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The properties of the forces between alpha-particles are
discussed on the basis of a Heitler-London analysis aug-
mented by a "van der Waals" calculation. The results are
in some respects unfavorable to the alpha-particle model of
the nucleus inasmuch as they contradict the assumptions
often made when this model is applied. Thus, for instance,
it is pointed out that there are no attractive van der Waals
forces beyond the range of the exchange forces, the range
of the second-order forces being no greater than that of the
first-order forces. The forces between alpha-particles are
not additive. The range of the forces is approximately
equal to that of the forces between elementary nuclear

pa.rticles. The Heitler-London forces are repulsive if the
usual choice of a symmetric Hamiltonian is made. The
details of the forces are first worked out in connection with
a simple fictitious example {)1)in terms of which these
various features are most easily discussed. Calculations for
the alpha-particle, for which a P-function of the Gauss
type is assumed, are made in )f2 and 3. Finally ()4) the
results are used in an examination of the problem of the
scattering of alpha-particles in helium. It appears that the
scattering of the S waves can be explained only partially
by means of the present interaction, its fault being the
failure to produce resoriance at the correct energy.

HE attempts to understand the properties
of nuclei have led to the invention of a

number of models which are thought to repre-
sent, in an approximate fashion, the significant
details of nuclear structure. The earliest of these,
the independent particle or Hartree model, has
been discussed so frequently that its merits, and
more particularly its faults, are now commonly
recognized. Of more recent interest has been the
alpha-particle model' which springs from the
consideration that the alpha-particle is a tightly
bound group, and likely, as such, to have a
fairly permanent identity within a nucleus. In
agreement with this picture it is sometimes
supposed that alpha-particles interact in a
manner typical of the constituent parts of a
molecule; indeed the machinery of molecular
theory is then brought into action and a number
of qualitative results are obtained. But the de-
tailed manner of interaction of two alpha-par-
ticles, about which apparently plausible but
totally ad hoc assumptions are made in such
calculations, has not been investigated with due
thoroughness. Even the simple question as to
the attractive or repulsive nature of these
supposed building blocks of nuclei does not
seem to have been satisfactorily answered, nor
is there any evidence that the scattering of

'Cf. , for instance, L. R. Hafstad and E. Teller, Phys.
Rev. 54, 681 (1938). For a general discussion of the
various aspects of particle groups in nuclei see J. A.
Wheeler, Phys. Rev. 52, 1083 (1937).Here the limitations
of the simple alpha-particle picture are recognized.

alpha-particles in helium can or cannot be under-
stood in terms of basic postulates about forces
between primary nuclear constituents. The pres-
ent paper deals with these questions.

A common argument relative to the alpha-
particle interaction relies on the analogy with
the molecular problem: At close distances of
approach, it is pointed out, there must be
strong exchange forces, and these are repulsive
because the interaction occurs between closed
shells; at larger distances of separation, attractive
van der Waals forces come into play, and finally
the Coulomb force alone remains active. In
addition to this, one often assumes these forces
to be additive.

A little reflection shows, however, that these
conclusions may not be taken for granted, for
there are, after all, essential differences between
the molecular and the nuclear case. For example,
the exchange repulsion between two H atoms
which occurs at small distances when they
approach each other in the triplet state, depends
quite definitely upon the character of the
Coulomb force; it might well turn into an attrac-
tion if the force between electrons were itself of
an exchange nature. The force between nuclear
elementary particles is of this type; hence a
special investigation is needed to ascertain the
direction of the force acting between alpha-
particles. Secondly, to speak of a van der Waals
force is in this instance almost meaningless; for
this terminology implies that there exists a
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region in which second-order forces are large
compared to the first-order forces. In molecular
interactions this is true because, as one may
easily see, the Coulomb force has a range which
is much larger than the diameter of a molecule-
an alpha-particle, however, has dimensions of
the same order of magnitude as the range of the
elementary nuclear forces. It will also be seen
that the assumption of the additivity of inter-
alpha-forces is quite untenable.

