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An expansion theorem for the calculation of the parameters occurring in the scattering cross
sections has been developed. The series converges exponentially and is expressible in terms of
known functions, provided the interactions are expressed as a power series in 7 and 1/7.

INTRODUCTION

HE solution of problems involving the
scattering of one particle by another is
attended by extreme difficulties. In general,
evaluation of cross sections can be obtained only
in infinite series, each term of such a series con-
taining a parameter (phase), which must be
determined from a linear differential equation of
the second order. The evaluation of this param-
eter must proceed, usually, by numerical integra-
tion of this equation. Such calculations are
excessively laborious and are, furthermore, sub-
ject to numerous errors. It has seemed desirable,
therefore, to derive an expansion for the phases,
in series form, the convergence of which could be
accurately determined. Such an expansion pos-
sesses a particular advantage which lies in the
latitude permissible in the choice of function to
represent the interaction between particles. This
is of special importance in the evaluation of
integrals involving the interaction potential and
other known functions. Such integrals invariably
arise, as the distortion of the wave function of
one particle by another involves the values of
the interaction for all distances of separation.
Apart from the points mentioned, however, a
series solution holds little practical superiority
over the numerical integration of the differential
equation.

1. First approximations

The problem to be solved is, then, the determi-
nation of I(6)dw, the number of particles scat-
tered into a given solid angle dw per unit time,
when the incident beam is such that one particle
crosses unit area per unit time. The series ex-
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pansion for I(#) then has the form:%2

I(6)=11(6) |2, (1a)
where
f(0)=(1/2ik) 3 (21+1)
X [exp (2¢8;) —1]P(cos (6)), (1b)
k2=4rm%?/h?=8n*mE/h?, (1c)

and §; is a constant to be determined from the
equation, '

8rtmV(r) ()(I+1)
h? 72

ax(ry) + (k2

= )w>=o. @)

One selects that solution finite at the origin
(or that solution of lower order singularity at
the origin,® and determines §; from its behavior
at infinity. §; is then defined by the asymptotic

solution,
Y~ (1/7) sin (kr —3lr+81). (3)

The determination of §; is then the immediate
point of attack. Various formulae have been
given for §; which are due, in order, to Born,*
Jeffreys,® and Massey and Mobhr.®

da'm ("

= T f V()T lr)rar, o
h? Jo i+3

s=trtiir—trot [ (F-par, ()

8rm 3 *
, V(r)] dr—f Fidr (6),

5z.=‘fw [F+ W

1H. Faxén and J. Holtsmark, Zeits. f. Physik 45, 307
(1927)" .

2 N. F. Mott and H. S. W. Massey, Theory of Atomic
Collisions (Clarendon Press, Oxford, 1933), first edition,
p. 24.

3 Reference 2, p. 30.

4 Reference 2, p. 28.

§ Jeffreys, Proc. London Math. Soc., Series 2, 23, Part 6;
or reference 2, p. 92.

6 H.S. W. Massey and C..B. O. Mohr, Proc. Roy. Soc.
Al44, 202 (1934).
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where
F@r)=8m*m/h%)(E— V(r))—1(+1) /72

Formula (4) is valid for small phases, that of
(5) for large phases and for (6) Massey and Mohr
claim accuracy for both large and small phases.
Actually, all three expressions must be regarded
as first approximations, not valid generally for
large phases. An exact solution of (2) in finite
terms has never been given, except for special
choice of V(r). Moreover, any expression of the
solution of (2) by a simple integral of some func-
tion of V(r), may be seen by actual substitution
to solve this equation for V(r) replaced by a
function of V(r) and dV(r)/dr. The accuracy of
(5) and (6) for large phases is then dependent on
the choice of V(r), and unless one has some inde-
pendent criterion for their accuracy, their use in
calculationsis somewhat hazardous. It is possible,
however, to give a series for §;, the first term of
which is the expression (4).

2. Derivation of the first-order equations

Let us suppose, considering -one dimension
only, that it be required to determine the con-
ditions necessary that a function f of variables
r, £ n satisfy Eq. (2). £ and 7 are functions of ¢
so chosen that

f(r, & n)=r¥; (M
af(r, & n)/Ir=0(rp)/or 8)

for r=r; and r=7;+Ar1. £ n must then possess
first derivatives defined by the following system :7

afde afd
i A (9)
dE dr On dr
a2f ds o°f d
—”=—( —|—H¢f), (10)
dEar dr 81761' dr

where Hy(r) has been set for the coefficient of (r{)
in (2). In particular, if one takes f as a linear
function of £ and 7,

f=Eo1+nes,

7 This procedure has some resemblance to that of
A. Schuchowitzky and M. Olewsky, Physik. Zeits.
Sowjetunion, 11.5 pp. 498-512 (1937). They however, use
finite intervals, and after determining some parameters so
as to assure continuity of the wave function, the remainder
are evaluated by use of the variational principle.

