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The perturbation method of solving boundary value
problems with irregular boundary conditions has been re-
examined and generalized. Problems are considered for
which the boundary of the region is changed and the
boundary conditions are unaltered, and also the inverse
case where the boundary is fixed and the boundary condi-
tions are changed. It is pointed out that the integrations
involved in obtaining the perturbed eigenvalues will be in
general very difficult, but that this difficulty can be avoided
in two important cases. The perturbed eigenfunctions,
however, can always be simply obtained. An application of

the method was made to a problem in room acoustics
which requires the calculation of second-order terms in the
perturbation, and the results obtained for the pressure
distribution and frequency were found to check well with
experiment. A simple formula is found for the problem of
the absorbing wall. The method is useful in calculating
electromagnetic resonators of the "rhumbatron" type,
and may also be useful in calculating electronic wave
functions for metals. In Appendix III the method is ap-
plied to the scattering problem, and the results are related
to Huygens' principle.

INTRODUCTION

"ANY physical problems reduce to finding
the eigenvalues and eigenfunctions of an

equation of the type II&+X&=0 where II is
some differential operator. It often happens that
solutions are desired under circumstances dif-
fering slightly from conditions for which the
solutions are well known. This perturbation can
be introduced into the problem in two ways.
First, small additional terms may enter the differ-
ential operator, whereupon the usual methods of
perturbation theory are employed. Secondly, it
may happen that the boundary conditions for the
eigenfunctions are slightly different than in the
case of the problem whose solutions are known.
Problems of the second type arise in the AVigner-
Seitz theory of metals, in problems in room
acoustics, in electromagnetic radiation problems
and in certain problems in quantum mechanics.
In many cases problems of the second type can be
reduced to the first kind as has been shown by
Brillouin' and Cabrerra. ' A method of obtaining
first-order corrections to the unperturbed eigen-
values for problems of the second type has been
indicated by Froelich, ' but this method is not
essentially different from that of Brillouin and
Cabrerra (Appendix I). The method that is to be
employed in this paper is nearly the same as that
of Brillouin and Cabrerra. It is desired to bring

out various aspects of the problem that have not
been considered, and to show how solutions are
actually to be obtained in certain cases.

METHOD

Let x represent some set of coordinates
x] x2 x3 and let So be a surface enclosing a
region E.o. Suppose that the eigenvalue equation

II'(x 8/Bx)y '(x)+K 'y '(x) =0

has been solved with the p satisfying boundary
conditions I on 50. Suppose that the boundary
conditions are such that the solutions are
orthonormal. Two cases will be considered in this
paper: case &, P ' = 0 on So, case 2, Bp„'/Bn = 0 on
So. Let S be a surface enclosing a region R. It is
required to find the solutions of the equation

IIO(x, 8/Bx)P„(x)+K„P„(x)=0

with P„satisfying boundary conditions II on 5.
It will be supposed that P„does not difFer very
much from p„'. Let T be some operator, and
define a function p„by p„=TP„. T must be such
an operator that p„satisfies boundary conditions
I on 50.' Suppose that T may be written as i+o.
+p+. where o' is a quantity small in first
order and p is a quantity small in second order.
The equation satisfied by @„is

(II'+IP+II'+ . )g„+K Q =0,

L. Brillouin, Comptes rendus 204, 1863 (1937).
2 N. Cabrerra, Comptes rendus 20'7, 1175 (1938).' H. Froelich, Phys. Rev. 54, 945 (1938).

' Brillouin and Cabrerra introduce an operator P such
that P@ ' satisfies boundary conditions II on S. This is
a more stringent condition than is necessary.
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where For P„ there can now be written,

H' = o-FP —EI'0. ,

H2= (p —a)H 'FI —(p —o )+oII .