A simplified quantitative calculation of the
interaction in question has been made by Heisen-
berg. ' He assumes that the centers of mass of
the alpha-particles are not exactly localized but
distributed in space with Gaussian probability.
This artifice has the advantage of obviating an
explicit calculation of the kinetic energy of the
particles, and furthermore respects the uncer-
tainty principle in more adequate measure than
the formalism of fixed alpha-centers would.
However, it makes the results obtained more
difficult to interpret. ' Heisenberg's calculation
differs from the one presented in this paper in

several other respects: It neglects forces between
like particles and assumes only Majorana forces
between unlike particles, restrictions which are
no longer permissible; finally, in the calculation
of the exchange integrals, terms which arise
from double transpositions of coordinates in the
P-function are omitted. The latter approximation
is a valid one when the overlap integral is small,
but this condition is strongly violated in the
present case over the entire region of the inter-
action.

The method to be employed in the present
paper and its results may be discussed most
simply in connection with a fictitious two-
particle problem which bears a certain resem-
blance to the interaction of two deuterons. The
P-functions used, however, are very poor approxi-
mations to the deuteron functions, so that the
results have only qualitative significance. But
the essential diR'erences between the nuclear and
the molecular problem can be seen very clearly.

2 W. Heisenberg, Zeits. f. Physik 96, 473 (1935).' Cf. H. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,
82 (1936). The result stated in footnote 67 of this paper
is not valid since Heisenberg's Eq. (14) holds only for
small g.

i. TWO-PARTICLE PROBLEM. COMPARISON

BETWEEN EXCHANGE AND VAN

DER WAALS FORCES

Let us assume a particle to be bound to a
fictitious center by simple harmonic forces. Its
state function corresponding to the lowest energy
will then be

q being a parameter which measures the strength
of binding. If an identical particle is situated with
its center of force a distance R from that of the
first particle, the P-function for this system may
be written in the Heitler-London approximation:

P(1, 2) = (2 —28') &

XLu(1)v(2) —v(1)u(2)]n(1) n(2). (2)

The spins are here taken to be parallel; v(r)
stands for u(r —R), and

b=t'uvdr=exp L
——,'qR'$.

Suppose that particles 1 and 2 interact, their
classical potential energy being U. The first-
order energy between the two is then given as
the sum of two terms:

AgZ = V+AZg;„,

where V= t"P Vfdr and AEq;„ is the difference
between the mean of —(k'/2M)(V~'+V~') taken
with the function f, and the kinetic energy of the
two oscillators at infinite separation. Turning our
attention first to the computation of AEi, ; we
find

PVg'/dr=) PVg'/dr

=(1—8') '
J' uV'udr Bj' uV vdr—

= —3q/2 —-', g'R'5'/(1 —6').

The first term of this expression, when multiplied
by —5'/2M, is just the kinetic energy of one
particle not interacting with the other, that is,
—(h/2M) t'uV'udr Hence.

hZp ——(5'/4M) g'R'8'/(1 —8') .

It is perhaps noteworthy that in the limit R—&0,

hEq;„becomes 5'g/2M=-', hv, v being the classical
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frequency of the oscillator. Now the kinetic
energy of an oscillator in its ground state is

4hv, one-half its total energy; in the next excited
state, the kinetic energy is (43+-', )kv. Thus our
value of DER„„ indicates a promotion of one of
the oscillators to an excited state as R~o. The
same result may be read from the function (2)
which becomes

Ps o=g (r2 —ri) Ru(1)u(2)/iR(

and this represents the (1s)(2p)-configuration of
two (isotropic) oscillators.

As to U, two different suppositions will be
made. First we take it to be an ordinary potential
energy: U= —A e """.Evaluation of the integrals
(cf. formulas 15) leads to

y (exp L
—7R'/a'] —exp [—-'oR'/a']). (4)

Here 0- and r are two parameters which occur
throughout this work:

o =—ga j T = IT/(0'+2).

Second, we may choose for U a Majorana poten-
tial: V= —Ae "' 'I'~~. In that case V is given
by (4) but with its sign reversed. Collecting
these results we obtain for the first-order energy
(using the notation 5)

(6)

For R~O, this expression takes the form A'o/23Ea'
+As-'"0,' as R increases A~X changes in mono-
tone fashion. Clearly, if V is a Majorana (or
Heisenberg) potential, A~E represents a repulsion
at all distances, while an ordinary potential may,
for suitable values of A and a, produce attraction.

