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Phase Series

E. J. HELLUND*

(Received October 18, 1940)

An expansion theorem for the calculation of the parameters occurring in the scattering cross
sections has been developed. The series converges exponentially and is expressible in terms of
known functions, provided the interactions are expressed as a power series in r and 1/r.

INTRQDUcTIQN

'HE solution of problems involving the
scattering of one particle by another is

attended by extreme difficulties. In general,
evaluati'on of cross sections can be obtained only
in infinite series, each term of such a series con-
taining a parameter (phase), which must be
determined from a linear differential equation of
the second order. The evaluation of this param-
eter must proceed, usually, by numerical integra-
tion of this equation. Such calculations are
excessively laborious and are, furthermore, sub-

ject to numerous errors. It has seemed desirable,
therefore, to derive an expansion for the phases,
in series form, the convergence of which could be
accurately determined. Such an expansion pos-
sesses a particular advantage which lies in the
latitude permissible in the choice of function to
represent the interaction between particles. This
is of special importance in the evaluation of
integrals involving the interaction potential and
other known functions. Such integrals invariably
arise, as the distortion of the wave function of
one particle by another involves the values of
the interaction for all distances of separation.
Apart from the points mentioned, however, a
series solution holds little practical superiority
over the numerical integration of the differential
equation.

1. First approximations

The problem to be solved is, then, the determi-
nation of I(8)dpp, the number of particles scat-
tered into a given solid angle Cko per unit time,
when the incident beam is such that one particle
crosses unit area per unit time. The series ex-
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pansion for I(8) then has the form

where
I(8) =

I f(8) I'

k' =4pr'm Pv'/k' =8pr'pppF/k' (1c)

and b~ is a constant to be determined from the
equation,

d'(rtl) t' Spr'm V(r) (l)(l+1))+Ik— I(rk) =o (2)
dr 2 E I2 r'

One selects that solution finite at the origin
(or that so1ution of lower order singuiarity at
the origin, ' and determines b~ from its behavior
at infinity. 5& is then defined by the asymptotic
solution,

g -(1/r) sin (kr ——,'lpr+8().

The determination of b~ is then the immediate
point of attack. Various formulae have been
given for b~ which are due, in order, to Born, '
Je8reys, ' and Massey and Mohr. '

4x'm
b( ——— V(r) J(kr)rdr,

0 l+&
(4)

8( ——4pr+ ,'lpr krp+ t (F& k-)dr-, —
y ro

8 m
8~ —— F+ V(r) dr

~

F&d r (6),
h~ FQ

'H. Faxen and J. Holtsmark, Zeits. f. Physik 45, 307
(1927)'

2 N. F. Mott and H. S. W. Massey, Theory of Atomic
Col/isions (Clarendon Press, Oxford, 1933), first edition,
p. 24.' Reference 2, p. 30.

4 Reference 2, p. 28.
5 Jeffreys, Proc. London Math. Soc., Series 2, 23, Part 6;

or reference 2, p. 92.' H. S. W. Massey and C.. B. O. Mohr, Proc. Roy. Soc.
A144, 202 (1934).

f(8) = (1/2ik) Q (2l+1)
X Lexp (2i8&) —1 jPE(cos (8)), (1b)
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where

F(r) = (8s'm/li') (E—U(r)) —I(I+1)/r'
where q ~ and y2 both satisfy the condition

~'v/3r'= —(H.) (v), (12)
Formula (4) is valid for small phases, that of

(5) for large phases and for (6) Massey and Mohr
claim accuracy for both large and small phases.
Actually, all three expressions must be regarded
as first approximations, not valid generally for
large phases. An exact solution of (2) in finite
terms has never been given, except for special
choice of U(r). Moreover, any expression of the
solution of (2) by a simple integral of some func-
tion of V(r), may be seen by actual substitution
to solve this equation for U(r) replaced by a
function of U(r) and dU(r)/« The a.ccuracy of
(5) and (6) for large phases is then dependent on
the choice of V(r), and unless one has some inde-
pendent criterion for their accuracy, their use in
calculations is somewhat hazardous. It is possible,
however, to give a series for b~, the first term of
which is the expression (4).

2. Derivation of the Qrst-order equations

Let us suppose, considering one dimension
only, that it be required to determine the con-
ditions necessary that a function f of variables
r, &, s satisfy Eq. (2). $ and q are functions of P
so chosen tha't

f(r, &, g)=ry;

i3f(r, $, q)/Br=8(rp)/Br (8)

for r = r~ and r =r~+Dr j. g, q must then possess
first derivatives defined by the following system:~

Bf d$ Bf ds——+——=0
8$ dr Bq dr

one has the system

dP/« (y—ip&$+ p2'rI)(H& H„—)/W(y) =0, (13)

Al«+(~ i'5+919 29)(H4 HP)—/W(9) =o (14)

where W(q) indicates the Wronskian of pi, pm,

W(y) = p, (8y2/Br) —y2(8 p, /Br) (15)

The Wronskian, under the condition (12), is a
constant for all values of r'.