The problem has thus been reduced to one in
which ordinary perturbation methods may be
applied. One obtains the formulas The expression in curly brackets needs some dis-

cussion. The sum Pl, oa~gko is the expansion of
0& and will be equal to it inside 50. Aside from
a normalization factor, P there depends only
upon the surface integrals A~n, and this means
that P„can always be easily obtained. This would
not be the case, as will be seen later, if P„really

depended upon III,„. In general, ~p„.' does not
obey the same boundary conditions as p„'. If it
did, A~„would vanish, and there could be no
first-order change of the wave pattern. This is
seen from the fact that a necessary condition for
the orthogonality of the p„' is the vanishing of the
integral

1 1
1 2 IEnkEEI'nK„=K„'—H„„H„„+—P' —+, (6)

& X.,„'—KI„.'

1 2
The quantities FE~„.„and /X.„„are given by

1
III„.n —— P/..OEI'P.„'dV,

Rp

II„= @ 'EE2&„'dV.
Rp [j .'(ay„'!.. an) —(a@)"an)qj.'], ds (16).

(4)
4 =(1—o-) 0-'+{Pa.ya' —oy„'{

(6)
(1&)

rc

The prime on the summation sign indicates
omission of the term with k equal to n. For
these perturbation formulas to be valid, it is
necessary that II' and H' do not introduce
singularities into the problem. For P„one may
write to first order,

(10)

It will now be assumed that II' is given by
IP=V'+ V(x). One then obtains the following
results:

Therefore, it is not necessarily true that the sum
equals 0.&

' on So. If P„' is zero on 5(), the ex-
pression in curly brackets will be discontinuous
on' So, while if a&„o/am=0 on So, it will show
merely a discontinuity in slope. However, P„will
not show any discontinuity. This discontinuity
on So presents difficulties in obtaining the
eigenvalues in certain cases and will be men-
tioned again in discussing the eigenvalue
formulas.

The eigenvalue (6) may be written

1
HI„.„=(Kp K„')ok„A&, ,

— —

where

H„„=(oII')„„8„„, —

Ag„= {yI„.'(a/an) (oP.')
Sp

—ag.'/a ( P„') IdS (13)

, EA-A. A;+ [Q(r„gIIg„(oII') „,„]+Q '—
a

One can usually represent o by a first-order
differential operator. In this case, it is possible to
show that

1
(oFI')„„=Qa„(„FI(.

8„„= {y„o(a/an) (p —o2)y.o

Sp

ae-'/an(—p )0'oI dS—

This formula does not follow obviously from the
usual rules of matrix multiplication, because the
conditions for application of these rules are not

(14) always fulfilled in the present case. Equation (11)
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TRANSFORMA TION OPERATORS

Let X,(x) be defined so that, if x, represents the
coordinates of a point on Sp, x,+X;(x) gives the
coordinates of a point on S. An operator R is
defined by

Rf(x) =f(x+X)
If one writes R = 1+p+v+ ~ ~ ~, then one has

p = PX;a/ax;, p = —,'QX;X;(a'/ax;ax;). (19)
'4 pl

Case 1. Suppose that p„=-0 on Sp and P„=F(x)
on S, where F is a small quantity. Then one has,

4"(x) = F(x)
RP„(x)=RF(x)

RT 'y. (x) =R-F(x)

x on S,
x on Sp,
x on Sp. (20)

Placing Q„=Q„'+p„'+Q„'+ and separating
into orders one finds,

first order: (21)

second order: aP„'+ (p —p P) @„P
=H4. '+ ~4.' p(~4.'+ F—) (22)

Some special cases are worth mentioning:
Case 1a. If E is zero, it follows at once from

(20) that a solution for T is T= R.
Case 1b. If S coincides with So, R = 1 and the

equations become,
(2 1a)

p'P„'+ (p —a') Q =0. (22a)

Case 2. Suppose that a&„/an =0 on Sp, and
ap /an= F on S, where F is again a small
quantity. Let the surface S be determined by the
equation S(x) =0 for x on S. Then one has that
S(x+X)= 0 for x on Sp. Hence the function Sp(x)
determining Sp may be defined by Sp(x) =RS(x).
Thus one has

