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Differential cross sections for the production of a meso-
tron pair by a y-ray and for the bremsstrahlung of a
mesotron in the electromagnetic field of a nucleus have
been calculated. Both the Proca wave field and the
Kemmer matrix formulations of the theory for mesotrons
of unit spin and unit magnetic moment were used. These
differential cross sections have been integrated in the limit
where the energies of the mesotrons and photon are large
compared to the rest energy of the mesotron, For a
pure Coulomb field, the integrated cross sections are
AotZ'e'E /(pc')' where for pair production A =19/72 and
B is the y-ray energy, and for bremsstrahlung A =11/72
and 8 is the initial mesotron energy. Since in these
processes the important impacts are much closer than the
nuclear radius, these cross sections do not describe cor-

rectly the electromagnetic effects in the neighborhood of
an actual nucleus. The cross sections in a field of the form

(Ze/r)(1 —e 'I") where d is the nuclear radius and is taken
to be 5hZ'"/6pc, are 8'otZ'"e'E/(pc')' where B is defined
as before and 8'=7r/6 and ~/18 for pair production and
bremsstrahlung, respectively. Since considerations of the
validity of the Born approximation. method used show
that the leading terms in the cross sections lose their
validity before they become dominant, terms of lower
order which give cross sections increasing only logarith-
mically with the energy have been calculated by the
method of virtual quanta. Further, to estimate the
minimum values of the cross sections beyond the range of
validity, the frequency integral in the virtual quantum
calculation was cut off at k/pc'=Ac/e'.

'HE absorption and production of the pene-
trating component of cosmic rays depend,

among other processes, on the bremsstrahlung
and pair production of mesotrons in matter.
These processes are also involved in any account
of the secondary soft radiation associated with
the penetrating component under great thick-
nesses of matter. Oppenheimer, Snyder and
Serber' have estimated that in a Coulomb field
these cross sections are nZ'e'E'j(pc')', whereas
in an actual nuclear electric field, which they
take to be a Coulomb field cut off at the
nuclear radius d AZ'jpc, the cross sections are

nZ"'e'Ej(pc')'. The large difference between
' J. R. Oppenheimer, IR. Snyder and R. Serber, Phys.

Rev. 57, 75 (1940).
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these two forms is due to the high frequency
Fourier components of the Coulomb field which
are missing in the cut-off field. Kobayasi and
Utiyama' have obtained similar expressions for
the cross sections in a cut-off Coulomb field by
the approximate method of virtual quanta. Be-
cause the approximations involved in this
method lose their validity for just those small

impact parameters and high frequencies which
are most important, these results are still uncer-
tain by a multiplicative factor of order unity.

2 M. Kobayasi and R. Utiyama, Sci. Pap. Inst. Phys.
Chem. Research, Tokyo 37, 221 (1940).Note addedin proof.—Since our manuscript was sent to press, a paper by M.
Kobayasi and R. Utiyama, Proc. Phys. Math. Soc. Japan
22, 882 (1940), has appeared in which bremsstrahlung and
pair production cross sections at high energies are calcu-
lated by eliminating high frequencies, k)kc/e, as in this
paper.
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Booth and Wilson' have used the method of
virtual quanta to obtain a cross section for
bremsstrahlung which, however, is incorrect be-
cause they fail to distinguish between a Coulomb
field and the actual nuclear electric field near the
nuclear radius. Their result does not agree with
the cross section in a pure Coulomb field because
the method fails completely in that application.
In order to refine the conclusions of Oppenheimer,
Snyder and Serber, we have calculated by Born
approximation, in the limit where the energies are
large compared to the rest energy of the mesotron,
those terms in the cross sections for brems-
strahlung and pair production of mesotrons which
increase most rapidly with the energy. We have
in addition, calculated further terms in the
cross section for bremsstrahlung by the method of
virtual quanta.

The mesotron of unit spin is usually described
by Proca's equation which assigns also unit
magnetic moment. Corben and Schwinger4 point
out that a consistent theory can be developed for
particles of unit spin and arbitrary magnetic
moment, but conclude from cosmic-ray data that
of these the unit magnetic moment is most likely.
In the present paper, also, the theory describing a
mesotron of gyromagnetic ratio unity is used
since it gives a unique cancellation in 'the matrix
elements of the current and thus leads to cross
sections increasing least rapidly with the energy.