It is a simple matter to confirm that (11)
does actually satisfy (2) provided that also (12)
and (13) are satisfied.

Equations (13) and (14) may, for convenience,
be written in matrix form.

(t& l'" f viv2~

Ksl, 0 —yi', —yips)

where $, and s, are arbitrary values assigned to
$ and s for r =c.

3. Solution of th, e integral equation

Equation (16) is a Volterra integral equation,
of the second kind, for the unknowns P and g.
If one denotes the unknown matrix by y, the
constant matrix by g(c), the solution is given by
the series:9

y =g(c)+g x~g(c),
1

where X is so defined that

8'f df 8'f dg (8'f—+ —= —(,+Hef&l (1O) X;= I X(r,)«, X(r; )«;
Bblr dr BqBr dr &Br'

where Hy(r) has been set for the coefficient of (riI)
in (2). In particular, if one ta.kes f as a linear
function of $ and g,

f= kv i+st~,
~ This procedure has some resemblance to that of

A. Schuchowitzky and M. Olewsky, Physik. Zeits.
Sowjetunion, 11.5 pp. 498—512 (1937).They however, use
finite intervals, and after determining some parameters so
as to assure continuity of the wave function, the remainder
are evaluated by use of the variational principle,

y)I E(ri)dri (18)
C

and X denotes the four-component matrix
of (16).

' The derivative vanishes identically.' Gerhard Kowalewski, Integral Gleichungen (Walter de
Gruyter and Co., Berlin, 1930), first edition, pp. 49—90. See
also E.G. C. Poole, Theory of Linear D~gerential Equations
(Oxford Clarendon Press, 1936),

'
Chapter I, for discussions

on the convergence and uniqueness of the expansion.
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One may easily demonstrate the convergence
of (17) as follows: If qi and q1 are finite in the
interval r to c, lct us replace each element of the
matrix by 3P where M exceeds both q» and q 2

over the entire interval. Also, let us take the
absolute value of Hy —H„at every point in the
interval. One then obtains a series, term by
term larger than (17), of the form,

1 t" Hp H, '—
I+z —.

,I=I j!~. W(q)

and sin y. The resulting equation for y is,

dV (V I'+en'){H~ H.—) . ,sin' (y+01) =0, (23)
dr W(y)

where tan II=—&pi/y2.

y may be identi6ed with the phase angle b~,

dcpcndlng on asymptotic behRvlol of yy Rnd q2
Rt iilf1111ty. As R pRr tlclllR1 exRIllple, If (pi = 8111 (kr);
q2 ——cos (kr), then y„„=81+III/O.

F10111 (23), one 111Ry derive the pef'tuIbatlon
fOrITlula

II I (1» ( ')
t'1) f$.+I!.'! V=p, —exp {—G, I exp I +GII G2(HI, Hy')—dr,

wl ere

The series (1'l) thus is absolutely conver-
gent and summable in any order, " provided

I (H~) (H„) I
is in—tegrable in the interval c, r

The scl lcs likewise will still converge Rs

approaches in6nite values, provided the integraI
convcl gcs.

4. Xhfferential equabon for SE

In order to evaluate the series (1/) it is con-
venient to use a vector representation instead of
a matrix representation. One then considers the
pair Rs R two-component vcctol RQd the matrix of
four. elements as a product (dyadic) of two two-
cornponent vectors, which are

8 —= (81 «I); Ir=(s~ —81). (20) (21)

q and g are thus mutually perpendicular.
If one denotes the vector &, q by P, then

corresponding to (13) and (14), one has,

dj'/« e(v P)(He —H.)/W(v) =—0, (22)

whe1'e VP'I denotes the scRla1 product yip+ygS.
One may set P equal to the product of a

scalar Rnd a unit vcctol of components cos p

r f'qi'+Pm'&
G, =)l I

— I(Hp' —H„) sm 2(go+a)dr;
W(q)

fp» +g2 )
I

8111 {"ro+IE
W(Ir)

by Sett111g y eqliR1 to 'yo+(y —+0), wllefe 'ro

satisfies (23) for the potential V(r'). The Born
formula (4) is a less accurate expression, ob-
tained by equating yo to zero, and retaining OQIy

term tinear ln V. Anothel peltulbatlon formula
could be obtained by using the Picard second
approximation" on (23).

One may also formulate the eigenvalue problem
from (23), for 81 by requiring the solution of the
following cquRtlon to RpploRch zero Rs t' ap-
pl ORches IQ6nlty:

dy 1!8II2III l(l+1)&—+ I ~{)+ I

dr k& h' r2

I
csin' y+kr + fiI =0. —(25)

2

It is not the only solution as the addition of
any multiple of Ir to the solution of (25) is also
an Rcceptab1e solution.

