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If fast electrons impinge on a mercury atom, the external electrons will modify the nuclear
scattering, at least for small angles. We have determined the amount of scattering to be ex-
pected, as a function of angle, for 100-kv electrons and for 230-kv electrons. For the former,
shielding is effective below 60°, and for the latter, below 15°. For the determination of phase
shifts, the electron may be pictured as moving in an effective (Dirac) field, which involves zero,
first, and second derivatives of the ordinary (Hartree) field. Three methods were used: (1) inte-
gration with the differential analyzer, (2) the WKB procedure, and (3) the first-order Born
approximation. Methods (1) and (2) lead to results in good agreement with each other for all
angular momenta, and method (3) gives good results for large angular momenta, despite the
fact that the first-order correction to the wave function is large. The summation of the series for
the scattering amplitudes was accomplished by noting that the phase shifts decreased in an
exponential manner for large values of the angular momentum.

F fast electrons undergo single elastic scat-

tering from an atom, then we expect the
angular distribution at sufficiently large angles
to be determined by the effect of the nucleus
alone, since large deflections accompany close
distances of approach. For small angle scattering,
however, the outside electrons will exert the
controlling influence. In a previous research,!
the single scattering of fast electrons by mercury
nuclei was calculated. In this paper, we present
results which include the contributions made by
the extranuclear electrons. Since an easy tech-
nique for calculation of scattering for electrons
of arbitrary energy has not yet been evolved, we
have limited ourselves to energies of 100 kv and
230 kv.

For the mercury atom, a Hartree model is
used. The spin-orbit interaction and other rela-
tivistic characteristics of the incident electron
may be included (as will be shown) in an effective
central field which acts on. this electron. The
phase shift caused by this field can then be
found, as a function of angular momentum and
of incident energy, and the series for the scat-
tering amplitudes summed.

To determine the phase shifts, it is necessary
to integrate numerically. The differential equa-
tion has a singular point at the origin, but the
actual field is approximately Coulomb in the
neighborhood, so that the Gordon? solutions of
martlett and R. E. Watson, Phys. Rev. 56, 612

(1939); Proc. Am. Acad. 74, 53 (1940).
2 W. Gordon, Zeits f. Physik 48, 11 (1928).

Dirac’s equation may be used. From »=0.002
(atomic unit) to r=0.26 (in some cases 7=0.65)
the solution was carried outward on the Massa-
chusetts Institute of Technology differential
analyzer. For greater values of the radius, the
WKB method has sufficient validity, and was
therefore employed.

HARTREE FIELD

The potential energy of an electron at radius 7,
denoted by Z,/7, has been tabulated by Hartree.?
We have fitted these values by means of expo-
nential functions (in order to facilitate differenti-
ation) and find that the effective atomic number
Z, can be represented adequately by the equa-
tion 2Z,=33.7¢ 173767 95 0g—3-892r L. 3() 3¢1-253,
Near the origin (in the range »=0.02) a single
exponential suffices, i.e., Z,=80e5-325%,

Dirac FI1ELD

Darwin* writes the Dirac equations for an
electron in a central field V(7) as

(1/hc)(WHeV+moc®) F
+(dG/dr)—(/r)G=0, (1)

— (1 /he)(W+eV —mect)G
+(dF/dr)+[(+2)/r]JF=0.

If I is a positive integer, then Egs. (1) have

3 D. R. Hartree, Phys. Rev. 46, 743 (1934), Table III.

4C. G. Darwin, Proc. Roy. Soc. London Al18, 654
(1928). We have used ! instead of k for the Legendre
polynomial subscript.

281



282 J. H.

solutions regular at the origin. The Dirac angular
momentum quantum number j’ is equal to —1—1
for j=141%, and to I for j=1—3%. The solutions of
(1) which refer to the state j=1+1% (orj’=—1—1)
are denoted by Darwin as F;, G;, while those for
=]—1 (orj’=l)are F_;_1, G_;_1. Let us now sub-
stltute as follows: Y1=7rF, Yo=—rG, M= (1/kc)
X (WHeV+moc?),and = (1/kc)(W-HeV —moc?).
Then
Y1 — (dy2/dr) — (§' /1) =0, (2)
PYo+(dya/dr) — (' /7)¥1=0.
For a Coulomb field, (eV/kc)=a/r, where
a=(Ze*/kc). In this case, the equations are

(d¥1/dr)— (' /r)¥n
=[—=1/he)(W—me*) — (a/7) Wo,
(@b/dr)+ (' /)b =[(1/he) (W+me?) +(a/r) W

These are the same as those of Gordon (reference
2, Eq. (1)). Let us now drop the primes from the
j"'s. The function y; may be eliminated from (2).
We have

dy: j
(—~—) ——+—¢2)=~¢>¢2.