Both the Proca wave field and the Kemmer'
matrix formulation of the theory were used to
calculate the differential cross sections. The first
method is considerably longer and more tedious
but yields the added information that at high
energies it is the longitudinal-transverse mesotron
spin transitions which are important. The second
method requires the use of spin sum and spur
techniques which, as their application to mesotron
theory is new, will be described in some detail in

Section II.
The calculation by Born approximation of the

leading terms in the cross sections for brems-
strahlung and pair creation gives the following
results. The cross sections in the Coulomb field

3 F. Booth and A. H. Wilson, Proc. Roy. Soc. A175, 483
(1940).

4H. C. Corben and J. Schwinger, Phys. Rev. 58, 953
(1940).' N. Kemmer, Proc. Roy. Soc. A173, 91 (1939).

Zs/r are

o. =A nZ'e'8'/(yc') ",

BuZ'e4E' kc 8'nZSI'e4E

(pc2) 3(pc')' zd

where Z has the two meanings stated above, and
8' = s./18 and s /6, respectively, for brems-
strahlung and pair creation. .In contrast to the
virtual quanta calculation of these cross sections
which cannot take into account the shape of the
potential near the nucleus, the constant 8 can be
determined definitely for any assumed shape.

where for bremsstrahlung, A = 11/72 and B is the
initial mesotron energy; and for pair creation,
A = 19/72 and E is the y-ray energy. In complete
contrast to the Dirac theory in this high energy
limit, these impacts involve large angles of
scattering and radiation with large momentum
transfers of the order Z/c. These are associated
with high frequency Fourier components of the
Coulomb field which are present only at distances

Ac/Z, which, for E»pc', is much less than the
actual nuclear radius where the electric field is
certainly not Coulombian. Thus, in order to
obtain cross sections with any significance, it is
necessary to consider a more exact approximation
to the electric field near the nucleus. The atomic
screening can be neglected since only close
impacts contribute appreciably.

In connection with this treatment of the
electric field near the nucleus, it is, of course,
important to remember that all specifically
nuclear reactions and couplings are being neg-
lected. In fact we have at present no method at
all adequate for handling the large couplings
presumably involved. The electromagnetic effects
we treat are thus not a complete description of
the collisions, but constitute a sort of minimum
prediction largely independent of the specifically
nuclear effects, characterized by different angular
distributions, different reaction products and
different ranges of the impact parameter.

A closer approximation to the nuclear'potential
is (Ze/r)(l e "~~), where d—is the nuclear radius
and is taken to be SPAZ'/6pc=1. 82X10 '~Z'* cm
for p, = 177 electron masses. This essentially sets
an upper limit of about pc/Z~ on the momentum
transfer to the nucleus and gives
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Since these cross sections are derived by
perturbation methods, their validity is limited to
energies where the perturbing interactions with
the Coulomb field and with the radiation field are
small. Oppenheimer, Snyder and Serber' show
that the more incisive limitation arises from the
requirement that the coupling with the radiation
field be small which sets an upper limit 10"ev
on the validity of the formulae. Under these
circumstances, where the leading terms in the
cross sections lose their validity before they be-
comedominant, it can be of interest to investigate
terms of lower order, which give cross sections
increasing only logarithmically with the energy.
The impacts responsible for these terms are
relatively distant and the method of virtual
quanta is thus applicable (see Section IV). One of
these terms shows the "infra-red catastrophe, "so
that their order of magnitude is most conveniently
demonstrated by the cross section for fractional
energy loss of a mesotron by bremsstrahlung

(e')' 5m E 7 2mB
Z'~

( +—In'
E pc') 144 pc'Z' 72 5p,Z'

23 2vrE (7s.2 121) 2s E——ln' +
~

+ j }n . (3)
96 SpZ~ E 72 48 ) SpZ~

The first term in this expression is determined by
the cross section (2). The other terms must be
regarded as having the characteristic uncertainty
of the method of virtual quanta: they contain
undetermined factors of order unity in the
arguments of the logarithms. The last term is, in

structure and origin, similar to the dominant
term in the corresponding cross section for
bremsstrahlung of particles of half integral spin
and unit magnetic moment, e.g. , electrons. The
impacts responsible for it are relatively distant;
the couplings are always small, being of the order
(e'/kc) ~. The terms in ln' Z and ln' 8 result from
two features not present in calculations based on
the Dirac theory. First is the existence of terms in

the cross section which depend on the impact
parameter as ln' r which weights close impacts
and high energies more than for.the Dirac particle
where the dependence is as ln r. Second is the
presence of terms in 1/(1 —e), 0~&e~&1—(pc'/B),
where ~ is the fractional energy transfer to the

y-ray, which weight large energy transfers. The
term in ln' r depends on the frequency of the
virtual quanta as In'k and at high energies,
involve high frequencies and correspondingly
large couplings. Thus the arguments of Oppen-
heimer, Snyder and Serber, which limit the
validity of the first term proportional to E to
frequencies of the order (fic/e') & in the symmetric
coordinate system, or to 2kc/e2 in the mesotron
rest system in which the virtual quantum calcu-
lation is performed, must also be invoked to limit
the validity of the ln'Z and the ln'Z terms
arising from this ln' k term in the cross section.