S. ExpHcit sexies for 8~

Using (22), one may write (17) in the following manrier,

to pi'2 jm»

~=~ +~ i'" d d" !" "( )I"~.+"..I II ~( ) II I"( .)"(.. .)-"(')"('-.)Id" (26)
j=» a)c

Fm j-+» F2
8=~ —2 dr- «2 ' I ~II.+a In. I v 1(r ) II I'{~) II I IoI(r) vu(r. -i) —~~(r.) s I(r.-i) I«1 {27)

j 1 c c"E.T. Whittaker and G. N. Watson, 3IIodern Analysis (Cambridge University Press, 1935),fo»Irth edition& pp &8-28-
11 E. G. C. Poole, reference 9.
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where I'(s) = [Hp, (r,) H—,(r,) j//W(y) and the following inequalities hold,

r;)r; I&r; 2 &r2)ry. (27a)

The ratio of $ to g then determines the phase bl. In the event (, and g, are not specified, and y~ is
bounded at the origin, &, and q, are replaced by 1 and 0, and c is taken to be zero. This procedure is
permissible, however, only when the series still converges. In general this will hold provided H~ —H„
is everywhere finite, and decreases faster than 1/r as r approaches infinity. "

If one employs the functions r J(kr) and r J(kr) for pi and ppp in (26) and (27), the Wronskian
l+k —l—$

of q becomes ( —1)'+'(2/pr), and H~ H„b—ecomes —Sn'm V(r)/O'. To terms of the second order,
then, one has for bi, with c=0, $p = 1, gp=0,

4 'm 16m 2m'
bi ——— J(kr)r V(r)dr+( 1)' — J(kr)r V(r)dr J(kr) J(kr)r U(r)dr

~ 0 '+~s h4 p l+'. l+$

] 6&2m2
+(—1)'+' drp {J(krp) J(kri) —J(krp) J(kri) } J(krp) J(kri) {rpriV(rp) V(ri)dri}. (28)

k2 p l+$ —l—$ —l—$ l+$ l+k —l—k

In general, for the choice of functions given above, one may write for tan 8l, the following quotient,

where

tan bi ——(—1)'

4m'm 00

( —1)'+' J'(kr) drr U(r) +Pa;
0 l+4 1=2

4~'m 00

1+( —1)' J(kr) J(kr) r V(r)dr+ Qb;
h2 p

—l t l+4 j=2

(29)

4x'm ' &2 j+2
a;= —( —1)' dr; ~ ~ dr, g {J(kr, )J(kr, i) —J(kr, )J(kr, i) }

Il p p

7-+1
~ g {r,V(r,) }J(kr;) J(kri)dri (30)

l+4 l+',

and

4x'm & r2 j+2
b= (—1)' dr; drp g {J(kr, )J(kr, i) —J(kr.)J(kr, i) }

h2 0 0 l+k —l—k

~ g {r,V(r,) }J(kr;) J(kri)dri (31).

If the range of the potential V(r) is not too great, one may use an approximation for ppi(r. ) happ(r, i)
—ppp(r, ) ppi(r, i), obtained by expanding the functions yi and ppp of r, i, about the point r=r. Re-.
taining only the first ter'm, one has,

ppi(r, ) q p(r. i) —yp(r, ) ppi(r. i) = —(r, —r, i) W(pp), (32)

where the Wronskian W(pp) is a constant.
Three factors limit the magnitude of (30) and (31): the inequalities (27a), the range of V(r),

and the form of the integrand, (32).The range is a constant, and one may easily see that the approxi-
mation (32) is less serious the higher the order of a; or b;.

"The asymptotic form of the wave function is periodic with respect to (kr —const. )&1og r). Reference 2, Chapter
III; reference 10, Chapter XVI, for V~1/r.
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5. Apylicatton to various models

When the interaction potential is such that (,
and s. of (26) and (27) can be determined (c)0),
it is possible to use simpler functions than those
employed in (29). A more convenient set is r'+'
and r—'. VAth this choice one 6nds that Hp —H„

Ss—'m V/Ii' Now if V(r) = ~, 0&r &c.
V(r) =Q p;r "&, c&r&d then one may set
$.=c '-' ii.= —c'and calculate P ii 8&/Br and
8'/Br, in known functions for r=d. At this
point the solution may be joined to that given
by the functions rV(kr) and rV(kr) and again

1+k t

one may determine from the asymptotic behavior
at in6nity, the phase 8).

Instead of taking V(r) to be infinite for
0&r&t, one may also assume V(r) =QG;r',

0

Q 2i

8~2m
V(r) rdr

h'

i l(21+ &) '

One may, therefore, treat potentials, with these
functions, rvhich are singular at the origin, pro-
vided such singularities are of an order less than
the inverse square.

0&r&c. Again the functions r'+', r ' may be
employed to determine P, and s„repeating the
previous analysis.

It ls possible to show that tile series (26) and
(2'/), with the above choice of functions, is
absolutely convergent, being less than the corre-
sponding series, near the origin