(11)
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where ¢; and ¢ both satisfy the condition
0%¢/dr*=—(H,)(¢),
one has the system
dt/dr — (prpat+ @o™n) (Hy —H,) /W (e) =0, (13)
dn/dr+(e1*t+ erea) (Hy—H,) /W(e) =0, (14)
where W(¢) indicates the Wronskian of ¢3, ¢,
W(e) = 01(d02/0r) — 02(de1/0r).  (15)

The Wronskian, under the condition (12), is a
constant for all values of 2.

It is a simple matter to confirm that (11)
does actually satisfy (2) provided that also (12)
and (13) are satisfied.

Equations (13) and (14) may, for convenience,
be written in matrix form.

O-£7 )
() (o (). 0

where £, and 7, are arbitrary values assigned to
¢ and 9 for r=c.

(12)

3. Solution of the integral equation

Equation (16) is a Volterra integral equation,
of the second kind, for the unknowns £ and 7.
If one denotes the unknown matrix by v, the
constant matrix by g(c), the solution is given by
the series:?

y=g(c)+§ Kig(c),

where K is so defined that

(17)

Kj:f K(?’j)d?,’f K(?’j—l)d7’j—1‘ e
>< f K(rydr (18)

and K denotes the four-component matrix
of (16).

8 The derivative vanishes identically.

9 Gerhard Kowalewski, Integral Gleichungen (Walter de
Gruyter and Co., Berlin, 1930), first edition, pp. 49-90. See
also E. G. C. Poole, Theory of Linear Differential Equations
(Oxford Clarendon Press, 1936), Chapter I, for discussions
on the convergence and uniqueness of the expansion.
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One may easily demonstrate the convergence
of (17) as follows: If ¢; and ¢ are finite in the
interval 7 to ¢, let us replace each element of the
matrix by M? where M exceeds both ¢; and ¢
over the entire interval. Also, let us take the
absolute value of Hy,— H, at every point in the
interval. One then obtains a series, term by
term larger than (17), of the form,

& o 1 TH!I/—H¢
(LS
no/ =1 jlLJ,

W(e)

(1) o

The series (17) thus is absolutely conver-
gent and summable in any order,® provided
|(Hy)—(H,)| is integrable in the interval ¢, 7.
The series likewise will still converge as 7
approaches infinite values, provided the integral
converges.

4. Differential equation for §;

In order to evaluate the series (17) it is con-
venient to use a vector representation instead of
a matrix representation. One then considers the
pair as a two-component vector and the matrix of
four elements as a product (dyadic) of two two-
component vectors, which are

e=(e1, 02); &=(p2 —¢1). (20), (21)

¢ and & are thus mutually perpendicular.
If one denotes the vector § % by P, then
corresponding to (13) and (14), one has,

dP/dr— (¢ P)(Hy—H,)/W(¢)=0, (22)

where ¢+ P denotes the scalar product o1&+ ¢on.
One may set P equal to the product of a
scalar and a unit vector of components cos 7y

5. Explicit series for §;
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and sin y. The resulting equation for 7 is,
d’Y | (e +oo?) (Hy—H,)
dr W(e)

where tan a= @1/ @».

v may be identified with the phase angle §,,
depending on asymptotic behavior of ¢; and ¢»
atinfinity. Asa particular example, if ¢;=sin (kr),
pe=cos (kr), then v,,0=8+In/2.

From (23), one may derive the perturbation
formula

y=vo—exp { ~G1) f exp (+Gi) Gy~ Hry

where

Gim f(¢12+¢’2
W(e)

Ge= (f%) sin2 (yo+a)

sin® (y+a)=0, (23)

)(H\,,O——H,,,) sin 2(yo+a)dr;

by setting v equal to vyo+(y—70), where 7o
satisfies (23) for the potential V(#°). The Born
formula (4) is a less accurate expression, ob-
tained by equating v, to zero, and retaining only
term linear in V. Another perturbation formula
could be obtained by using the Picard second
approximation! on (23).

One may also formulate the eigenvalue problem
from (23), for §; by requiring the solution of the
following equation to approach zero as’ 7 ap-
proaches infinity :

d 1 /8x2 I(l1+1
o —( ) ))
dr k h?. 2

I
Xsin2{'y+kr——zz+3z}=0. (25)

It is not the only solution as the addition of
any multiple of 7 to the solution .of (25) is also
an acceptable solution.