This results in a second-order equation for s,

A OPEALO)

%
2

dﬂ
72

Equation (3) is of the form
Yo'+ p(r)e +a(r)y2=0,
where p(r) = —(d/dr) log II, and
g(r)=12—[j(j+1)/r*]— GIU'/7II).
By means of the substitution
Yo =yII%, 4)

one can obtain® an equation with no first-order
term. It is

y'+Q*(r)y=0, (5)

5 E. T. Whittaker and G. N. Watson, Modern Analysis
(Cambridge University Press, 1935), p. 194.
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where
() =g~ ~1p*
JG+1) jd
=[p——-————1log II
r? v dr

+1 ¢ log II l[d 1 ]2 (6)
——log H——| —log 1| .
2 dr? ¢ 4ldr &

In atomic units, =1, mo=1, e=1, and ¢=137.
Also, by definition, p =k#=Fk. Accordingly,®

ne=(1/)(E-V)—c]
=k—(QEV/e®)+(V?/c),

c[p*+ ], and hence
1—-E2/ct=—k2/c. (7)

Equation (6) might be written as

Q¥r) =k*— Vets,

where Ve is an effective field in which the
electron moves. This field, which we may call
the Dirac field, includes all the relativistic effects,
and is dependent on the energy. Our expression
for Q%(7) does not agree with that deduced by
Rose and Bethe,” but it does give the right
behavior of the solution near the origin, and
must hence be correct.

Near r=0, V=—(Z/r), U= (Z/cr), (AV/dr)
=(Z/r?), (d*V/dr*)= —(2Z/r®) and therefore

Q) =k+Q2EZ/cr)+[(1—p))/r],

where p=(j2—o2)}. Equation (5) is then solved
by the confluent hypergeometric function, which
behaves near the origin as ##+} The function
Y2=9II* then behaves as 7¢, which result was
obtained in another manner by Gordon.?

since E=

CouLOMB SOLUTIONS

At »=0.00195, the effective atomic number Z,
is?® 78.95, so that the field is nearly Coulomb out
to this point. We have assumed Z,=80 out to
7r=0.002, and have calculated (y¥’'/y),—0.002 from
the Gordon solutions.

6 Note the slight change of notation, W—E, eV—— V.
7M. E. Rose and H. A. Bethe, Phys. Rev. 55, 277
(1939). The substitution (4) must be used if the "first-
order term is to be eliminated, so that the disagreement
rgus}f be caused by some error in the work of Rose and
ethe.



SCATTERING OF FAST ELECTRONS

TABLE 1. I'nitial conditions: (2'/2)r=0.002 and
(9'/9)r=0.26 (or 0.65).

i @/ o'/ i @/ /) i @&/ O/

E =100 kv E =100 kv E =100 kv
1 —335.4  666.4 9 —206.5 —319.8 -1 —96.2 —91.22
2 —243.5 67.16 | 11 —214.0 150.7 -2 27.15 —265
3 —212.6 —68.71| 15 —232.7 —129.2 -3 60.57 82.6
4 —205.6  149.2 19 —254.5 2.0%| —4 76.63 —57.7
5 —198.8 —53.01| 24 —282.9 —20.2%¥| —5 86.14 162.3
7 ~-201.2 —89.23| 29 =312.1 —105.5%| —6 92.5 —51.06
8 —203.2 54.20 —8 100.29

E =230 kv E =230 kv E =230 kv
1 —349.3 —28.00| 8 —196.0 -2 412
2 —250.0 —278.9 | 11 —204.4  23.06| —3 42.77
3 —216.9  145.1 15 —221.2 —4  61.44
4 =-203.7 —-113.3 | 19 —240. -5 72.51
5 —194.6 1982 | —1 —1397 221.7 —6  79.9

—12 982 30.51

* (3’/y) for r =0.65 rather than 0.26.

In Eq. (3), the solution ¢. is determined
except for an arbitrary multiplying factor, which
might be complex. Since the phase of this factor
has no physical significance, we shall take ¥» to
be real. Inspection of Egs. (2) then shows that
¢1 will be real, and the equations are consistent
in this respect. The ratio ¢ : ¢. is therefore
also real.

From (4), we have y=y,II"%, and

¥ = (dis/dr)TI=F — 2, I/ T4
=[—(jgo/r)+ Y1 —

It follows that
O'/y)=— /1) FT(Y1/¥e) — 5T’ /ID).  (8)

This ratio is likewise real.