Kith the leading terms in (3) so limited in

validity, it is of interest to calculate at least the
lower limit for their contribution to the cross
section at energies & 10"ev. This is accomplished

by making a virtual quantum calculation of all
terms in the cross section and cutting off the
frequency integral at k/yc' =A ~&25c/e'. The cut-
off A cannot be assigned exactly but must
certainly be greater than 10 if relativistic
mesotron theory and the effects due to spin are to
have any meaning; there seems to be no a priori
theoretical reason why A should not be of order
100.Calculations were made with A =kc/e' = 137.
The Born approximation calculations of (1) and

(2) are discussed in Section III. The virtual

quantum calculations and their modifications of

(3) are given in Section IV. The application of
these calculations to a discussion of cosmic-ray
bursts appears in a separate paper.

Kemmer's wave equation for the mesotron of
mass JM, charge +e, spin 1 and magnetic moment
1 1s

~»PA+&4 =o,

where X=pc/5, 8, =8/Bx„xq ict and the ——opera-
tors P, are ten-row square matrices obeying the
commutation rules

P»P.P.+P»P.P» =P»&.»+P.~"

the charge and the energy are given by

ne =e~l P*P4gdr, Z = P*P4aigdr, (6)
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where H is the Hamiltonian defined by

k Bik
Hp= ———

i Bt

From (4) Kemmer obtains the Hamiltonian

II= (kc/i) itki (P4Pq P,„.P—4) +pc'P4

together with the supplementary condition

Bi Pi P4'il'+ (1 P4 )K—ik= 0.

For plane wave solutions u(p, t)

(9)

II'u =8'Hu,

so that H has the eigenvalues 0 and &8, but
there are no solutions of Huo ——0 compatible with
the condition (9). The six solutions of IXu+ Eu+-—
and Hn = —Eu are normalized to unit charge
by setting u+*P4u+ ——1 and u *P4u = —1. To
these are adjoined, for mathematical convenience
in spur methods, four solutions uo of IS@0——0 in

order to complete the set of ten vectors u to form
a matrix which is, apart from a normalization
constant, unitary. Kemmer shows that E=pc'u*g
which determines the normalization in agreement
with unit charge.

The second quantization is carried through in

the usual manner by expanding I in terms of the
six solutions for positive and negative charge.

The Hamiltonian (8) is not suitable for the
treatment of the interaction with the electromag-
netic field since the energy matrix PiFI is not in

Hermitian form and this leads to complications
in the treatment of the zero states due to the
perturbation of the supplementary condition. A
satisfactory Hamiltonian can be obtained by
using the wave equation (4) and the supple-
mentary condition (9) explicitly in the expression

(6) for the energy. There results'

FI= (1/u)]l il+p [p c —k (gi pi)(gipi)]p42pdr. (10)

The interaction with the electromagnetic field is introduced by the usual substitution 8„~B„
=8„(ie/k—c)A„, A4 i V. The pertu——rbation due to the scalar potential is then

IIi ——)~P*P4 Ugd r,

that linear in the vector potential is

Fh=(iek/tic)~l P"Pi'[(AiA)('&iPi)+(&iPi)(AiPi)]P4'/dr (12)

and the term quadratic in A is

II,= (e'/pc') l il'*P4'(AiPi )t(A iPi)P4Vdr

In momentum space

:e

IIi= Jl dkJ dl) dx exp [(i/k)(k —1).x]V(x) p [a,. *(l)a,(k) exp [(i/ti)(Ei Ei)t]u+*'(t)p4u —„'(k).
i, j=l

+a;*(l)b;*(k) exp [(i/k)(E, +E,)t]u~*&(l)p,u '(k)

+b;(l)a;(k) exp [—(i/k)(Ei+Ei)t]u *&(l)p4u+'(k)

+»(l)b'*(k) p [—('/&)(«+E. )t]u-*'(l)P u-'(k)] (14)

The summation over the spin indices is suppressed by writing u as a one-row and I as a one-column
matrix. a* creates, while a destroys, a positive mesotron, and b* creates, while 5 destroys, a negative
mesotron.