S=Sp —pSp+ (p' —v) Sp+
VS=VSp —VpSp+ V(p' —v) Sp+

If S(x) is given the proper sign, one has

VS Vf„= ~VS(F x on S,
R(VS'VT P„)=R(

~
VS~ F) x on Sp. (23)

is an example of their failure, One can now write,

X„=E„o+A „„+8„„+&.„„A.„
1

Xp X„

This last condition can be worked out in general
as before, but the equations are very complicated.
Some special cases are of more interest:

Case 2a. If.F is zero, the conditions can usually
be satisfied as before with T=R. Under these
circumstances, the conditions become,

first order: VSp [pV]p„p
+V4 P' [pV]Sp =0; (24)

second order: VSp [pV]P„'+V&„'[pV]5p
+VSp' [vV]$ +V/ ' [pV]Sp
—VSp [pV]p4 —V4 ~ [pV]pSp

+[p'7]Sp [pV]y„'= 0, (25)

where [pV] is a symbol for (pV —Vp). In a par-
ticular two-dimensional case that has been
worked out, these somewhat complicated con-
ditions simply demanded that the X; satisfy
Cauchy conditions on So. This could be an-
tici pated.

Case 2b. If S coincides with $0, the conditions
become,

(a/asap) ( e.') = -F. (26)

(B/an) (o y„')+ (a/an) (p )yp—„p=0 (.27)

Case 3. Suppose that a&„/an =0 on Sp, and
ap„/BN =FQ on Sp. Here F is again a small
quantity. In this case the conditions are

(a/app) (p4.P) = —Fy.P,

(a/a pr) ( 4 „')+ (a/a&) (p ') 4„'—
= —Fg '+Fog '. (29)

The operators 0. and p that are determined by
these conditions should really carry another
index that has been suppressed for simplicity.
This index would indicate to which solution
the cr was appropriate. Thus, the perturbation
introduced into the equation for @„may be
different from that introduced into the equation
for

FURTHER DISCUSSION OF THE EIGENVALUES

In the previous section there have been worked
out the conditions that must be fulfilled by r and

p in various cases. The notable fact about these
conditions is that they must hold only upon the
surface So. Nevertheless, in the eigenvalue
formulas there en ter matrix' components that
involve integrals of cr over the region Ro. If 0. is
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not specified in any way iriside Ro, it would seem
that any answer at all could be obtained by a
suitable choice of o.. This certainly cannot be the
case, for in any particular problem there will be
introduced some parameter X measuring the
magnitude of the perturbation, and the eigen-
value will be a power expansion in this parameter.
This expansion must be unique. Thus one comes
to the conclusion that the results for each order
must be independent of the volume behavior of a,
as long as it does not introduce singularities that
will cause the expansions in the orthogonal set

to diverge. To find a o. satisfying a11 the
boundary conditions and of sufficient continuity
may be, in all but extremely simple cases, very
difficult. Even if 0. has been found, the matrix
components rk„may be impossible to obtain
except by numerical integration. One is led to
suspect that, as in the case of the eigenfunctions,
the eigenvalues can always be obtained in terms
of surface integrals and thus made independent
of the volume behavior of 0 ~ It has not been
found possible to do this in general. The difficulty
is illustrated by the cases 1b and 2b for which
conditions were deduced in the last section. The
eigenvalues may be written,

case 1b: Z„=X„o+ (8$ '/&+) +dS
Sp

but known quantities and is in a very simple
form. This- case is of interest because of its
application to acoustic problems. The boundary
condition BP„/Pm = I'P describes conditions at an
absorbing wall, F being a complex function
related to the acoustic impedance.

In one other case the eigenvalue formula may
be reduced to a form involving only surface
integrals. This is for the case 2a. From Eq. (9) in
Appendix I I, it can be deduced that

K =X„'+A..+ (o@„')(8/Bn)(ay„')dS
Sp

(n D)p„oII'p odS+8
Sp

ofc A a.A an—A (n D)p„'p„'dS —Q' . (31)
Sp Ago —K„o

This formula has been applied as described below
to calculating a certain problem in room acoustics.