As in our previous paper,! ¢=(a/B8) and
¢ =q(1—p»% where B=(v/c). Now E=mc?
=¢%(1—p%)%, from which we may conclude that
B=(m?—1)/m? so that g=am(m?—1)"% or
—ig=am(l —m?)~% Then —i¢ =a(l—m?)*
Gordon's Eq. (7), which defines #’, now becomes
—n'=p+1q.

The substitutions of Gordon are: y;=(1—m)?
X (01—02) and Yo= (1+m)¥(o1+402). If Y2 is real,
the following results are true: ¢1+03=a is real, ¥,
is real, o1 —09=1b is imaginary,

201 =a+1b, —ib,

1y, I -,

20s=a 0’2=0’1*, (9)

and, using ",

wb k
( —_— (10)
1+m/ a c(1+m)a
az  ala+1)z2
+ +
118 218(B+1)

Let

F(Q,B,Z)—l 1
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Gordon’s solutions are

=coWrre~i¥ F(p+1q+1, 2p+1, 2¢kr),

(11)
oo=co@ree~* F(p+1iq, 2p+1, 20kr),
c®  j—ig
C q = gitFir, (12)
Co(2> p—ig
26=tan! (¢/p) —tan~* (¢'/7)
! (13)

=tan™! (j'g—rq")/(Gr+q9)-
(We have used the equation j2+¢%=p?4¢?
which is true because ¢’?=¢>—a?)
Determination of (y'/y)
Let us use the symbol Pk for the phase. Also,
let

v, () =€ #F(5+p—x, 2p+1; 2)

=z M, (2), (14)

where M is the confluent hypergeometric func-
tion.
From (9),

(b/a) =tan Phoi=tan (Phc,® + Phv).

An application of Kummer's formula® leads to
the result that (¢1/co?) = (a2*/co®*). Therefore,
from Eq. (9), co® =¢,®*, and

Phe® =0+5.

(15)

(16)
The function v, ,(z) satisfies the equation
v +[(2p+1)/2]"+[— 1+ (k/2) J=0.

A series solution in ascending powers of z(=
may be found, and is

24k7)

K it
v=1——(2ikr) +—————
n 29(n+1)

(27kr)?

K+

——————(2%kr)34 - - -,
6n(n+1)(n+2)
where n=2p41.

This series was summed numerically for ¢=0.8
and ¢=1.0564, and for all values of p which were
used. From this and Egs. (8), (10), (15), and
(16), the values of (¥'/¥),=0.002 were computed.
These were used as initial conditions for the
differential analyzer solutions. They are given in

Table I.
8 Reference 5, p. 338.
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WKB SOLUTIONS

The WKB method for solving equations such
as (5) has been discussed very thoroughly by
Langer.*1° The usual procedure is to set y = ¢/ /47,
and to expand f in an ascending power series
in k. As an alternative, we can expand in a
descending power series in &, or in Q, which is
still better. The equation in f is

f 240 =0. If ¢*>0, put f=1Q+g,
where g satisfies the equation
1Q'+¢' = —21Qg —¢". (17)
Expand g=g1/Q+g2/Q*+- -+ and compare like

powers of Q, obtaining g1= —%(Q’, and

g —(—Dgi1=—2g11— 28—
k

in general. From this recursion formula we may
determine the successive coefficients in the power
series. This series will converge rapidly when Q
is large. When we are not in the neighborhood
of the turning point 71(Q?=0), it usually suffices
to take

f=iQ—3(Q'/Q), (18)
and the second term here contributes little.
Let
e [ oir, s0)=008,
and =S"/S. Then
U(r; a, B) =Slatt T 4 (§)+B 736} (19)

satisfies the differential equation
U'+(Q*—6)U=0.

This equation resembles (5) when §<Q? Langer!®
finds the asymptotic form of U and is thus able
to establish the connection formula

IQ<r>|—*exp[—fT”iQIdr]

—20-4(r) cos { f Ter——Z } (20)

which gives the phase shift for a given Q. He
shows that, in evaluating this phase shift, one
must replace /(I41) by (I41)%. However, if we

9 R. E. Langer, Bull. Am. Math. Soc. 40, 574 (1934).
1 R. E. Langer, Phys. Rev. 51, 669 (1937).
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use the WKB method for a region completely
outside the turning point, the proper quantity
to use is still /(I+1), for the connection formula
plays no part. Langer notes that when / is small
or when E is large, the turning point is near to
r=0, and the use of the connection formula is
then questionable. We shall see that the WKB
method is, with these exceptions, quite reliable.