' We are grateful to Dr. Kemmer for informing us of this result by private communication,
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Matrix elements of H2 for absorption of a quantum of momentum n=1—k and polarization e are

8 (2%5,2C2 ) P 3

II2 ———
~ ( dk ~ dl p [a;*(l)a;(k) exp [(i/k)(Ei —Ei)t]u+*'(l) p4'(kp. pi, +lpip, )p4'u '(k)

tc'E n i, j=1

+c;*(l)b,*(k) exp [(i/k)(Ei+Ei)t]u~*'(l)P4'(kP. Pi, +lPiP.)P4'u '(k)

+b;(l)tt;(k) exp [—(i/k) (Ei+Ei)t]u *~(l)p4'(kp, p~+lpip. )p42u~'(0)

+b;(l)b,*(k) exp [—(i/k)(Ei Ei)t]—u *'(l)P 4(kP, P~ +rlP . Pi)P4'u '(k)] (15)

where P„=P&rPi/P. The matrix elements of H2 for emission of a quantum are obtained from the above
by setting n=k —1;

H3 has matrix elements only for two quanta processes. They are similar to those given above with a
diA'erent normalization and with p4'(peipei+pe~pei) pi2 as the matrix operator where ei and e2 are unit
vectors in the directions of polarization of the two quanta. In double absorption n1+n2 ——1—k, for
double emission n1+n2 ——k —1, for absorption of 1 and emission of 2 n1 —n2 ——1—k, and for emission
of 1 and absorption of 2 n1 —n2 ——k —1. H3 is not involved in either bremsstrahlung or pair production
since these appear as one quantum process in the nuclear rest system.

Let us now refer, in particular, to the creation of a positive mesotron k and a negative mesotron 1

(its actual momentum is —1) by a y-ray of momentum n near a nucleus of charge Ze. The conservation
of energy gives

n =Ei+Ei (p'c'+ k') '*+——(ti'c'+ l') '

for time proportional transitions. The transition takes place by means of H1 and JJ2 through an
intermediate state; H2 conserving momentum and H1 transferring an amount of momentum q=n
+I—k to the nucleus. Indicating the quantum, positive mesotron and negative mesotron iri order, we
have the following sets of state A: n, —,—;intermediate state I: —,k, k —n; II: n, k —n, 1; III:
—,n+1, 1: IV: n, k, n+1; and finally, F: —,Ir, 1. The matrix element H(FA) between the initial and
the final states is then given by

Hi(FI)Hg(IA) H2(FII)Hi(IIA) Hi(FIII)Hg(IIIA) Hi(FIV)Hi(IVA)
H(FA) =P + + +

@II +A +III +A +IV

where the summation is to be taken over the polarizations of the intermediate states. On inserting the
explicit values on the right, we can make some reduction by combining terms and using the relations

8 10

P [u '(p)u *'(p) —u *'(p)u *'(p)]= — P u"(p)u*"(p) =-
i=1 Ep =1

3 IT„2 » II„2
Q [u~'(p)up*'(p)+u '(p)u "(p)]= Q u"(p)u*"(p) =
4=1 2 m=1 pC2E„

where nz goes over +, 0, —states and

H„=pc'P4+iP(P4P„Pi P4)—
The final result is

s (2irk'c'y ' u+*'(k) p4'(ap, p, +kp~p, )p4'H, (H, Ei)p4u '(l)—
H(FA) = —

i i V(q)
(pc')' E u ) Q2 Q 2

u+*'(k) p4Ht, (Hb+E/g) p4 (lp pi+bpbp )p4'u '(l)
+ (16)

+k +b
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m kEplEidQI, dQidEI, 2 2 IH(P~)l'.
kc e i, j=1(2~bc)'

To perform the summations over the spins of positive and-negative mesotron, we introduce the
annihilation operators X+(p) and ) (p) such that lh, +u+ ——u+, X+ua ——0, X+u =0 and X u+=0, X up=0,
X I =u . They are given by