The other very simple case 1a does not yield
to this treatment. The eigenvalue expression may
be written,

X„=E'„o+A„„+8„„
Ag AI'

(84 „'/pn) (Po ~„op&')dS
Sp %go —X o

+&nn ~4'n ~+ ~dS But since o.p„'/0 on Sp, the series ~ a.~ o-Q~' wi11

diverge on Sp, and the series

with

X„=X'+A„„—Q' (30)

case 2b: X =E„'— p„'Fd5 —o-„„jb„'FdS,
~ Sp Sp

where there is a direct dependence in second
order upon 0-nn. The value of o-„must therefore
be unique, but it has not been found possible to
verify this in any way.

In certain cases, however, the eigenvalue can
be written in a form depending only upon surface
integrals. For case 3 where it&„/On=0 on So and
8$ /On= Fp„also on So, the eigenvalue formula
becomes

Ag, „A„g

I Ego —X„p

must therefore also diverge. Since from Eq. (9) in

Appendix II, A„~=A~, an expression like (31)
cannot be obtained. No other way of writing the
eigenvalue has been found.

If it is assumed that the formulas are inde-
pendent of the volume behavior of o., a procedure
can be given by means of which a closed form for
the eigenvalue may be obtained in all cases. It
amounts essentially to choosing a particular 0-.

Suppose that o. is such that one has

H' = o-Ho Hoo- = cHo
A y = — F@pop„odS.

Sp where c is some constant. It is seen at once that c
1

This equation is indeed independent of anything must be A „/X„.Thus one has IZ&„An~8kn. —— —
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all d

G(x, x')A. P 'dU'
~ Rp

+ I aG(x, x')/an'[cry„'],
Sp

—G(x, x') [(a/an) (op„o)], I
dS' (35)

G(x, x') y.o(x)y.'(x')d Ud U'
Rp Rp

aG
+ @ pdV oyp,

—G(x, x') [a/an(ay„') ].. dS'. (36)

The Green's function used must be appropriate
to having aP„o or (a/an)(oP ') specified on So.
The expression obtained for P„ is of interest.

G(x, x')q4'(x')do'
Rp

+ I aG(x, x')/an'I oy„'5,
Sp

—G(x, x') [a/an(oP„)); I dS'. (37)

An application of formula (31) has been made
to a problem in room acoustics. A rectangular
box with perfectly reflecting walls was distorted
into a trapezoidal cross section, and the distortion
of the standing wave pattern and change of
frequency computed for a particular mode of
vibration. Experiments of this type have been
made, ' and it was possible to compare the results
with experimental data. It was found that the
pressure distribution was predicted closely,
mostly within experimental error. The change of
frequency from the unperturbed case was ex-
perimentally +4.9 percent while the calculated
change was +4.2 percent. '

~ R. H. Bolt, J. Acous. Soc. Am. 11, 184 (1939).
p These calculations will be published in The Journal of

the

Acoustical

Society of America.

The eigenvalue expression then becomes

X„=X„'+A„„+I3„„+o„„A„„. (33)

and the problem is to find o„.One has from (32)

Iz'( y.')+K.'( y.') =A..y.'. (34)

Let G(x, x') be the Green's function for the region
Rp and the equation H'@+X„PP=0. Then,

CONCLUSION

It has been found that the perturbed eigen-
functions P„can always be found by a surface
integration over known quantities. The per-
turbed eigenvalues, however, as given by Eq.
(17), may involve volume integrals of the trans-
formation operator 0., and no general way has
been found of eliminating these integrals. In two
cases, 2a and 3, however, where the unperturbed
eigenfunctions have normal boundary conditions,
the eigenvalue can be so expressed as to depend
only upon surface integrals and can therefore be
easily calculated. Of these two cases, the first has
direct application to the Wigner-Seitz theory of
metals, to electromagnetic resonators and to
acoustic problems, where it has been 'found to
give accurate results. The second case can lead to
complex eigenvalues and applies directly to the
problem of the slightly absorbing wall. If it is
assumed, as seems to be necessarily true, that the
eigenvalues are independent of the volume be-
havior of 0., then for all cases formulae involving a
Green's function of the unperturbed region can
be obtained for the perturbed eigenfunctions and
eigenvalues.

