Change in Height of a Mesotron-Producing Layer of Air

NIEL F. BFARDSLEY University of Chicago, Chicago, Illinois January 30, 1941

I n connection with the correlation studies on the effect of air conditions aloft on cosmic-ray intensity at the surface¹ it was convenient to apply the theory of Blackett² to a particular set of observations. Blackett assumed a mesotron-producing layer of air at about 16 km which had a mean change of height between summer and winter of 500 m and a mean temperature change of 10°C. From our data the mean density at this height is 0.1773×10^{-3} g cm⁻³. By linear interpolation of density and pressure between 15–16 km and 16–17 km we computed the height Z_{ρ} of this density for each of the 123 days in 1939 for which the radiosonde flight at the Anacostia Naval Air Station reached the necessary height and also the Compton-Bennett shielded ionization meters were in operation at both Cheltenham and at Huancayo, Peru.

We made a least-squares determination of the constants in an equation connecting the variation of cosmic-ray intensity with (a) the mass of air above this mesotronproducing layer represented by P_s , (b) the height of the layer Z_{ρ} and (c) the mass, $(P_0 = P_s)$, of air below this layer. We found

$$\delta I'/I' = -0.93\delta(P_0 - P_z) - 33.58\delta Z_\rho - 1.15\delta P_z$$
(pressures in mb)

 $\delta I''/I'$ is the variation from balance in units of 0.1 percent of the intensity at Cheltenham corrected for world-wide changes as measured by the meter at Huancayo. Let $\delta I''/I'$ be the variation in intensity because of the change in height of the mesotron-producing layer only. Then from $\delta I''/I'$ $= -\delta Z/L$ we get the mean path before disintegration of the mesotrons as $L_p = 29.8$ km. Blackett assumed 32 km.

A two-constant equation for these same data gives

$$\delta I'/I' = -0.92\delta P_0 - 32.35\delta Z_\rho$$

with $L_p = 30.9$ km. In both these cases approximately 60 percent of the variance of I' is associated with the variables chosen.

From our present knowledge of cosmic rays, it seems probable that the mean mesotron-producing layer ought to be associated with a given pressure rather than with a given density. However, using a constant pressure of 107 mb we find

$$\delta I'/I' = -0.94\delta P_0 - 40.79\delta Z_n$$

with $L_p = 24.52$ km and only 50 percent of the variance of I' associated with P_0 and Z_p .

These results indicate that Blackett's assumption of a decaying mesotron formed at a height which changes from day to day is a possible explanation for some of the variations observed in cosmic-ray intensity at the surface. Some method for using the probable fact that mesotrons are produced at varying rates at different levels will be needed to make this correlation more exact.

¹ N. F. Beardsley, Phys. Rev. **59**, 233 (1941). ² P. M. S. Blackett, Phys. Rev. **54**, 973 (1938).

Capture Cross Sections for Slow Neutrons

K. SINMA AND F. YAMASAKI Nuclear Research Laboratory, Institute of Physical and Chemical Research, Tokyo, Japan January 8, 1941

R ECENTLY Rasetti¹ and Goldhaber and O'Neal² have determined the capture cross sections of various isotopes for *C* neutrons by comparing the intensities of β -rays from radioactive isotopes produced by capture with that of an isotope Mn⁵⁶, whose absolute cross section of formation was measured by Lapointe and Rasetti³ and was found to be $\sigma = 9.4 \times 10^{-24}$ cm².

Since the summer of 1939, we have been measuring the capture cross sections for slow neutrons with a similar method by using a strong neutron source (Be+D) obtained with our cyclotron. We shall also give here our results. A paraffin cylinder 14 cm in diameter and 14 cm in height was placed about 30 cm away from the source, and subsubstances to be measured were placed at its center, together with a standard sample. The activity of the substance in question was then compared with that of the standard and thus the relative capture cross sections were determined for about fifty isotopes. The measurements of activity were made with a Geiger-Müller tube counter or a Lauritsen electroscope, both with a window of aluminum foil 0.013 mm thick.

Absolute capture cross sections were then calculated in the following manner. Dunning, Pegram, Fink and Mitchell⁴ obtained large absorption cross sections for slow neutrons in the elements Rh, Ag, Re and Au. From the table of isotopes, we can conclude that these absorption processes are almost entirely due to the capture of slow neutrons. By comparing our results for these elements with the absolute cross sections of the above-mentioned authors, we can thus convert our relative cross sections into the absolute values. The results are given in Table I.

From this we can see that Rasetti's values are systematically larger than ours. The origin of the discrepancies

 TABLE I. Conversion of our relative capture cross sections into absolute values.