Using (22), one may write (17) in the following manner,

© T T2 i1 -2
5=$c+§1 d"j’ . 'di’zf ¢2(7'7') { ¢1Ec+¢21’lc} H P(S) H {qol(f's)m(?’s—-l)— §02(7’s)¢1(7’s—1)}d7'1»

c

% [arin [ ot omd ) T Tl entrid = extrdentre Vi,

=14, ¢

(26)

@7)

1 E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge University Press, 1935), fourth edition, pp. 18-28.

1 E. G. C. Poole, reference 9.
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where I'(s) =[Hy(rs) —H,(rs) ]/ W(¢) and the following inequalities hold,
Vi>Vi—1 >Vt >V >, (27a)

The ratio of £ to  then determines the phase §;. In the event &, and 7. are not specified, and ¢, is
bounded at the origin, £, and 7, are replaced by 1 and 0, and ¢ is taken to be zero. This procedure is
permissible, however, only when the series still converges. In general this will hold provided H,— H,
is everywhere finite, and decreases faster than 1/7 as » approaches infinity.?

If one employs the functions 7*J gﬁ') and 73J gff); for o1 and ¢, in (26) and (27), the Wronskian

of ¢ becomes (—1)*1(2/x), and Hy— H, becomes —8x2mV(r)/h® To terms of the second order,
then, one has for §;, with ¢ =0, £ =1, 9,=0,

16w2m?
—1)t

f wf(kr)rV(r)d;' f wJ(kr)J(kr)rV(r)dr
0 I+3 Jo —1—} I+3

+(— 1)z+1 d,,2

Vo T(kra) J(kra) {rari V(re) V(ry)dri}.  (28)
+3 —i—3

In general, for the choice of functions given above, one may write for tan §;, the following quotient,

_pymdT f T(kn)drrV(r) +3 0
=2
tan §;=(—1)? ) (29)
4:7[' m © 0
1+4+(—1) J(kr) T (kr)r V(r)dr+2_b;
h? 0o —i-% +} =2

where

drdm) "2 2
i Y ] f dryeedrs | TL AT(rs) T(re s) = J(hr ) T (kros)
h? 0 0 i =it —1-1 U+

1 (r V) T ) T (s (30)
+3 +3

and

b,~=[(—1)l47:2m]i A “drye - dry [ )Tk = TR o)

—1-% —1—}

. ﬁl {rsV(rs) Y J(kry)J(kri)dr..  (31)
—i-3 I+3

If the range of the potential V(r) is not too great, one may use an approximation for ¢i(7s)@s(7s—1)
— @3(7s) p1(rs_1), obtained by expanding the functions ¢; and ¢; of 7,1, about the point 7=7,. Re-
taining only the first term, one has,

<P1(7's) <P2(7’s—1) - §02(7’s) §01(7’a—1) =— (7’s —7’3—1) W(<P), (32)

where the Wronskian W(y) is a constant.

Three factors limit the magnitude of (30) and (31): the inequalities (27a), the range of V(r),
and the form of the integrand, (32). The range is a constant, and one may easily see that the approxi-
mation (32) is less serious the higher the order of a; or b;.

12 The asymptotic form of the wave function is periodic with respect to (k7 —const.Xlog 7). Reference 2, Chapter
I11; reference 10, Chapter XVI, for V~1/r.
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6. Application to various models

When the interaction potential is such that £,

and 7, of (26) and (27) can be determined (¢ >0), -

it is possible to use simpler functions than those
employed in (29). A more convenient set is 7!
and »—% With this choice one finds that Hy,—H,
=k2—8n2mV/h%. Now if V()= oo, 0<r<c.
V()= pir—¥, c¢<r<d then one may set
£e=c"1, n.=—c! and calculate ¢-9, d£/dr, and
dn/dr, in known functions for r=d. At this
point the solution may be joined to that given
by the functions 7J gﬁ') and r*J (—sz)% and again

one may determine from the asymptotic behavior
at infinity, the phase ;.

Instead of taking V(r) to be infinite for
0<7<c¢, one may also assume V(r)=Y G,
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0<r<c. Again the functions 71, r~! may be
employed to determine &, and 7., repeating the
previous analysis.

It is possible to show that the series (26) and
(27), with the above choice of functions, is
absolutely convergent, being less than the corre-
sponding series, near the origin

w12m i
rdr]

-t

o J1241)i ' (33)

One may, therefore, treat potentials, with these
functions, which are singular at the origin, pro-
vided such singularities are of an order less than
the inverse square.