We wish to thank Professor P. M. Morse for
reading this paper and for the interest he has
taken in it during its preparation.

APPENDIx I

In this appendix it will be shown that the method
employed by Froelich if extended to include second-order
terms leads to results identical with the perturbation
method. One has obviously,

j lp 8@ '/sn y'ap„/—snlds
x„=x„p+ "

'dV
Rp

Take for p„ the expression

@.=@.P+ ~'B.-.@"
k

where

1

IXp„
BQ

p p +second-order terms

Then for P„ to second order one obtains

I

0 =4».'+&'BI AP —~4 ' —~'~, ~ -p~AP+(~' —I)4 '
7o I, XI/ —X P

If this is employed in (1), there is obtained directly
Fq. (17&.
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APPENDIX II

A formula used in Eq. {31) will be established in this

appendix. First, the integral J f(x)dV taken over the re-

gion R will be expressed as an integral taken over the
region Rp. Consider

f f(x)dV= ff(x)J(x)dx, dxddx&,

where J is a quantity dependent upon the coordinate
system chosen. A new set of variables x is now introduced
by the equations

For k =n, there is found

p„p„de=1+ n Dqt„pp 'dS —( „n+ n). (10)
R gp

Equation (8) gives information about the relation of A„&„-

and AI,„. If lit n obeys boundary conditions that make the

solutions orthogonal, and if qbk' is zero on Sp, then A„I,=A. f, .
The surface integral also vanishes in cases where Scoincides
with Sp. The formula (9) relates the normalization of ll|

and Qn.

One now has,
xi=x +Xi(x'). (2) APPENDIx III

f f(x)dV f=R'(fJ) "," ", ', dx, 'dx, 'dx, '. (3)

If the following quantities are defined,

&aX;,&
axi ax; axi ax;

&xi i, j Bxi Bxj Bxj Bxi

the integral may be written, dropping the primes,

Here the method developed in this paper will be applied
to the continuous eigenvalue case, the problem of scat-
tering. The equation satisfied by @„is to first order,

Hpy„+E;„@„=—II'@t.p.

If 4„ is the solution of the homogeneous equation, the
solution of the inhomogeneous equation may be written,

(2)y„=c„+ G(x, x )II~y.pdV,
Bp

where it has been specified that @„behave as 4 plus a
first-order term, and where G(x, x') is the Green's function
for the region Rp. From the properties of the Green's
function, Eq. (2) becomes

fnfjdU= 4nq4dV

+ ~(&/&xi) (@n @je &Xi)dx&.dx2dx3
@pi

opj +qbj 04„. )dV. {6)
Rp

From (6) there are obtained two results, one for k gn and
one for k =n. To write these, a vector D is defined by the
equation

@ =4'+~@ '+ (G(x, x')t{~/~n)(~qt p)3. ~

Sp

—
L @„oj..(a/an)G(x, x') IdS'. (3)

For P, one has to first order,

de. @' +f=(G(x x )L(di!dl&)( d' ') 1*

—[ f„'J, (8/Bn)G(x, x') IdS'. (4)
{7)D = Z(Br/Bx;)X;,

where r is the radius vector. In terms of D one has,
This result is related to Huygens' principle. It is the result
that would be obtained by solving the equation II ltJ

+&an=o by means of -a Green's function and using in

the surface integral, as a first approximation, the Green's
function for the region Rp and the unperturbed functions
@„'.This is the method employed by Sommerfeld. '

~=D g, (1/J)Z(a/ax;) {JXi)=~.D, {8)
I!

Except for second-order terms, D is the vector displacernent
corresponding to the increments X;.For k gn, one obtains,
using Eq. (11),

f(x)dV =f R(fJ)(1+dr+p+ )dxddxddx. , (5).
Ep

If for f(x) one takes P (x)&I,(x), the integral (5) becomes
on evaluation to first-order terms,

J d ddr (&"", &'",) f. Ddd„'d. 'dd. (9)

' P. Frank and R. von Mises, Reimann-8'cher Differential
Gleicknngen der PIjysik, Vol. 2 (Fred. Vieweg @Sohn, 1927),
p. 478.