Next we consider the second approximation,
62E, which is given by —(U')A„/E„. The quantity

is some mean of all the excited energies of the
system, the exact value of which can be ascer-
tained by performing the summation appearing
in the expression for the second-order perturba-
tion energy. For the present purposes no exact
attempt to evaluate it will be made. In molecular
problems, it is in general su%cient to calculate
(U2)Ay with the function u(1)v(2), a procedure
which neglects exchange. To test the validity of

this simplification let us first compute ( V')A„with

exchange, that is with the use of the function

P(1, 2) given by (2). The result is easily seen to be

((U')„„=A'( [ (1—$2)—~

L a+4)

X( exp
2' R2 0 R2 )—exp ———). (7)o+4a' 2a')

If (U')A, had been calculated with the use of
u(1)v(2) alone, the bracket appearing here would
have contained orily the first item, and the
factor (1—o2) would be replaced by 1. Thus we
identify the first term in the bracket as the
"direct" one, the second as the exchange term.

The range of the nuclear force is a, the
"radius" of the P-functions of each particle is q &.

Hence g&a—= 0-& is the ratio of these two lengths.
Now it is seen from (7) that, if o is large, the
exchange term decreases very rapidly in com-
parison with the direct term as R increases.
This provides the justification for neglecting the
exchange term in ordinary molecular problems.
In the nuclear problem, however, fT is of order
unity, and the exchange term must be retained.

It is equally instructive to compare the range
of the first-order forces with that of the second-
order forces. If 0. is large, only the constituent
V of A~E remains (8' = exp L

——,'o R'/a']), and the
exchange term in V (second term in the bracket
of (6)) becomes small in comparison with the
other; hence the dominating part of A~K is

exp $—rR'/a'] and this becomes e s"'. The
leading term of (V')A, in this case is

exp
20 R

~exp —2—
cr+4 G G

Thus the first-order forces have the longer range
even for large 0.. This is indeed characteristic of
the nuclear situation. The fact that in the
molecular case the reverse is true is conditioned
by the nature of the Coulomb force and by the
circumstance that each molecule has as many
attracting as repulsive constituents. In the inter-
action of two H atoms, for example, the direct
term (corresponding to exp L

—rR'/a'] in (6))
becomes zero as soon as the atoms cease to
overlap, whereas the direct term of (7) continues
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to be appreciable and furnishes the van der
Waals attraction.

These considerations illuminate the marked
diff'erences which exist between nuclear inter-
actions and those between molecules. They pre-
pare for an understanding of the results which

will now be deduced for the interaction between
alpha-particles.

2. ALPHA-PARTIcLEs. FIRsT-ORDER FDRcEs

The energy of an alpha-particle is given varia-
tionally with good approximation by a product
of Gauss functions of the type (1),' which yields
more than 90 percent of the true energy if the
range of the nuclear forces is 2.25X10 " cm. '
The value of q will depend on this range; indeed

the lowest value of the energy is obtained by
choosing

ga'= 0- =2.60.

Let the particles composing the first alpha-

particle be labeled 1256, those composing the
second 3478; 1, 2, 3, and 4 are protons. At large
separation the first alpha-particle will have the
state function

u(1)n(1) u(1)tl(1) u(5)n(5) u(5)P(5)
(8)

u(2)a(2) u(2)P(2) u(6)n(6) u(6)P(6)

the second a similar one with u replaced by v.

0. and P are spin functions. The system of two

will be represented by the product of these,
that is, by a product of four 2-rowed determi-

nants. Such a function neglects the exchange of
particles between the alpha-groups. The function

which includes this exchange, and which will

serve as the basis for the present calculation, is

the following:

iP=N„U(1234) N U(5678)

with N„=N„=(4!) &(1 —P) ' and

u+(1) u (1) v~(1) v (1)

u+(2) u (2) v~(2) v (2)
U(1234) = (10)

u+(3) u-(3) v+(3) v-(3)

up(4) u (4) v+(4) v (4)

'H. Margenau and W. A. Tyrrell, Phys. Rev. 54, 422
(1938).

