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lated terms for V II 3d4 from Ostrofsky's
formulas are given in Table III. The parameters
were found from 'II, 'G, 'D, 'I, and 'F as these
terms were considered the most reliable. Finally
Table IV gives the formulas for the term values
of d's and the observed and calculated values
from Mn II.

Although the agreement of the observed and
calculated term values is rough in terms of the

accuracy with which spectra may be observed,
some idea of the relative positions of the terms is
a help in analysis as Meggers and Moore' have
pointed out. As a further aid in the analysis of
Mn II, it would be advisable to separate the
different terms of the same kind in d' by the
methods' used for d'. I am grateful to Professor
C. W. Ufford for suggesting this problem and for
his assistance in solving it.
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An important mechanism involved in the variation of
the magnetization of ferromagnets near saturation is the
rotation of the magnetization vector under the combined
influence of the magnetic field and crystalline anisotropy
torques. The effect of this mechanism in polycrystalline
specimens has been calculated by Akulov and Gans; their
result is MAy=Mp/1 (c/Mp')II 'j, where II is the sum
of the external and demagnetizing fields, Mp the saturation
magnetization, and c a constant proportional to the square
of the crystalline anisotropy constant. The Akulov-Gans

derivation, however, is subject to a serious error; namely,
neglect of the internal magnetic field arising from the
magnetization itself. In the present paper, this internal.
field is taken into account; then, with the dual assumption,
of randomness of orientation of crystallographic axes, and
irregularity of shapes of the individual crystal grains, one
obtains the formula MAy=Mpt 1 (c'/Mp')II '$. Here, c' is
a slowly varying function of II; for H&/4TMp, c =c;
Hg+4xMp, c'=-,'c. Applications of the last formula to the
analysis of the experimental data are discussed.

I. INTRoDUcTIoN

A CCORDING to present day theories' of the
magnetization curve of a polycrystalline

ferromagnetic in high fields, an important con-
tribution to the deviation of the observed mag-
netization,

~

M
~
A„ from its saturation value

~
Mo ~, arises from the crystalline anisotropy

torques. These torques, acting on the magnetiza-
tion vector of each crystal grain, tend to rotate
this vector away from the direction of the
external magnetic field, and toward the direction
of the nearest easy axis of magnetization within
the grain in question. Thus, in the equilibrium
position, the direction of the magnetization

' N. S.Akulov, Zeits. f. Physik 69, 822 (1931);R. Gans,
Ann. d. Physik 15, 28 (1932). Cf. also, E. C. Stoner,
Magnetism and Matter (Methuen, London, 1934), p. 405;
F. Bitter, Introduction to Ferromagnetism (McGraw-Hill,
New York, 1937), p. 222. ; R. Becker and W. Doring,
Ferromagnetismus (Springer, Berlip, 1939), p. 167.

vector in any crystal grain is determined by the
balance of the crystalline and magnetic torques
acting on it, vs. :

T=Mp&((H+h),

where Mo is the magnetization of the crystal
grain under consideration; H the external mag-
netic field (the demagnetizing field due to the
magnetization on the surface of the polycrystal-
line specimen is incorporated into H); h the
internal magnetic field, i.e. , the magnetic field
due to the magnetization vectors of the totality
of crystal grains; T the torque due to the crystal-
line anisotropy forces within the crystal grain. '

T in any grain, depends on the direction of Mo
with respect to the crystallographic axes of that
grain, and is independent of position within any
given single grain. ' The magnitude of T is
proportional to the "anisotropy constant" X.'
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It is obvious that h and Mo cannot be assumed
constant even within a single crystal grain and
must hence be considered as functions of position
within the polycrystalline specimen. However,
only the direction of Mo varies with position,
since the magnitude of Mo is the intrinsic domain
magnetization and is therefore constant.

The problem of calculating the deviation of
IMIA„ from IMpf as a function of H was first
considered by Akulov and by Gans' on the basis
of the general mechanism outlined above. These
authors obtained the result:

IMIA, ——IMpf I
1 —

I IH
) PX'q
4 fMpf') ) (2)

with P =0.0872 for Fe; 0.0762 for Ni.
However, Akulov and Gans, in their derivation

of (2), neglected completely the internal mag-
netic field h, and thus the torque term MOXh in

Eq. (1). The neglect of this torque term cannot
be considered satisfactory since it is of the same
order of magnitude as the term MOXH, for the
range of external fields H used in the experi-
ments. ' It is not possible to dismiss the term
MpXh with the observation that fh f((IH I,
since H and Mo are almost parallel, while h has
a direction which in general, is quite different
from that of Mo and H.