X+(p) = (II,/2Ep') (II„+E„), X (p) = (IIp/2E„') (II„E„).—
This gives

where V(q) is the I ourier component of Vand a=k —n, b =n+1. The differential cross section for pair
production is

e' (V(q))' kldQ„dQ(dEa
P Spur

kc 8n( Icla') ' (2sbc)4
where

P 2Q R
+ +-

(E2 E 2)2 (E2 E 2)(E2 E2) (E2 E2)2

P=P4'(aP.P,+kpaP, )P4'H (H, E~)P4H—~(H~ E~)PaH—,(H E~)P4'(—kP.Pa+aP, P,)P4'Ha(Ha+ Ea),

Q =Pa'(aP, P.+kpaP. )P4'H. (H, Ei)P4H—~(Hi E~)P4'(—bPePa+lP ~Pa)P4'Ha(Ha+Ea)P4Ha(Ha+Ea),

R =P4Ha(Ha+ Ea)P4'(1P.P i+bPaP. )P4'Ht(HI Ei)P4'(b—P,Pa+ lP ~P.)P4'Ha(Ha+ Ea)PaHa(Ha+ Ea) .

In evaluating these spurs, it is convenient to
generalize the commutation laws for arbitrary
vectors so that

and
P P.P4PPP4P. P.P4Pa'P4

(18)
PaP.P4P-'P4P ~'P4P'P4P. PaP4'

No simple general methods of evaluating spurs
of such expressions have been found, the intro-
duction of Kemmer's g matrices often being
complicated and difficult to handle without
dealing with the separate components, since these

P.P,P.+P P.P.= (p rI/pa)P. +(x rI/m)P.

where p, g, r are space vectors. In particular

P,P,P, =(p ~/P~)P„

Pu'P. +PaPu'= (p e/pa)Pi+P,

Useful relations involving P4 are:

P4PpP4=0 PpP4Pp=0

M4'+P4'P~=P. , P4P. '+Pm'P4=P4
Thus

P4H&P4= pc P4,

P4II 2P4 —pc2P4 +P2P 2P 2P 2

Because of the complexity of the differential
cross section, we confine ourselves in this paper
to energies such that n, k, l))pc2. The first
nonvanishing terms in P, Q, R are proportional to
(p )' cand consist of two types:

q are not vectors. Kemmer's treatment shows
immediately that any product containing an odd
number of P4 or P„will have a vanishing spur.

It was found useful to introduce a new pseudo-
vector matrix y, with components yq ipaP4——Pa,
'ya ipaP4P~, ra iP jP4——Pa which are Hermitian and
obey the same commutation rules as the P&. The
principal advantage of this substitution lies in

the reduction of the number of matrices to be
considered. In addition, the y; are actually
simpler in form than the P; which leads to further
simplifying properties such as p„Pqp„= 0, and
p;y;p&=0 for j perpendicular toi and k. Further,
we can write

iP.P P.=l.'pXaj.v./pa=re. /pa,

where x=pXq and y„=ri,yl, /r.
The product of an odd number of j has a

vanishing spur since it contains an odd number
of P4. It is easily shown that Spur y,a=2, and
Spur p„&,=2p q/pg. To evaluate Spur pypq7
which is a general form of the spur of the first of
the expressions (18) which we wish to evaluate,
we proceed as follows:

Spur p&pqprpe =Spur &spp&q&r =Spur pr&qpy&e&

since it is real, then

Sp v.v.v V. =2 Sp (v.var.v +V.v,v,v.)

=l Sp l:(p 0/p~)»+( 0/ 9) .j .
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by using the commutation rules, and finally

(p. a)(r s)+(p. s)(r ~)
Spur pppqprps—

Pgrs

A useful commutation rule connecting the p
and y is

y„p,p„+p„p,y„=2((q r)/qr)y„((p r)/pr—)y, .

The spur of the second of the expressions (18)
can now be treated by noting that

P4P P4P& P4P P4 Pl P4P P4

since p, p2p= ppp, 2. The resulting expression

P4P~P.PI'P4P. 'P4P.PI;P4

can be written
This gives immediately

Spur y„y,P,P,
—Pigug4P i'P4ga'P4P igI P4

+ (e lt/k)p, p, p,p. p,p.p,p,= —Spur y,P,P„y,+2(r s/rs) Spur y„y,
—(g ~ s/qs) Spur y y The first is of the general form y„y,y„y, and the

second of the form y„y,p„p. ; the spurs of both
2jp qjt, r sj —jp rjt, q sj

these expressions have been evaluated. We thus
pqrs obtain another general formula

(p q)(r s)(t u)+(y q)(r u)(s t) —(p r)(q u)(s t)
Spur p„p,y,.y,yfy« ——

Pqrstm

P.pap4'= P4pep. p4—+(p rf/Pq)P4'.
Thus

Spur p„p,p4'=-', (p q/pq) Spur p4'=3p. q/pq.