~According to Breit, Thaxton and Eisenbud, Phys.
Rev. 55, 1018 (1939) the range is smaller. The degree of
approximation by Gauss functions is then poorer.

u+(1) means u(1)a(1) etc. , b is again exp L
—-', gR'J,

and v(i) =v(r, ) =u(
~
r;—R

~
). R is the vector from

the center of the first to that of the second alpha-
particle. This coordinate will here be treated as
a fixed parameter in conformity with molecular
methods. The justification for such a procedure
is not nearly so good in nuclear problems as it
is in the molecular one, where the individual
moving particles (electrons) are very much

lighter than the nuclei. Our results will therefore
be in error on this account; but this error will

hardly affect the conclusions we wish to draw.
To avoid it would require the use of more compli-
cated methods such as that of Wheeler. '

The calculation of the first-order forces pro-
ceeds as follows: From the function P LEq. (9)],
V is computed, V being the total potential
energy of the particles 1 to 8. From this must be
subtracted the internal potential energy, Vo, of
two alpha-particles which are not interacting,
and finally ABk;„, the kinetic energy of promotion
of 2 neutrons and 2 protons and the mutual
Coulomb energy, B„are to be added. V is the
sum over all 28 particle pairs of the elementary
interaction V;;, and this will here be taken as
the sum of 3 exchange potentials and one

ordinary potential with coeKcients to be dis-

cussed later. Thus

V;;= AJ;; (w+mP—;,+bQ;;+ hP;; Q;;) (11)

with J;;=exp t
—r;P/a'j. The operator P per-

mutes space coordinates, Q permutes the spins.
This form of V;; no longer appears consistent in

detail with recent developments in nuclear

physics, meson potentials being now generally
favored. The latter differ from (11) chiefly in

two respects: They depend on r;; in a slightly

different way and they vary with the angle

between r; and r;. This last feature is not likely

to be important in the present problem because

the alpha-particles, being closed shells, will not
exhibit polar forces even if the elementary

particles do. As to the dependence on r;;, the
meson potential introduces a singularity at the

origin which must be meaningless and is avoided

by some cutting-ofF process. It is not yet known

whether the radial function of the meson poten-

tial is more satisfactory than that of (11).
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V consists of 12 like-particle terms and 16
unlike-particle terms. Typical of the 6rst class is
V34, of the second, V48. We first establish the
fact that all like-particle V;; are equal, and
similarly that all unlike-particle V;; are equal, so
that

V = 12V34+16V48.

The 6rst follows immediately from the indistin-
guishability of like particles in the determinants
U which compose the function P. Equality of
unlike-particle interactions may be proved as
follows: Since f is antisymmetrical with respect
to (1234) and also to (5678), we have, for in-

stance,

Jt'QV, 7&dr= ~ (14)(78)p(14)(78)Vip(14)(78)/dr = QV48pdr.

(The numbers in parentheses indicate transpositions of coordinates to be performed in the function,
P or V, which follows; and integrals include summations over spins. ) Thus Vj7 V48 etc. , and this
establishes (12). In calculating the like-particIe interaction we note that

Therefore

JI'fJ P, Q Pd = Jl QJ, P—d d Jl QJ P Pd = JtPJ—Q, gd

Vi4 ———A (w b)Jj QJ—,4/dr+(b m) JI &—J34Qg4&dr (13)

e') & fad'+bc'+cde)
exp ( axi2 bxi'+—cxiy—dx2+. exix2)dxidx2 v'I ab ————

I
exp {4) ( 4ab e' )—(14)

The calculation of the integrals which appear here involves first an integration over ps.rticles (5678).
There will then be left in f only one determinant, and this may be decomposed in a suitable way to
form the products P and P Q34$. The final integrations are all elementary and can be performed with
the use of the single formula

The following basic integrals occur:

Xi —=
~ u'(1)u'(2) Jiidridrg ~v'(1)v'(2)J' d d

X2—: Q 1 8 2 Jy2d7yd72 =r&exp[ —rp'j

X,—=J u(1)v(1)u(2) v(2) Jigdridr2

X4= Jtu(1) v(1)u'(2) Jigdrldr2

= r& exp [—-', o.p'j

—Jt u(1)v(1)v'(2) J»dr&dry= r1 exp L
—~(o+3)rp']

(15)

b=—exp L
——:o.p']

with o =pa', r =oj(o+2), p=R/a. .One. then obtains

Jl fJ34/dr =-', (1—b')-'{'Xi+2'A2 —4—4bX4+P(3Xg —X,) },

JtpJ34Q, 4/dr =-', (1—6') '{—Xi+Kg —2X3+4h'h4 —28'X2{

(16)
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Turning now to the unlike-particle interaction, V48, we note first that

