	12.02	(203)
15 P	(3.69)	3.112	(0.58)	(13.6)	9.68	9.60	(228)
14 Si	(3.31)	2.716	(0.59)	(11.0)	7.378	7.325	(248)
13 Al	2.913	2.318	0.595	8.485	5.372	5.343	`290´
12 Mg	2.552	1.913	0.639	6.513	3.658	3.638	317
11 Na	2.163	1.504*	0.659	4.678	2.263*	2.248	375

* Estimated from *LIII* by the spin doublet law. † Not observed.

a voltage spread of nearly one-half electron volt. Since L_{III} is known to be sharp, this width must inhere almost wholly in L_I .

An objection to the proposed identification of $L_{I}-L_{III}$ may be raised: the value of $\Delta(T/R)^{\frac{1}{2}}$ rises suddenly at low Z if the identification is correct. This is, however, not surprising, for $\Delta(T/R)^{\frac{1}{2}}$ is proportional to the difference between

two screening constants, and it is known that screening constants vary irregularly with Z in the region of low energies; the value of $\Delta(T/R)^{\frac{1}{2}}$ for the $M_I M_{II}$ screening doublet, calculated for the elements⁶ K to Co shows a somewhat similar behavior.

⁶ M. Siegbahn and T. Magnusson, Zeits. f. Physik 95, 133 (1935).