Iso-	DECAY	σ IN 10 ⁻²⁴	Iso-	DECAY	σ IN 10 ⁻²⁴
TOPE	PERIOD	CM ²	TOPE	PERIOD	CM^2
Na ²³	14.8 hr.	0.38	Ru104	20 hr.	0.48
Mg^{26}	10.2 min.	0.028	Rh103	4.2 min.	8.8
A127	2.4 min.	0.15	Rh103	44 sec.	140
Si ³⁰	170 min.	0.063	Pd108	13 hr.	20
P ³¹	14.3 days	0.15	Pd110	17 min.	0.55
C137	37 min.	0.38	Ag107	2.3 min.	26.7
K41	12.4 hr.	0.7	Ag109	22 sec.	70
Sc45	85 days	2.8	In113	48 days	24
V51	3.9 min.	3.5	In115	54 min.	125
Mn^{55}	2.59 hr.	6.0	Sb121	2.8 days	8.0
Co57	11 min.	48	Sb123	60 days	1.6
Co59	7 vr.	3.8	I127	25 min.	6.5
Ni ⁶²	2.6 hr.	0.35	Ba ¹³⁸	86 min.	3.0
Cu ⁶³	12.8 hr.	1.3	La ¹³⁹	31 hr.	5.5
Cu65	5 min.	1.5	Eu ¹⁵¹	9.2 hr.	530
Zn68	57 min.	0.48	Dv^{164}	2.5 hr.	1600
Ga ⁶⁹	20 min.	0.68	Ta ¹⁸¹	97 days	4.5
Ga71	14 hr.	1.3	W186	24 hr.	33
As ⁷⁵	26.8 hr.	1.5	Re ¹⁸⁵	90 hr.	85
Br ⁷⁹	4.4 hr.	1.4	Re187	16 hr.	63
Br79	18 min.	4.3	Ir ¹⁹¹	60 days	190
Br ⁸¹	34 hr.	1.1	Ir ¹⁹³	19 hr.	63
Y89	60 hr.	0.73	Pt198 .	31 min.	9.5
Nb93	6.6 min.	0.005	Au ¹⁹⁷	2.7 days	130
Ru102	4 hr.	0.19	T1203	4 min.	0.19

probably lies in the difference in the absolute values taken for reference in converting the relative cross sections into absolute ones.

A more detailed report is now in press and will soon appear in the Scientific Papers of the Institute of Physical and Chemical Research (Tokyo).

We wish to express our best thanks to Dr. Y. Nishina for his valuable help and encouragement.

¹ F. Rasetti, Phys. Rev. **58**, 869 (1940).
 ² M. Goldhaber and R. D. O'Neal, Phys. Rev. **59**, 109A (1941).
 ³ C. Lapointe and F. Rasetti, Phys. Rev. **58**, 554 (1940).
 ⁴ J. R. Dunning, G. B. Pegram, G. A. Fink and D. P. Mitchell, Phys. Rev. **48**, 265 (1935).

Radioactive ${}_{21}Sc^{41}$, ${}_{18}A^{35}$ and ${}_{16}S^{31}$

D. R. ELLIOTT AND L. D. P. KING Purdue University, West Lafayette, Indiana January 31, 1941

HE production of these Wigner-type nuclei has already been reported.1 Energy measurements of the emitted positrons have now been completed by means of a cloud chamber with air and alcohol vapor at atmospheric pressure.

Targets were held in the beam and then placed in a holder which could be swung up to a thin window on the side of the cloud chamber. A picture was taken within two seconds after the sample was removed from the beam. The cyclotron was on only during the actual bombardments which varied from 0.5 to 5 seconds, depending on the sample used. Only one photograph was made for each bombardment, and four bombardments were made per minute. To eliminate the influence of longer periods induced in the samples, six samples were used successively.

The half-life for ${}_{21}Sc^{41}$ was reported as 0.87 ± 0.03 second.¹ Figure 1 shows the spectrum for the positrons observed from the reaction ${}_{20}Ca^{40}(d,n){}_{21}Sc^{41}$. The magnetic field used was 1276 oersteds; the observed ρ maximum was 142 mm. The upper energy limit obtained for the 21Sc41 positrons is 4.94 ± 0.07 Mev.

The maximum energy of the positrons and the half-life of A^{35} and S^{31} have been recently also reported by the Princeton group.² Their value of 3.2 ± 0.02 seconds for the half-life and 3.85 ± 0.07 Mev for the upper limit of the

FIG. 1. Positrons from Sc⁴¹. Maximum energy 4.94 ± 0.07 Mev, half-life 0.87 ± 0.03 second.

positrons for S³¹ are in good agreement with our values, 3.18 ± 0.04 seconds^{1, 3} and 3.87 ± 0.15 Mev, respectively.

For A³⁵ the value of 2.2 ± 0.2 seconds for the half-life and 4.38 ± 0.07 Mev for the maximum positron energy, obtained at Princeton are to be compared with our values of 1.91 seconds and 4.41 ± 0.09 Mev.^{1, 3} Since the half-life for A³⁵ did not agree with the Princeton results, this period was remeasured with greater accuracy giving 1.88 ± 0.04 seconds. Because of the high energy of the positrons from all of these isotopes, it has been possible to place suitable filters between the samples and the counter so that practically pure periods were obtained.

All of these results are in good agreement with calculated values.²

L. D. P. King and D. R. Elliott, Phys. Rev. 59, 108A (1941).
 ² White, Cruetz, Delsasso and Wilson, Phys. Rev. 59, 63 (1941).
 ⁸ L. D. P. King and D. R. Elliott, Phys. Rev. 58, 846 (1940).