O'A8Q484'dr o 4 +48/dr and f+48P48Q484d r = o QJ48P484'd r1 1

The factor 2 on the right side of these equations results because half the terms in the expanded
determinants drop out on account of spin orthogonality after the Q permuta, tions have been carried
out. Thus

and the integrals are

V4s= A (w+ 2b) Jl QJq8pdr+(m+ oh) J~QJ48P48$&r

~l lp J48pdr = o (1 8 ) {Xy+X2—45K +425 ), }

&AsP484'dr =,(1—5')—'{Xg+X3 45X4+'5 (X2+X3)}.1

(17)

(18)

From (13), (16), (17), and (18) V can be compounded in accordance with Eq. (12). The internal
potential energy of two alpha-particles, Uo, is easily seen to be

Vo = —12A (w+m)X&.
Thus

V —Vo ———4A (1 —P)—'
{w[(4 —5')Xg+ (5+48') X3 —12Q 4]+m[(48' —1)Xg+ (10—8') Xg —12Q 4]

+2(b —h)(1 —b')(X2 —) g) }. (19)

The remaining X's are all exponential functions of —R', but have different ranges. The expression is
finite at R=O and tends to the limit

—4Ar'*o {w[4(o—r)'+ —r ]+m[11r /2 —(o —r) j+2(b —k)o r'} (20)

The coefficients of w, m, b, and b in (19) are plotted in Fig. 1. It is to be noted that ordinary forces
produce strong attraction, spin exchange forces half as strong attraction, while Majorana and Heisen-
berg forces produce repulsion between alpha-particles, results which are seen to be closely related to
the saturation properties of these forces.

To evaluate Eq. (19) it is necessary to fix the nuclear constants w, m, b, and k. Fortunately, the
interaction is almost independent of the particular choice as long as it satisfies the relations'

m+m+b+h= 1

m+h~2m+2b, ~

m+ 2h ~4m+ 2b. ,

(a)

(b)

In addition to these, let us impose: b+h=0. 2, a value which seems to be in agreement with most
facts known about light nuclei. One can then plot h as a function of zo, first in accordance with
relation (a) taken as an equality and disregarding (b), then in accordance with equality (b) disre-
garding (a). To eliminate all ambiguity we now select that value of b, for any given w, which makes
the repulsion smallest; that is, the smaller of the two permitted values of h. The locus of these is very
nearly

h = 1.25m —0.1.

'N. Kemmer, Nature 140, 192 (1937); G. Breit and E. Feenberg, Phys. Rev. 50, 850 (1936).
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FIG. 1. Contributions to the potential energy of two
alpha-particles, as functions of separation between their
centers, from the difFerent constituents of U. Heisenberg
and Majorana forces (II, M) produce repulsion, the others
at traction.

'0

Fro. 2. Total 6rst-order interaction between alpha-
particles as function of p, the distance of separation in
units a, the range of the nuclear force f cf. Eq. (i&)j.

This allows the parameters appearing in V —V0 to be expressed in terms of m: m=0. 80—m, b —h

=0.40 —2.50m. Now, as mentioned before, minimization of the alpha-particle energy requires 0 to
be 2.60, hence ~=0.565. It is seen from Fig. 1 that the ratio of the coefficients of m, m, b, h is approxi-
mately constant at all values of R, so that the value of V—V0 at any particular R, and most con-
veniently at R=O, is a measure of this interaction. Let us, therefore, evaluate V —V0 at R=O as a
function of m. Equation (20) gives

—60.5 Mev [2 47m 0 3. 5m+—1 .13(b h).), —

if A is taken to be 35.6 Mev in conformity with the theory of light nuclei. When the above values
are inserted here, it turns out that m cancels almost exactly and the result is —10.4 Mev. We con-
clude, therefore, that the first-order interaction between alpha-particles is almost independent
of the choice of force parameters. The potential energy is negative, but it will be seen that 6jB,which
includes also the kinetic energy of promotion and the Coulomb energy Bz, is everywhere positive.

The total kinetic energy is

A2 4A2 4A2

(g q 2) (1 g2)
—1

~
[N+2ii gii+2iijdr — (1 i12)

—i{3q (3q 1q2R2)$2I
2M ' M 3f

From this must be subtracted (8h /2M)(3q/2), the kinetic energy at infinite separation. Thus

02p2
3fu2 1 —b'

The Coulomb energy is most conveniently calculated in the "two center" system of coordinates
familiar from the theory of the hydrogen molecule. If exchange is neglected, the result is very simple:

Zc ——(4e'/R) erf [(-',q)&Rj.