Mott and Massey!! state that ‘‘the condition
for classical scattering at a given angle 6 is that
lo should be large, where I, is the value of ! for
which (97:/0l) =10, and that 4, should also be
large for this value.” From this, one infers that
the WKB method should yield good results only
when the phase shifts are large. Our work does
not indicate this.

PHASE SHIFTS

We have used the WKB method (1) to con-
tinue the differential analyzer solutions outward
and (2) to determine the phase shifts in an
independent way.

(1) Continuation of analyzer solutions

Let us denote initial values with the sub-
script 2. As above, set

g= f :er,

y=(Qi/Q)*a cos £+ sin £). (21)
Then y;=a, and v/=—3%a(Q'/Q):+bQ;. If a=1,

bQ:i= (/)i +3(Q/Q) =0y /v (22)

(The term Q’/Q is approximately j(j+1)/273Q2,
and is usually negligible.)

If we put £=kr—é(r), then 6() will be
simply related to the phase shift 5., which is
defined so that it vanishes for a free particle, i.e.,

ye2rGe~cos [kr—3(+Dr+n].  (23)
From (21),
y~A sin (kr—5)+B cos (kr—3)
= (A4 cos 8+ B sin §) sin kr

+ (B cos § — A4 sin §) cos kr.

1 N. F. Mott and H. S. W. Massey, Atomic Collisions
(Oxford University Press, 1933), pp. 92-94.

2 M. E. Rose and H. A. Bethe, Phys. Rev. 55, 280
(1939), Eq. (21).

and
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TABLE 11. Phase shifts.

285

a. E=100kv b. E=230 kv
DIFFERENTIAL ANALYZER WKB CurvE  Born ||  D.A. WKB CURVE BorN
1 m M At mn N1 AL e m j ni 1 n n1 A |l m A m
0 237.9 -1 207.3°
1 199.2° 174.2° 25.0° 195.0° 176.0° 18.9°| Sameas 1 1832 1 176.7° 155.1° 21.6°| 1 183.2° 21.6°
2 1496 1439 57 1509 1434 72 | D.A. 2 1415 2 1388 1303 85| 2 1415 9.0
3 12555 1210 45 1265 1225 3.7 | Upto 3 1202 3 1186 1132 53| 3 1202 52
4 1103 1081 22 1093 1069 2.4 =8 4 1062 4 1054 101.6 35| 4 1062 3.3
s 977 967 1.0 985 970 07 | 6 87.9° 5 977 5 9a8 021 27| 5 977 27
7 807 759 7535 8 74.0 6 813 22
9 685 9 682 7 805 19
10 633 8 17| 8 750 1.63
11 593 58.5 11 590 9 700 141
12 54.9 10 657 122
13 511 11 644 11 627 11 621  1.05
14 480 12 590 092
15 444 45.0 15 45.0 13 560 0.80
16 424 14 332 068
17 400 15 49.7 06|15 508 0.6
18 380 16 484
19 324 19 360 34.9° 17 46.2
20 342 18 442
22 312 22 310 19 423
24 278 24 283 292 20 419 20 40,5 35.2°
26 26.0 21 389
28 238 22 373 3
20 215 222 29 24.6 24 344 %
30 21.9 26 319 3
32 202 28 207 &
31 186 30 281 30 277 2 264
35 17.9 35 20.1 35 234 9
36 17.2 40 193 10 202 P 203
38 16.0 45 117 L
10 149 17.2 50 151 50 157 <9 159
45 124 146 55 1411
50 10.3 50 103 12:6 60 12.7
65 115 65 11.4
70 105
80 9. 80 856 8.4
100 59 100 5.8
Combining with (23), and putting
(A/B)=tan e¢=b/a, (24)
we obtain
—tan [9,—2(@+1)7]=[(4 cos §+B sin 8§)/(B cos 6—A4 sin 8) lo=tan (e+ ). (25)
Furthermore, if Q?=k2—[j(j+1)/7],
7 T
_5=E—k7’=f (Q—Qo)df-l-f Qod?""k?’
s re
T T r
= [ ©@-Qoar+ra ~LiGi+DT cost {LiG+DI/br)| (26
Ty i i
The limiting value is
0
_ : L i1 s
~50= [ (= Qdr=rQu® ~[i(i+1) T lhm—cost (iG+D /b (1)
7i

¢ was expanded in powers of s=7(j+1) and numerical integrations were performed from 7;=0.26

to infinity. The resulting expressions for 8, are

00 =23.31740.0211543.16 X107 %s24-- - -
80 =37.806+0.0131254-0.7565 X 10— 6524~ - -

(E=100 kv)
(E=2230 kv, or ¢=0.8).