In this paper, the deviation of IM IA, from

I
Mp I, considered as a function of H, will be

obtained taking the internal magnetic field h
into account.

and Eq. (1) becomes

T=m XH+M Xh+m Xh, (4)

while the observed magnetization
I
M I» is given

by the integral of
I
M

I
over the volume of the

II. DERIVATION OF EXPRESSION FOR THE

DEVIATION OF
I
M

I A, FROM
I
Mp

I

It is convenient to resolve Mo into components
M and m, parallel and perpendicular, respectively,
to H. Thus,

Mo ——M+m

polycrystalline specimen, i.e.,

From (6), (7), it follows that with neglect of
terms —

I
m I'/

I
Mp

I

' or higher, M is constant in

magnitude, as well as in direction.
Further,

mXh —0+0( fm I
').

since

p —div Mo
h= —grad dr'

—dtv m
grad

J
dr',

fr —r'I

and hence h—m.
The approximations (6)—(8) applied to Eqs.

(5), (4) yield:

( 1
(9)

2 fMpf'V~r

T=m XH+M Xh. (10)

Further, in view of (6)—(8), T in any crystal
grain can be taken as dependent only on the
direction of the vector M or H with respect to
the crystallographic axes of that grain, since Mo
may be taken parallel to M to the first order in

I
m

I j I
Mp f. T is hence independent of m.

Thus to find IMI», it remains to calculate
from Eq. (10) m as a function of position within
the specimen, and then to evaluate the integral
in (9). This procedure will now be carried out.

First, taking the vector product of both sides

V &v V &v i IMp I
s) (5)

Since only the magnetization observed at high
external fields' is under consideration, the devia-
tion of

I
M

I
A„ from

I
Mp I

is small, and the follow-

ing approximations may be considered as holding
at each point within the specimen:

fm I/IM, f«1, (6)

(7)

'These experiments are discussed in Section IV; the 'These fields are such that fMf» is well above the
magnitude of the fields used is 2000—4000 gauss. Cf. "knee" of the magnetization curve; e.g. , II&1000 gauss
reference 5. for Fe.
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of Eq. (10) with H, and solving for m, one
obtains,

m=F+(4x) 'n—kh (h H)(H/IHI')3 (11)

with the abbreviations

m „„=F»„+(4s.)-'O,h»„,

mi„——0,

k hi, ———4xk mi„

kghj, ——0.

(18b)

(18c)

(19)

(20)
F=(HyT)/IHI', (12)

~—=4~IMI/IHI —=4~IMoI/IHI (»)
One also has the general field equations re-

lating h and m,

div h= —4w div Mo——4~ div m, (14)

curl h=0.

In Eqs. (18), (19), (20), F», h» are the vector
Fourier, components of I' and h, similar to mk

being the vector Fourier component of m in

(16); F»„h», are the x components of F», h»,
the 2' axis has been chosen parallel to H.

To proceed further one eliminates hi, from

(18), (19), (20), finding m» as a function of k.
One has as the solution of (19), (20) for h»,

Introducing the Fourier resolution' of m, h» ———4mnn mi„ (21)

m = )I m» exp (2nik r)dk,

one obtains from (9)

(16)
with n=—k/Ik[,

whence, substituting (21) into (18), and solving
for mi, „mi,„, one obtains

lm»l'dk I, (»)
2 IMol'V

while from (11), (14), (15) the x, y, s components
of m& satisfy the relations:

F»,(1+un„') +F»„un.n„
mi„=

1+n(n, '+n»')

F»,nn, n„+F»„(1+otn, ')

1+n(n, '+n„')

(22)

m», =F»,+(4s) 'Oh»„ (18a) mi„= 0.

Finally, substituting (22) into (17), one obtains

1 p (1+nn„')'+ ' 0gn' „n'

E. 2IMOI y 4 (I+~(n»+n ~))»

t (1+~n,')'+n'n, 'n„'
1 (2+ne, '+un„')ne, n„

+ I
I
F» ~ 'dk+2 I

—— —
I F»gF»„I dk I. (23)

(1++(n '+n '))' & (1+a(n '+n '))' j
Now it will be shown in Section III below, that as far as the integrations over k in Eq. (23) are

concerned, one may effectively take

(24a)

and take
I
F» I' to depend only on the magnitude of k, i.e. ,

I
F»

I

'= c'(lk
I ). (24c)

4 The Fourier analysis method has been used by K. F. Brown, Jr., in a related problem, cf. Phys. Rev. 58, 736
(1940).
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Thus,

( (4or)
—'