Inclusion of exchange makes the expression more complicated for small values of R, but the modifica-
tions are hardly of interest because in this region Zg is much smaller than the other constituents of
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the interaction. It takes the value 3.27 Mev at R=0 if we take for a the value 2.25 &(10 "cm. When

AZq;„and Za are added to (19) and the 'A-integrals are introduced, the result is

exp [——',ap'] 5' 4Ar'
AgZ = o p [n (5+4 exp L

—2ap']+4 exp [2«u']
1—exp [—2ap'] 3IIa2 1 —exp [—2op']

—exp [—rp2] —12 exp [—4rp'])+m(10 —exp [——,o p']+4 exp [—rp'] exp—[-,'or p']

—12 exp [— r4p'])+2(b —h)(1 —exp [—2ap'])(exp [2arp'] —1)] +(4e'jR) erf [(~a)'p]. (21)

This expression is plotted in Fig. 2 for b+h=0. 2, a choice which, as noted, makes AjZ practically

independent of m. The largest component of (21) is ATE&;„which represents the energy of promotion of

4 particles to p states. It is to be remarked, however, that the function P of (9), while approaching

the correct configuration (1s)'(2p)' as R~O, does not acquire the proper symmetry of a 'S-state but

contains an admixture of 'D and 'G as well. This implies increasing poorness of the approximation to

the energy as R~O, a defect which did not arise in the two-particle problem discussed in the fore-

going section. The range of the first-order forces is seen to be practically the same as that of the

nuclear forces themselves.
3. SEcoND-ORDER FoRcEs

An exact, calculation of the second-order forces would be extremely tedious. We shall use here the

method outlined in (1 and compute —(V')A„ leaving aside the constant factor 1/8, since our interest

concerns chiefly the range of the second-order forces. Furthermore, (U')&, will be calculated without

exchange. The effect of this neglect may be understood by examining Eq. (7) again. With the value of

o for the alpha-particle, the exchange term in that expression is e '"&', the direct term is e '"&'. The

latter persists at larger distances. Our procedure will therefore yield the constituent of the second-

order forces which has the longer range. Finally, we shall avoid the complications arising from the

fact that V is a mixture of different exchange terms and calculate (V )A„ for ordinary, pure Majorana,

etc. , interactions. After making all these simplifications, no quantitative inferences may be drawn

from the results of this section, but several characteristic features become evident. The calculations

need not be given in detail. Suffice it to say that, when

V=QU;, '
iw j

is squared and the integrations are performed, there result three groups of terms: 2-particle integrals

like (J~~ )A„16 in number; 3-particle integrals like (J&~1~6)«, 96 in number; 4-particle integrals, 144

in number. The integrals are in general different for the different types of interactions. For spin-

dependent interactions, the numbers of integrals will be effectively reduced by orthogonality of

spin functions which fail to match after permutation. This explains the different coefficients in the

expressions which follow. We find

V;;=7;;:
tt'

(V')A„——161 —

1
expa+4).

20 0'

p' +96
o+4 (a+1)(a+3)

exp
2o'

p
2

o+3

v,,=s,,z,,".

(V')A. =161
I

exp
2 f7 o

p' +96 exp
o.+4 (o+1)(o+3)

(~l'
+1441

1
exp

E o-+2)

o+4 o.
~ p

2

o+3 2

20
p

2

0+2

t'a )'
+'441 1

exp [—o p'-],
Eay2)

~ The summation here is to be extended only over pairs not belonging to the same alpha-particles.
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V;;=J;;Q;;:

( V')A, ——16
I I

exp
&~+4&

p2
0'+ 2

2o ( o i' " 2o.
48

I I
exp

o+4 Co+2)
V;;=J;;P,;Q;;:

( o ) I 2o p &r

p' +48I I
exp [-.p']

Co+4) o+4 ho+2)
p =—R/a.