The phase shift 7, was determined from (22), (24), (25) and (27).
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TasLe 111. Coefficients in numerical summation of (33).

4 al bt 4 al bt 4 ai b I al by
E=100 kv E=230 kv

0 —9.394 0.589 10 —5.985 —5.298 0 2846.37 850.11 16 269.98 149.42
1 —26.216 —0.822 11 —4.039 —4.064 1 5986.47 1864.48 17 192.99 110.21
2 —32.942 —17.707 12 —2.750 —2.930 2 6994.46 2269.13 18 136.50 80.28
3 —31.721 —11.507 13 —1.949 —2.012 3 6860.86 2320.11 19 95.38 57.66
4 —28.265 —12.983 14 —1.154 —1.369 4 6174.71 2176.12 20 65.70 40.75
5 —23.620 —12.585 15 —0.778 —0.877 5 5277.43 1937.48 21 44.61 28.28
6 —19.089 —11.307 16 —0.455 —0.512 6 4356.53 1666.86 22 29.66 19.13
7 —14.906 —10.070 17 —0.315 —0.350 7 3506.36 1396.93 23 19.25 12.54
8 —11.337 —8.367 18 —0.037 —-0.111 8 2767.73 1147.08 24 12.07 7.94
9 —8.404 —6.724 19 0 —0.051 9 2150.64 926.89 25 7.45 4.82

10 1649.03 738.69 26 4.22 2.63

11 1249.97 581.42 27 2.30 1.25

12 937.77 452.45 28 1.09 0.43

13 696.66 348.42 29 0.28

14 512.65 265.56 30 0.09

15 373.90 200.26

(2) Phase shifts from the connection formula

From (20) and (23), we find that
t—ir=kr—3(4+D7+7,

and hence,!?

mZ%(H“%) - 600(":':71);

=lim ( f :er—— fo TQodr). (28)

This is consistent with (27) if [+ be substituted for [ j(j+1)]%

In Table II are listed the phase shifts as determined (1) with differential analyzer and WKB
extension, (2) from the connection formula, (3) from a smooth curve through points found by methods
(1) and (2), and (4) by the first-order Born approximation.

Method (4) consisted in applying a formula of Mott and Massey.! Since this involves the square
of the wave function, the region near the origin contributes little, and the potential may be taken as
just 2EV/c2.

Results from methods (1) and (2) are in excellent agreement with each other, so that the connection
formula method is accurate as well as rapid. The Born phase shifts are surprisingly good, even though
the expansion parameter ¢ is not small (¢=0.8 and 1.056).

INTENSITY OF SCATTERING

With the notation changed as in footnote 4, we have, following Mott!* and Darwin,*as the solutions
of (1): Fi, Gi, which refer to the state /= —I—1. The asymptotic form of G; is ! cos (kr-+d;).
The connection with the previous notation!® is obtained by setting

=30+ Dr=6, m—3(+Dr=06_1

13 M. E. Rose and H. A. Bethe, Phys. Rev. 55, 286 (1939), Eq. (103).

14 Reference 11, p. 28, Eq. (27). See Appendlces Band C

15 N. F. Mott, Proc. Roy Soc. 135, 436 (1932).

16 See Eq. (23). The quantum number « of Rose and Bethe (reference 7) is equal to —j'—1.
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TABLE 1V. Amplitudes, intensity, and polarization.