Also

P„P,P;P,P.= P„P,P,P,P—„P,+(r s)/rs)P, P,P,"

2(lkXs) (rXP) 3(P %)(r s)
+Spur p„pqp4'p„p, =

Pqrs Pgrs

2(g r)(p s)+(p q)(r s)

pgrs

In concluding this section, we give the spurs of
a few simple products of P which enter into prob-
lems such as the scattering of mesotrons in a
Coulomb field or the scattering of light by
mesotrons. They are evaluated by methods
similar to those given above.

In this section, we indicate the manner in

which the integration of the differential cross
section was carried out. After averaging over the
polarizations of the incident y-ray, the cross
section appears in terms of k, 8+, q+ of the posi-
tive mesotron and l, 8, y of the negative
mesotron, referred to the direction of the y-ray as
the polar axis. In place of p+ and p, the azimuthal

angles, we introduce (p+ —p ) and -', (y++p ):
Only the former has physical significance, inte-
gration over the latter yields a factor 2m.

We then introduce x= 1 —cos 8+, y=1+cos 8,
z=cos (zq —z ), so that 0&&x&&2, 0&&y&2 and
we can limit s by —1 ~&s~&1 by introducing a
factor 2. The cross section can then be written

kldkdxdydz (U(q))'
dy=xn {A +bzB+ b'z'C+ b'z'D },

2n(pc')'(1 —z')1 (2zkc)'
where

A = x'{[(6k4+8k'i+22k'l')x —(3k +4k'i+11k'P)x2]
+[(22k2P+8kP+6l4)+(4k'l 32k2l2+4kP)x+( —2kll+14k2P) jy-

+[—(11k'l'+4kl'+3l')+ (14k'l' —2kl')x —6k'l'x'jy'},
B= ——', {[(3k' —4kl+3P)+ (—k'+Ski)xj+ [(Ski—l') 4klx jy }, — q' =2(a bz), —
C= ——,

'
{2/y+ 2/x —1}, a =k'x+l'y+klxy,

D = —1/klxy, b =kl sin 8+ sin 8 .
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For pure Coulomb field, V(q) = 4o Ze'k'c-'/g'

whereas for a field (Ze/r)(1 —e "o)

4orZe'k'c' (kc/d)
v(a) =

q' g'+ (kc/d) '

The first integral over s' is simple. The integrals
over y and x can be shortened by using the
symmetry in y and x, but even then they are
tedious though elementary. There results for a
Coulomb field

O.Z2e4 kldk 1 9k'+9kl+Sl' n'
+ In—

3 12kn2(pc')' n

Sk'+9kl+9l' n'
+ . In-

12ln k2
(20)

and for the cut-off field

mnZ2e4kcdk
do = {7k'+12kl+7P} (21)

48(pc') 'dn'

o.Z2e4nldn 1 9k' —9kl+ Sl' n'
——+ ln—

3 l23 (pc') 'k

The differential cross section for bremsstrahl-
ung, where a mesotron of momentum k is
scattered in the electric field of a, nucleus,
emitting a quantum n and leaving the mesotron
with momentum 1, can be obtained from that for
pair creation by redefinition of the variables x, y,
s, changing the sign of l in the square of the
matrix element, and introducing different ex-
pressions for the density of states and average
over the initial states. Thus the angle integrals
are unchanged and the cross sections for brems-
strahlun8. are simply obtained from (20) and (21)
by changing the sign of l in the brackets and
changing the density factors outside the brackets.
In the Coulomb field,

I hese integrate to the cross sections given in
Section I with 8 equal to n for pair creation and
to k for bremsstrahlung.

IV

Ke now apply the method of virtua1 quanta to
obtain approximately the radiation emitted by a
very fast mesotron in the neighborhood of a
nucleus. The method can also be applied to the
calculation of pair production, but since only the
bremsstrahlung is directly connected with cosmic-
ray bursts, we will restrict ourselves to just this
effect.

Let the mesotron move with velocity v and
energy 2 past a nucleus of charge Ze. Let us
consider the process in the Lorentz frame where
the mesotron is initially at rest and is scattered
by the nucleus which, in this frame, is passing by
the mesotron with velocity v. For v c, the
Coulomb field of the nucleus is greatly contracted
longitudinally so that, at not too small distances,
the field is largely transverse and can, by Fourier
analysis, be represented by light quanta traveling
parallel to the direction of motion of the nucleus:
The number Nap of these quanta per unit area of
energy kp per unit energy at a distance r from the
path is approximately

Npp nZ'/or'—r—'ko for ko &Zk/rye,
(24)¹p——0 for kp)Zk/ryc. .