As an example, ( V')&„and V have been plotted
for the case of pure Majorana forces in Fig. 3,
the ordinates having been so adjusted as to make
the two equal at R= 0. (V')&„which corresponds
to the van der Waals force in molecular inter-
actions, falls off much more rapidly than the
exchange force V, ,h. To suppose that there
exists a "van der Waals minimum" beyond the
range of the repulsive first-order forces would be
fallacious.

This result has also an important bearing on
the additivity of the interaction between alpha-
particles. In molecular problems, and in nuclear
problems as well, additivity holds for second-
order forces, but not for first-order exchange
forces. Inasmuch as there exists for molecules a
range in R in which only second-order forces are
present, additivity holds within this range. The
absence of such a range in nuclear interactions
destroys additivity completely. It is clear, there-
fore, that attempts to calculate energies of
complex nuclei based on the assumption of
unique and additive inter-alpha forces must fail. '
On the other hand, the validity of considerations
respecting symmetries, multiplicities and the
general topology of levels of complex nuclei is
not impaired by the results here obtained, even
though these considerations involve the concept
of alpha-particles as constituent and relatively
stable groups.

Apart from this general conclusion, there is
reason to wonder if an interaction composed of
the first- and second-order forces deduced above
is applicable to the two-body problem, in which
additivity is of no concern.

4. THE ScATTERING oF ALPHA-PARTIcLEs
IN HELIUM

The question thus arises as to whether and
to what extent the interactions derived in the

Cf. in this connection also the conclusions of B. O.
Gronblom and R. E. Marshak, Phys. Rev. 55, 229 (1939).

foregoing sections will explain the scattering of
alpha-particles in helium. A very careful analysis
of the experimental scattering data has been
made by Wheeler, ' who has also deduced phase
shifts which account for the experimental results.
These will here be used as a basis for comparison
with expectations to be derived from the present
model.

To be sure, this model is very indefinite be-
cause the second-order forces have not been
calculated completely. It is certain, however,
that whatever modifications these latter would
introduce in the calculated A&B, they are con-
fined to the region R (4.5)&10 "cm. Somewhere
in this region there must be a minimum which
produces the level corresponding to the ground
state of Be'. To fix one parameter, the fact will

be used that the energy of this level is very nearly
zero" with respect to the energy of two alpha-
particles at infinite separation. In the calculation
of phase shifts, we shall, therefore, use a scatter-
ing potential indicated by the solid line in Fig. 4.
For R)Rp ——4.5)(10 "cm, the potential will be
appreciably Coulombian. The potential trough
occurring at smaller distances will be considered
to have a fixed outer radius Rp, and the internal
radius R' will be adjusted so that there will
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FiG. 3. Comparison of V and (V')qII. Ordinates are arbi-
trarily adjusted to make the two equal at p=0.

' J. A. Wheeler, Phys. Rev. 59, &6 (1941)."S. K. Allison, L. S. Skaggs and N. M. Smith, Jr.,
Phys. Rev. 57, 550 (1940).
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exist but one level, and this at zero energy.
The depth of the trough, D, will then be a
function of R'. (Cf. Fig. 5.)

This model is highly idealized. The results for
a smooth potential with sloping walls, however,
differ insignificantly from those of this simple
model. Even a potential having the form of the
dashed curve in Fig. 4, which is not excluded by
the previous analysis, yieMs results for the
phase shifts which are qualitatively the same as
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FrG. 4. Potential assumed in scattering calculations.

"J.A. Wheeler, Phys. Rev. 52, 1123 (1937).

the ones here discussed. Details would change
the local curvature of the phase shifts plotted in

Fig. 6 but do not alter appreciably the region of
the diagram to which the values of Zp are
confined.

The phase shift Xp, corresponding to the
alpha-wave of zero angular momentum, is taken
to be zero for scattering in a pure Coulomb field.

For the potential of Fig. 4, it is computed
by fitting the wave function inside the hole,
sin k'(r —.R') with k"= (2p/k') (D+E), to a proper
function in the Coulomb field at r=Rp. This
work is greatly abbreviated if use is made of the
tables published by Wheeler" In Fig. 6, Xp is
plotted against the energy of the incident alpha-
particles for diR'erent values of R'. The lowest
of these graphs corresponds to an infinitely deep
trough of zero width at R=Rp, the highest to
the absence of all repulsion near the origin. It
may be noticed that all curves converge to the
value %0=x at V=O. This feature is, of course,
independent of our assumptions about the poten-
tial; it is a consequence solely of the existence of
a stable 'S level at zero energy.