a. E=100 kv b, E=230 kv (q=0.8)
f g f g
] R I R I ¥ ¥ 8 ] R I R I 7 Yo P
2° —460.0 391.0 0.12 2° 380.1 497.6 0.23
5° 8.5 150.9 0.30 5° 25.1 150.1 0.52
10° 41.7 25.3 0.49 10° —42.5 7.2 0.67
15° 23.68 5.19 0.024 —0.187 0.61 1.02 15° 23.3 11.2 1.22 1.04
30° —0.66 7.123 —0.089 —0.270 0.82 1.06 30° 0.94 6.25 —0.03 —0.63 1.13 1.17
45° —=3.06 2.182 —0.272 —0.208 0.94 1.18 45° —2.03 2.81 1.65 1.37
60° —2.464 0.174 —0.378 —0.054 140 1.36 - 60°  —1.60 1.43 040 —0.23 1.88 1.58
75° —1.55 —0.788 —0.378 0.096 1.56 0.009 75° —1.21 0.13 1.43
90° —0.762 —1.051 —0.327 0.188 1.64 1.68 0.048 90° —-0.91 -0.30 0.39 0.03 1.67 1.82 0.025
105° —0.280 —1.065 —0.255 0.222 1.89 0.099 105° —0.87 —0.41 2.58
120° 0.008 —0.997 —0.179 0.213 2.16 1.78 0.113 120° —0.73 —0.96 0.26 0.09 (5.46) 1.68
135° 0.280 —0.847 —0.115 0.173 2.19 0.120 135° —0.04 0.59 1.59
150° 0.523 —0.639 —0.065 0.117 2.18 1.83 0.086 150° —0.09 0.28 0.13 0.05 0.57 1.43
165° 0.579 —0.482 —0.027 0.058 (1.98) 0.026
180° 0.492 —0.585 O 0 2.10 1.83
Then
0
f(6)=3i 2 {(I+1)(exp [i(2n—11—m) ]+ 1) +I(exp [i(2n—m) ]+ 1)} Pi(cos 6)
1=0 ;
o0
=—3i % {(+1)(exp [2in_-1]—1) +1(exp [2in,]—1)} Pi(cos 6), (29)
=0
. 0
2(0)=3% > {exp [24n—1—1]—exp [2¢9.]} P.*(cos 6),
=1
00
(2f/9) =2 (2141)(A;—1B;) Pi(cos ), (30)
=0
where
(24-1)A4,;= (I4+1)(1 —cos 2n_;_1) +I(1 —cos 2m,)
(214+1)B,= (I41) sin 29_;_,+1 sin 29,
@0 .
(—2g/i)=3 2sin Ay{ —sin 2,41 cos Z;} P, (cos 6), (31)
=1
where

A==y, Zi=mt -

For large values of /, the phase shifts decrease in an exponential manner, and so we would expect a
similar behavior for 4; and B;, which is in fact found. Exponential functions 4,(J) and B, (l) were
fitted in this range, as follows:

A, (1) =2.400¢0-07331 48 347 ¢0-2501 )
Boo(l) = 2.082¢-0-03561 1 772¢0- 1481 f
A (]) =0.955460-03820 | 65 1¢—0-192L 201 2¢—0-3511 )
B (1) =1.310e0-01861 |49 4¢—0- 1881 _ ()()¢—0-304. }>

E=100 kv
(32)
E=230 kv.

Equation (30) may be written

(2f/i) =,§ (2U+1)[ Au(l) —iBo() JPi(cos e)+§o QU+ D) [(Ar—Au(D)) —i(Bi—Bu()) 1Pi(cos 6).  (33)
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The first term on the right-hand side may be evaluated by summing analytically, and.the second by
summing numerically. The analytical summation is based on the formula
> (214-1)x'Py(cos 0) = (1 —x2%) /(1 — 2x cos O+x2)} (34)
=0
and on the substitution x=e"?, where @ is one of the constants in (32).
We give in Table III the coefficients of the second sum,

a=Q2I+1)[4:—A(1)] and b,=(2141)[B,—B,()].

This method of summation would be less practical for higher energies, because P;(cos 6) is tabulated!”
only to [=32. ' )

At E=100 kv, the sum in (31) converges rapidly, and only seven terms were calculated. For
E=230 kv, however, the convergence is not as good, and one needs about twenty-five terms. One
would expect a behavior of this sort, because for higher energies the electrons come closer to the
nucleus, and the spin-orbit interaction terms can therefore be of more influence.

After summing the series (30) and (31) for f and g, we have, as in our previous paper, multiplied
the values of |f|2+|g|? by (4/¢% sin? 16, in order to find the ratio 7 of our calculated scattering
intensity to the ‘“‘Rutherford” wvalue. Furthermore, the asymmetry 26 in double scattering,
26=2[(fg*—gf*)/(If|1*+ |g|®) ], has been obtained. The results are given in Table IV, together with

7¢, the ratio for a Coulomb field.

REsuLTS

The results for 100 kv are what one might
expect. At large angles the distribution is prac-
tically the same as that obtained for a Coulomb
field. (The discrepancies are not large, and are
probably caused by small errors in the determina-
tion of the phase shifts for small /.) At smali
angles, in this case angles less than 60°, the effects
of shielding become evident, and the intensity of
scattering is less than the Coulomb value.