IMIA. = IMoll 1 — i' C'(lkf)lkl'dlkl« ~
~ I

1+
I

»n e.d~kd@.
4IM, I

V& (1+~(n.o+ ~„o))o) )

f~ IFlo«i'
I

1+ . }»n trode~
I

8
f
Mp I

VII' &p 4 (1+et sin go) ) )

{ITsin (T H)I'}" ~(1+po)'+~'q= IMoll 1— H '1+--,'(1+ )-'+-,'(1+ )-1 -l log
I I f. (25)

4IMol' E(1+a)&—nl&

Equation (25) is the desired expression for the functional dependence of
I
M IA,

—
I Mpl on H. In

the limiting cases of n«1 and &)1, Eq. (25) reduces to the following simple forms:

I IT sin (T, H) I'}A
IMIo, ——IMoI

I
1 — H '

I
when ~&&1 i e 4ori{I'o&&H

2}M,I' ) (26)

{IT sin (T, H)
I
'}A„

w"en ~))1, i e, 4orcVo))H.
) (27)

Equatiori (26) may be derived by neglecting the term proportional to a in Eq. (11),or equivalently,
by neglecting MXh in Eq. (1G), or MpXh in Eq. (1). Equation (26) is thus identical with Eq. (2)
derived by Akulov and Gans. Thus it is seen that the Eq. (2) or (26), of Akulov arid Gans is only
~ppli~able, if H&&4mM0=21, 800 gauss in Fe, 6400 gauss in Ni. It should further be emphasized that
only in the limiting cases 4o.3/Ip»H, 4pr11Ip«H, does

I
M

I
A„—

I
Mp I vary, as const. H ' (with diferent

constants for the two limits). For intermediate field strengths, the dependence of I M}A„on H is
much more involved, being given by Eq. (25).

III. JUsTIFIcATIQN QF EQUATIQNs (24) constant value of F in U; as F;. Thus,

It now remains to justify Eqs. (24). One must
consider the evaluation of the integrals in Eq. Fo=Z F~~ 'exp ( orik'r)dr
(23). These integrals are of the type: 2

@ (n) F~.dk, t%„(n)Fo„dk,
o

I +,„(n)Fk,F,„dk. (2g)

=PF;exp (2orik R;) I exp L2prik (r R;)]dr—

=—P F;exp (2prik R;) V;W;(k), (3G)

Now

F& ——
I F(r) exp (2orik r)dr
V

t F(r) exp (2orik r)dr, (29)

where the volume integrals in the sum over j
extend over V;, the volume of the jth crystal
grain. In V;, T and hence F, are constant both
in magnitude and direction; one writes the

where R; is a vector from the center of the poly-
crystalline specimen to the center of the jth
crystal grain, and W;(k) is the spatial average
of exp [2orik (r —R;)j over V;.

The perfect randomness of the distribution of
the orientations of the crystallographic axes of
the various crystal grains within the polycrystal-
line specimen leads to the following "randomness
properties" of the vectors F;:

(A) There is no correlation between the magni-
tudes and directions of the vectors F; and
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F~. (l+j), i.e. ,

I& F
I
-(E I» I'&'—=L(U/&U &")&IF;I'&"3',(»)

1'

where V/(U&Av is the number of terms in the
sum over j.

(8) There is no correlation between the magni-
tude and direction of I'; and the position of the
jth crystal grain within the specimen, i.e. ,

pf(F;)g(R, )-(lg(R;) l)A, pf(F;), (32)
7 7

where f(F;) is any function of F;, g(R;) is any
function of R;, and

&lg(») l)o =(U/&U)") ' 2 la(») I.

(C) There is no correlation between the direc-
tion of F; and any fixed direction within the
specimen, i.e. ,

Q F;.= P F;„=-',
I F; I

',

Thus, turning back to the integrals of Eq. (28),
one sees that the effective region of integration
in k space is defined by the condition

I
k

I
~V; 1.

Now vtv depends only on n=k/lkl; one calcu-
lates the variation in n, An, corresponding to a
variation in k, Ak, and finds

An —[k&& (hk &(k) g/ I
k I'

over most of the effective region of integration.
Therefore, + varies appreciably only when k
varies over a region V; '.

Thus, it is possible to divide the k space into
cells of size 0, which, if U '«Q«U; ' possess the
following properties: (1) Many oscillations of
Fov (Fo lov etc. , take place in Q. (2) The order of
magnitude of

I
Fo I' and of the value of vtv, remain

effectively constant over Q.