The lower limit of r is taken to be approximately
the size of the larger of the two interacting
particles; here it is the nucleus with r;„d.The
cross section for the scattering of a photon of
energy kp to one of energy k through an angle 0

by a mesotron initially at rest has been calculated
by Booth and Wilson' and is

ir(ko k 8) = '(e'/pc')'d-n(k'/kp') {(1+.Cos' 8)

+ (1/48(pc') ') [kkp(28 —64 cos 0+12 cos' 8)
Sk' —9kl+9l' n'

In-
12ln k2

and for the cut-off field

7}.O.Z2e4hcdn
d0' = {7k' —12kl+7P }

72 (pc') 4k'd

where now n=k —l.

(22)

(23)

+(k'+ko')(29 —16 cos 0+cos' 8)]}. (25)

From the scattered quanta we must pick out such
k and 0 that correspond to a definite energy ~B,
0~&p&~1 —(@co/2), in the nuclear rest system.
These are determined for s c by k-kp(1 —o),

1 —cos 0= pic /{ kp(1 E')],
dQ = 2m pc'd p/Lk p(1 —o)'3,
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kp&~ «pc'/L2(1 —e)7. The cross section for brems-
strahlung o(e, L~') is then given by

. Icp max 'r max

o(e, Z)de= ' dkp 2prrdr
~p~'/ (-(& —&) 1 fd

XXepo(kp, k(«, kp), 8(e, kp)).

The uncertainties in both the lower and upper
limits of the r integral are here represented by f
which is of order unity. If ko is written in units of
pc'-and r in units of k/pc, we have

p &p max p E/pc2Ic 0

o(«~ E)d«««(8 /pc ) Z de ~~ dkp)~
e/ [2 (1 —e) ] (5/6) fZpt

dr (2 —2«+7e') e(34 —34e+7e')
X— +

r 12 12(1—e) kp

96(1—«) + e (14—14«+ «)

24(1 —e)'k '

262

+ —. (26)
(1 —e) kp' (1 —«) 'kp'

Interchanging the order of integrations and
integrating the above, we see the dependence of
the various terms on the impact parameter r.
These dependences are 1/r, ln' r, and ln r for the
first, second and last three terms, respectively.

In the cut-off electromagnetic field of the
nucleus, the neglect of the transverse momentum
transfers (and the longitudinal components of the
nuclear field) with respect to the longitudinal
momentum transfers is justified in the zero mo-
mentum system where the mesotron energy is
(-', pc'E)'* or in the mesotron rest system, but not
in the nuclear rest system. However, the approxi-
mation is critical since the first term of (26) is
proportional to the highest frequency available
and inversely proportional to the smallest impact
parameter, so that the ratio of the uncertainties
in the upper and lower limits of r as written in
(26) enters as a multiplicative constant in the
first term, which at sufficiently high energies is
dominant. In the other terms, it is the logarithm
of the ratio of the upper and lower impact
parameters which is an unessential approximation
always present in calculations by this method.
There is a difference in nature between the two
approximations in the limits of the impact
parameter r. The upper limit is approximate only

as a mathematical convenience in the represen-
tation of Tao. On the other hand, the lower limit
d of r is, to a certain extent, conceptual 1 y
indeterminate since it supplies a cut-off in the
space integral which is independent of the shape
of the electromagnetic field near d; whereas the
actual process depends on the Fourier analysis of
this field. These two inaccuracies in the method of
virtual quanta could, in principle, be removed by
treating initially a suitable model for the field of a
moving nucleus which would become constant
for r(d, and by eliminating the mathematical
approximations. This would, however, essentially
reduce the calculation to the one we have
performed in the previous section, though in a
different Lorentz system.