For 230 kv, the calculations are probably not
very accurate, since reliance was placed on the
WKB method to a great extent. In particular,
it would have been desirable to have had data
from the differential analyzer for j=-—2 to
j=—26, inclusive. (Such runs had been taken,
but were later proved to be incorrect.) The
values of 7 in Table IV fluctuate, but it is prob-
ably legitimate to conclude that the angular
distribution is of the Coulomb character for
angles greater than 15°, and that the shielding is
only effective for smaller angles.

SuMMARY AND CONCLUSIONS
For a given value of the Dirac angular mo-
mentum quantum number j, one can eliminate

7 H. Tallquist, Soc. Scient. Fennica, Comm. Phys.-Math.
6, Nos. 3 and 10 (1933).

one component of the radial wave function, and
obtain a single Schroedinger-like equation for the
motion of an electron. The electron is influenced
by an effective field (we have called it the Dirac
field) which is dependent on the energy, and
which may be deduced from the Hartree field.

We have calculated the scattering intensity
for electrons of 100 kv and 230 kv influenced by
mercury atoms. The Hartree field is known, and
the Dirac field was found. Phase shifts were
determined by three different methods: (1) in-
tegration with the aid of the differential analyzer,
(2) the WKB method, and (3) with the Born
approximation.

The WKB phases are in excellent agreement
with the analyzer phases for 100 kv, and in good
agreement for 230 kv. This method seems,
therefore, to be rather reliable, and our results do
not indicate that it should break down for small
phase shifts.

The first-order Born approximation results,
for large values of I, in phase shifts which agree
well with those calculated by the other methods.
The first-order wave function is, however, quite
different from the unperturbed one, and so the
reason for the smallness of higher order correc-
tions to the phase shifts is not known.



SCATTERING OF

The angular distribution appears to be Cou-
lombian for large angles, within the limits of
error of our calculations. The shielding becomes
effective below 60° for 100-kv electrons, and
below 15° for 230-kv electrons.
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APPENDIX A

Differential analyzer procedure

Having obtained (y’/¥)r-0.002, we integrated Eq. (5) out-
ward, setting Q) =F()+i®@F)—[j(i+1)/72], where

2EV Vv 1 4V 3 1 dV)2
=k - 2T - (==
F =k c? +62 2Ilc dr* 4 H?c’(d ’
and
1 4V
G)=— —-
) rIlc dr

F(r) was fed in from one input table, ®(r) from another,
and 1/72 was usually generated by two integrators.

The integration range was divided into three or four sec-
tions (0.002—0.016—0.065—0.26 —0.65) and dependent va-
riables chosen so as to have the same order of magnitude
throughout the section. Near the origin, y behaves as
rP+t, We substituted y=ri*lz when j>0; y=r!ilz when
7<0, and used z as the dependent variable. (This made the
term in 1/72 vanish.) For large 7, ¥ varies sinusoidally, and
was used itself. (It might be more accurate to take out the
sinusoidal factor, but this was not done for lack of time.)
For large values of j, we used the variable w=yr~?, where
p was some appropriate integer less than j.
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AprPENDIX B
Born approximation formulae
The first-order phase shift is to be found from
tan ge= — (v/2k) S0 (2EV/*) [ 154 (kr) Prdr,
where
—2rV=2Z,=233.T¢717.376r{-95 9¢3.892r | 3() 3¢~1.253r,
The integration and evaluation may be made with the
aid of two formulas given by Watson.’®
Jo2eat T, (b8) T, (ct)dt =[1/7 (bc)]0, -3 | (a®+b2+c?) /2bc ).
Qi(cosh £)xme—thdE=tanh & (sech £)IK[(1+}) tanh £].

AppEnDIX C -
Note on the Born approximation
Equation (5) may be written in the form
¥+ {2+ (G~ /7 y= Uy, (35)
where U has a pole of order one at the origin. A funda-
mental set of solutions of the homogeneous equation
(U=0) is
v = (3mkr)d T, (kr); vo = (3mkr)¥J-p(kr).

For simplicity, consider the Coulomb equation

w'+{—1+LE—p) /N u=—(a/r)u (36)
where A is a constant, and p will be taken as independent

of a.

©

u= 2 u, at,
8, t=0

I. Let

and require #o,.=0 for >0 (normalization condition). The
only acceptable exponent is w=3-+p, and the recursion
formula is

[lo+s4+2)2—p2Jugre, = 3ths,e—Usy1,01.

(All coefficients with negative subscripts are to vanish.)
The nonzero coefficients are found to be those with s=0
and t=s5—2p=0, where

$=0.  That is, (37)

11. The prbcedure of I may be modified (¢) by expanding
in powers of & and then (b) solving a set of inhomogeneous
equations successively. This is convenient for ascertaining

s=t.