It therefore follows that the integrals (28) can
be written as

v.v', .vv=p o.(v, /~~v, ~)J r,.vv

P

or
2 2

(Fvz)ov=(Fvo)Av=(o IFvl'&Av. (33) —I %,(k/lkl) Q-' Fo,dk' dk (35)
~ 0

From Eq. (30) one sees that Fo oscillates
rapidly when k varies over a region U ', since
R; in exp (2orik R;) is U&. On the other hand,
from Eqs. (30), (32), (31),

I»l (lexp (2orik R) U W(k) I &"

&& L(U/(U &")&I»I')"1'

-(U'/&Uv&")(I VvWv(k)
I
&"&I»I'&" (34)

and thus the variation with k of the order of
magnitude of Fk is independent of the rapid
oscillations due to exp (2orik R;) and is deter-
mined only by the W;(k). Also, from their
definition, the W;(k) vary appreciably with k
only when k ranges over a region V; ', in
particular, W;(k)=1 if Ikl~V; ', and W;(k)
decreases if lkl exceeds U, '.

2
and hence the Fj„in (28) are effectively replaced
by their "smoothed over" values:

0—' Fj, dk'.

Q-' F„dk=Q-»»dk=-', Q-' IF, I'dk, (36a)
~ Q 0 Q

0 ' Fg~Fjydk=0, (36b)

and thus, by use of Eqs. (35), (36a), (36b), the
validity of Eqs. (24a), (24b), is established.

To prove Eq. (36a), for example, one has:

Now the "smoothed over" values of FI,„PI,„,
F~,FI,„satisfy, as is shown immediately below
the following relations:

Q ' Fqdk=Q "PF;,Uro [W(k)]odk+Q 'P F;,F~, VV~ exp (2orik R~) W(k) Wg(k)dk
0 ~ 0 n

= Q F&*Vvo[Wv(ko)]'+ P Fv*Fv,*Vv ViWv(ko) W~(ko) exP (2oriko Rvv)

X(QX;~Y;&Z;~) ' sin (orhk, X;~) sin (orhk„Y;~) sin (vrhk, Z;~) (37)
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where ko is a vector from the origin of k space
to the center of 0 and Ak, Ak„Ak, = Q. The last
(approximate) equality in Eq. (37) is valid,
since in Q each W;(k) is approximately constant.

From Eq. (32), the order of magnitude of the
single sum is:

-(U'LW(ko)j')A. Z F*

-("U) '(I V1'W2'l)«(V/(V1)«)(F/»)«~ (39)

the last (order of magnitude) equality being a
consequence of Eq. (31).

Thus, from (38) and (39) the ratio of the
orders of magnitude of the double sum and the
single sum is (UQ) '«1. Hence,

(V W—
)A»(V/(U;)A, )(Fg»)«) (38)

while the order of magnitude of the double sum,

(Q V)
—'(

i V; ViW;(kp) W)(ko)

Xexp (2nikp'R~~) ~)«g F~»F[», '

jg l

(Q V)
—'(

i V; V W;(ko) W (ko)

Xexp (2siko R;~) ~)«(P F;,)',

Thus the ratio of the orders of magnitude of
the single sum in Q 'J'DFq»F~„dk, and of the

single sum in Q 'JsF&»dk, is (cf. Eqs. (38) and

(42)), (V;)A,/U'«1. Further, by an argument
similar to that given in connection with Eq.
(39), it can be shown that the double sum in
Q 'JaF~,F~„dk is negligible compared with the
single sum. Therefore, in comparison to the in-

2
tegral Q 'JsFq, dk the mtegral Q 'J'gFq»Fq„dk
can be taken to be equal to zero (to within

terms (V;)«/V~&&1, and (UQ) '&&1).
It now remains to justify Eq. (24c). For this

purpose it is necessary to make use of another
"randomness property"; vis. :The shapes of the
individual crystal grains are not correlated in
any way with a fixed set of directions in the
crystal. Then, apart from the rapid oscillations
of

~
F~

~

' with k which are smoothed out by the
integrations over Q in Eq. (35) or (36) or (23),

2

~Fj ~'= P F; t exp (2 iksr)dr
V)

can only depend on ~k ~. Hence the validity of
Eq. (24c).

0 ' FI„——0' F;,V 8';ko ', 4Q IV. DIscUssIQN QF ExPERIMENTs

and similarly

0 ' E&udk=~ ' FiuV~' g2 k() (41)

The experimentally observed variation' of the
magnetization of polycrystalline ferromagnetics
with external magnetic field at high fields is
customarily described by an empirical relation
of the form

"Randomness properties" (B) and (C) now
insure the equality of the right-hand sides of
Eqs. (40) and (41), and Eq. (36a) follows
immediately.