It is for these reasons that the first term in the
cross section was calculated by the better ap-
proximations of Section III. The factor f which
expresses the ratio of uncertainties in the upper
and lower limits of r was then taken to be 6/7r to
give agreement with the result of Section III.
This does not, of course, guarantee that no
further uncertainty exists in the logarithmic
terms, but since it will be unimportant, it is
convenient to omit it. The integration over the
impact parameter in (26) then yields the factor

In
Spc Z'ko

e(10—10«+3«P) 52 (1 —e)

8(1—e) 9 e
(27)

For very high energies the first two terms
which depend on high frequencies and large
couplings cannot be right. But neglecting possible
reduction of the cross section by nonlinearities in

The upper limit of the frequency integral will
in general be given by kp, „——prZ/5pc«Z& where
the logarithm vanishes. This gives a cross section

( ee p
P 7«E f'2 —2«+7«P)

E pc2) Sic'Zs E 12 )
«(34 —34«+7e') 2prE(1 —e)+- ln'

24(1 —e) 5pc'Z4

16(l —e) 13e 5«' 2prE(1 —e)
+ — + ln

3e 12 24(1 —e) 5pc'Z3«
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the theory, ' a lower limit to 0. can be assigned by
cutting off the frequency integral at kp =A,
some constant less than 2kc/e'. There results

xE
(ZV, ,

(
A+Ain

E pc2) SA pc2Z~)

(2 —2~+7") ~(34 34~+—7")
X -+ .

l.2 24(1 —e)

2s E(1—e) mE
)& ln' ——ln'

2Z s6 5A pc2Z

' A rigorous treatment might show that the presence of
high Fourier components diminishes the contribution from
the low frequencies. We are here ignoring this possibility.
See J. R. Oppenheimer, Phys. Rev. 4'7, 44 (1935).

16(1—e) 13&
+ -+

3c 12 24(1 —e) Spc'Z&e

5c' 2s E(1—~)
In

a(10—10e+3e') 52 (1—e)

98(1—e)
(28)

for E) (5/m)pg ZlA. For E~ & (5/s)pg Z'A, we gct
(27) above, as with no cut-off.

A consideration of cosmic-ray bursts based on

these and other calculations is given in another
paper.

En conclusion, the authors wish to express their
appreciation to Professor J. R. Oppenheimer for
continued advice and encouragement.
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Burst Production by Mesotrons
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Assuming that, under great absorbing thicknesses,
cosmic-ray bursts are cascade showers from high energy
soft secondaries produced in the shielding matter by
mesotron-electron collisions and by mesotron brems-

strahlung, we have calculated the frequency of burst
production as a function of burst size. For the mesotron of

spin 1 and moment ek/2pc, we have used the previously

calculated knock-on formulae, supplemented by our own

calculations of the bremsstrahlung; for the latter, the
cross section has terms, significant for our work, in E,
ln2 E, and ln E. Up to energies close to 10"ev, only slight
modifications are introduced by omitting altogether those
processes which cannot be treated by the Born approxima-

tion, and the minimlm cross sections we used differ little

from those given directly by the Born approximation.
Using these cross sections, the cascade theory of showers,
and a modified form of the Furry model to take into
account the fluctuations, the frequency of burst production
was calculated. The sea-level data of Schein and Gill give
for the number of bursts of size greater than S, 1Vg~S ~,

with y=1.8. Our calculations give for spin 1, 7~1.5 and
numerically too many by a factor of 20. Similar calculations
for the mesotron of spin 0 give y 1.8 and the same in

number as the observations within an uncertainty of about
a factor 1.5. For spin & and moment eA/2pc, the bursts
are approximately twice as numerous as for spin 0. This
evidence thus favors spin 0, or possibly spin —,', but tends to
exclude spin 1.

1
~QSMIC —RAY bursts, insofar as they involve~ high energies of order 10'—10"ev, provide a

feasible test of relativistic mesotron theory.
Experiments have shown that the ionization in

bursts does not show the characteristic high

initial recombination of that due to slow heavy
particles. Furthermore, bursts frequently appear
simultaneously in ionization chambers one of

which is above the other, and sometimes are
larger in the lower chamber. ' This appears to be

i H. Nie, Zeits. f. Physik 99, 776 (1936);H. Euler, Zeits.
f. Physik 116, 73 (1940).

conclusive evidence that at least the majority. of
bursts are not due to several slow heavy particles
resulting from a nuclear explosion or evaporation
but, rather, are due to many fast electrons re-
sulting from the cascade multiplication of a high

energy soft ray in the material above the
chamber. Now the transition curves of Nie, and
Steinke and Schmidt' for bursts in lead show a
maximum at 4 cm but no apparent decrease
for thicknesses greater than 10 cm; bursts have
also been observed at great depths underground.

'H. Nie, Zeits. f. Physik 99, 453 (1936); E. C. Steinke
and H. Schmidt, Zeits. f. Physik 115, 740 (1940).