©

the behavior for large 7. If u= Zuw!, then
=0

i+ {—1+LG—p) /PP = — \ue—r /1), t=1, - -+ ®.(38)
Since w#o=w;, the solution of (38) with ¢=1 is??

wy=Vi(®)v1+V2(#)ve, where Vi=AJSo (niv:/r W)dr,
Vo= —AJSp"(v:2/rW)dr, and W is the Wronskian of »; and
95, The limits ¢ and b must be such that « is regular at
r=0. At this point, #,=v:=0(@#") and v,=0(*").
From (37), smin=%, and so #,=0(@%"), Vi must be O(r)
and V; must be O(r2**1), These conditions will be satis-
fied if and only if ¢=0 and 5=0.

18 Watson, Bessel Functions (Cambridge University
Press, 1922), pp. 389 and 158.

W E. L. Ince, Ordinary Differential Equations (Long-
mans, 1927), p. 122.
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Evidently the above conclusions will be true when U
still has a pole of order one at =0, but is non-Coulomb.
With Viand V; modified accordingly, the first-order wave
function will be

u= {l+a Vl(r)}vl-}-a Vz(f’)ﬂg. (39)
At large 7, wvi~sin (kr—%pr) and vs~ cos (kr+3pm).
Hence u~const {cos (kr — }I7) sin nc-+sin (kr — il7) cos n4}
where
_{1+aVi(»)} sin $(—p)r+aVa(=) cos ((+p)w
A T Vi(w0)} cos 3(—p)r—aVa(%) sin (I+p)r
=a V() to first order in a.

GINGRICH

At r= «, the first-order wave function contains @ V,(«),
which is of order unity,” and so the function has been
greatly modified by the perturbation. Nevertheless, as
seen above, this is without effect® on the first-order phase
shift.

20 We calculated aVi( =) for =22, E=100 kv assuming
the potential to be —2EV/c?, and integrating numerically
with the aid of a Gegenbauer formula (reference 18, p. 390).
The result, which should be roughly correct, was near unity.

2 This became clear during a discussion with Drs. Lamb
and Nordsieck of Columbia University, to whom thanks
are due for their interest and help.
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The corrected intensity curve given by Eisenstein and Gingrich for the diffraction of x-rays by
liquid argon has been subjected to four different fittings, one of them including a weak fourth
peak, to determine how sensitive the atomic distribution curve is, to errors in fitting. An
analysis has been made for these four cases. The first peak of the atomic distribution curve has
about the same shape in each case, the area under this peak varies by less than ten percent, and
the position of its maximum remains constant to within about one and one-half percent. The
small secondary peak becomes a plateau by the introduction of a weak fourth peak in the

intensity curve.

HE method of the Fourier integral analysis

of x-ray diffraction patterns! is reasonably
straightforward in principle, but, in practice,
difficulties sometimes arise which make the
conclusions from this analysis somewhat uncer-
tain. Thus, for example, it is assumed that at
large angle, the scattered x-rays are wholly made
up of incoherent and independent coherent
radiation, and in this way, the experimental
intensity curve is placed on the same scale as
the Nf? curve. Experimentally, one chooses a
point in the diffraction curve beyond which no
interference effects can be observed and then
makes a fitting of the curves at this point.
With weak radiation at large angles, it is difficult
to be sure that this point is chosen at large
enough angle, and hence uncertainty in the
results and conclusions is introduced. Since
there is no obvious general approach to the
discussion of the effect of different fitting of

1B. E. Warren and N. S. Gingrich, Phys. Rev. 46, 368
(1934).

curves, a few special cases have been worked
out to illustrate the effect upon the atomic
distribution curve in the case of liquid argon of
different fittings in the experimental intensity
curve for liquid argon.

In previous work? with liquid argon, the
experimental curves obtained in several trials
consistently showed three maxima, at values of
sin 8/X of 0.154, 0.280 and 0.415, respectively.
One, or possibly two films, showed a faint trace
of a fourth maximum, but the films with ap-
parently the best patterns did not show con-
vincing evidence of the existence of the fourth
peak, for if it existed on them, it must have had
a height no greater than the fluctuations of the
microphotometer. With a small camera, of 5.08
cm radius, two overexposed pictures were taken
to investigate the region where slight indications
of a fourth peak occurred. Superimposed on the
dense background, there appeared a weak fourth

2 A. Eisenstein and N. S. Gingrich, Phys. Rev. 58, 307
(1940).