To prove Eq. (36b), one observes that
Q 'J'gF~»Fa„dk can be expressed as P+P, and

i'd&

that from Eq. (32),

Q —(VQWp)A, Q F;,F;„

(V W )A.[(V/(V;)«)(F;»)«(F;„)A,] i (42)

the last (order of magnitude) equality being a
consequence of "randomness properties" (A)
and (C).

d)M[.b.
=AH 2+BH—'+CH (43)

5 A. R. Kaufmann, Phys. Rev. 55, 1142 (1939);57, 1089
(1939).H. Polley, Ann. d. Physik 36, 625 (1939).Only Ni
and Fe but not Co, were investigated.

where A, B, C, are assumed to be independent
of H.

It has further been observed that C is inde-
pendent of the metallurgical history of the
specimen it therefore must arise from the
variation of the intrinsic domain magnetization
with the field. The magnitude, temperature de-
pendence, and actual slow variation with field,
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of C, have been treated in a recent paper by
the present authors. '

. A and B depend on the metallurgical history
of the polycrystalline specimen A is conditioned
by the plastic deformation of the material, '
(small for well-annealed specimens) and is tem-
perature independent, ' whereas, B is determined
by the crystalline properties and the elastic
state, ' and is furthermore strongly temperature
dependent. ' The theoretical interpretation of the
term AII—' is still in doubt; however, a recent
paper by W. F. Brown, Jr. ,

' ascribes this term
to the existence of anisotropy torques which are
concentrated along lines of dislocation produced
by plastic deformation.

Finally, the term BII ' arises from the mecha-
nism discussed in this paper, i.e., from the
rotation of the magnetization vector away from
the direction of H and toward the various
directions of easy magnetiza, tion (in the various
individual crystal grains) by crystalline aniso-

tropy torques constant within any one single
grain. Comparing the identical Eqs. (2) and (26),
one sees that

It=LI ~»in (T, H) ~'IA/2p]*', (44)

whence from Eqs. (26), (27), d~M
~
A„/dH may

be written in the form BII ' in the two limiting
cases, i.e.,

d)M(A„/dH=(2''/tM, )
)H-,

when 4n.Mp«H; (45)

d
i
M

i g,/dH= (pX'/
i
M [')0H '

when 47rMp))H. (46)

For intermediate values of H, d~ M~Av/dH is
obtained by a differentiation in Eq. (25), and
can be written in the form BII ' only if B itself
is considered as a (slowly varying) function of H;

Now in all the experiments so far performed,
H was considerably less than 4''Mp, so that, ln

evaluating X from the experiments, one should

'T. Holstein and H. Primakoff, Phys. Rev. 58, 1098
(1940).

use the relation

+=Lp- ~M. ~'

)((observed coefficient of H))'*. (47)

On the other hand, these experiments have
previously been interpreted in terms of the
Akulov-Gans equation (2) or (26) or (45); thus
the values of X, previously deduced from the
existing experimental data, are smaller than they
should be by a factor equal to 2'. If these
previously deduced values of X be all multiplied

by 2&, they agree somewhat better than before
with the values of X obtained directly from the
magnetization curves of single crystal grains;
cf. especially the experimental data given in
Polley. '

The analysis of the present paper can be
tested by experiments on the magnetization
curves of polycrystalline specimens, in which,
both the limiting cases, 47lMp))H, 411Mp++H,
and also the case of intermediate H (described
by the complete Eq. (25)) are studied. Now,
both for iron and nickel, X is so small, that
unless II is considerably less than 4m'3IIp, the
whole term BII—' is negligible. For cobalt, how-

ever, the crystalline anisotropy energy and
hence X, are so large, that the portion of
0

~

M ~,b, /dH arising from the mechanism under
discussion, could easily be observed as a function
of H for values of H less than, of the order of,
and considerably greater than, 4mMp. ' In this
way, a complete experimental test of the Eqs.
(25), (26), (27) can be obtained.

' This formula, as well as the rest of the analysis in the
present paper and in the derivation of the Akulov-Gans
equation (2), is based on the assumption that the crystalline
anisotropy torques are just those present in a strain-free
material. The existence of strains creates additional
anisotropy torques, which; if constant over regions com-
parable in size to a single crystal grain (if not, cf. W. F.
Brown, Jr., reference 4) can be easily incorporated into the
present treatment. The only resulting difference in the
final formulae is that X in Eq. (44) and hence in Eqs.
(45), (46), (47) has to be amplified to include the "strain
anisotropy" constant, and that the numerical value of P
must be changed somewhat.' Reference 5, p. 643, Fig. 12.

'Since cobalt has a hexagonal lattice, the numerical
value of p for Co will differ from the values quoted in Eq.
(2), which are only valid for the cubic lattices of Ni and Fe.