The Zp curve which Wheeler, in an adjoining
paper, has deduced from scattering data and
found compatible with the facts known about
Be', is also plotted in Fig. 6. At lower energies
it is seen to lie in a region permitted by the
simple alpha-particle model under discussion,
but it rapidly moves out of this region as the
energy increases. The reason for this behavior is
the resonance occurring in the S wave at an
energy of about 3 Mev according to Wheeler's
analysis. The potential deduced in this paper
will not yield a resonance level at so low an

energy.
The existence of an excited level in the neigh-

borhood of 3 Mev above the lowest state of Be
and of width =0.8 Mev is quite definitely indi-

cated in the observations by Dee and Gilbert"
on the disintegration of 8" by protons, and in

the scattering experiments of Devons. " Pre-
viously it had been identified as a 'D2 state, but
Wheeler' shows it to be a 'S level. One can easily
see that the simple alpha-particle model is in-

competent to account for these facts inasmuch
as it gives too small a range for the non-
Coulombian forces. The difficulty is with the
spacing of the levels, which comes out too large.
Let us adjust the parameter R' so that the

0
0 3&IO CM

FIG. 5. Relation between D (cf. Fig. 4) and R' which will
produce the lowest level in Be at zero energy.

"P. I. Dee and C. W. Gilbert, Proc. Roy. Soc. A154,
279 (1936).

'3 S. Devons, Proc. Roy. Soc. A172, 559 (1939).
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energy levels have the closest possible spacing,
that is, let R'=0. One can then compute the
position of the first 'S resonance in the con-
tinuum'4 and it is found to lie about 6D above
zero. Its width is of the order of the level spacing,
that is, around 3D. Now to obtain the lower
'S level at zero energy, D must be 2.4 Mev.
Hence the lowest position obtainable for the '5
resonance would be 14 Mev, and the width
would be of that order of magnitude, all of which
disagrees with experience. The state in question
can obviously not be understood on the basis of
the simple alpha-particle model; it must involve
a considerable rearrangement of elementary par-
ticles and seems to be much better described by
the Hartree model. "

To produce the resonance at the correct place
one must assume a force range far greater than
is compatible with our former conclusions, and
one would then encounter difficulties in explain-
ing the initial trend of Wheeler's Eo curve at
low energies. The inconsistency attaching to the
width of the excited level has already been
pointed out by Rosenthal" who, using a Morse
curve for the potential, finds the resonance to
be too diffuse for consideration.

CONCLUSION

The application to the interaction between
alpha-particles of methods similar to those which
describe successfully the forces between atoms,
leads to results which leave no basis for the
supposition that the forces are describable as a
superposition of repulsive first-order and attrac-
tive second-order effects. There is indeed no
indication that the various orders of the per-
turbation scheme converge, and the forces are
not additive. It is possible, however, to fix their
range with reasonable certainty if detailed
assumptions are made regarding the interaction

'4 H. Margenau, Phys. Rev. 40, 613 (1934).'' E.Feenberg and E. Wigner, Phys. Rev. 51, 95 (1937)."J.E. Rosenthal, Phys. Rev. 54, 315 (1938).
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Fro. 6. Solid lines: Phase shift of S wave, Xo, as calcu-
lated on the basis of the model of Fig. 4, for different
values of R'. Curve marked W: Xo values derived from
scattering data by Wheeler.

between elementary particles. This range is
approximately equal to that of the elementary
forces.

When the positive results of this study are
incorporated in a simple model, the scattering of
alpha-particles in He can be discussed. The
computed phase shifts for the wave of zero
angular momentum are in accord with observa-
tions at low energies of the incident particles,
but fail to explain the resonance observed at
higher energy.

The results definitely discredit the early alpha-
particle model which endowed these groups with
fairly permanent existence in higher nuclei and
sought to explain nuclear structure by assuming
unique and sometimes additive forces between
them. They indicate in addition that even the
interaction of two alpha-particles cannot be
treated successfully by methods familiar from the
theory of molecular forces. On the other hand
they do not dispute the legitimate role which
these alpha-groups may play in determining
symmetries and multiplicities of nuclear states.
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publication. His thanks are likewise extended to
the Institute for Advanced Study which permitted
him a most stimulating stay in Princeton.


