
JANUARY 15, 1941 PHYSI'CAL REVIEW VOLUM E 5 9

A Note on the Density anti Comyressibility of Nuclear Matter
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The influence of the Coulomb force between protons on nuclear radii is calculated by using
the minimum property of the. energy eigenvalue. Several different methods of estimating the
compressibility of nuclear matter yield qualitatively concordant results. A small correction
to the Coulomb energy is required by the finite value of the compressibility. This correction,
which may be called the Coulomb "expansion" energy, is proportional to the square of the
Coulomb energy.

I. INTRODUCTION

' 'T is generally assumed that the density of
~ - nuclear matter has approximately' the same
constant value in all nuclei. Support for this
assumption has been found in the approximately
linear relation between binding energy and
number of particles, in the general trend of
nuclear radii in the heavy radioactive elements'
and in the values of the Coulomb energy required
to account for the stability relations among light
and intermediate nuclei. ' The evidence in support
of an approximately constant density does not
exclude the possibility of small systematic or
irregular variations both within a given nucleus'
and from nucleus to nucleus. '

II. THE EFFECT OF COULOMB FORCES ON

NUCLEAR DENSITY

One possibility for systematic variations is
given by the Coulomb force between protons
which might be expected to produce a trend
toward decreasing density in heavy nuclei. By
utilizing the minimum property of the energy
eigenvalue, this effect can be discussed without
the introduction of special hypotheses.

Let Hp represent the nuclear Hamiltonian with
the omission of the Coulomb interaction. The
equation

~p4p=Ep4p

by calculating an expectation value of the total
Hamiltonian using as wave function Pp(Axe ~ ~ )
with ) a scale factor to be determined by
minimizing B. Thus,

E(X)=
J )I Pp*(Axe )Hpfp(Axe )dr

)tP *Pxg )Pp(Xxg )dr

+Asap.=Ep(&) +~Ep.

=Ep+ —', P.—1)'Ep"+XEp, . (2)

In the last line use has been made of the fact that

Ep'(X) =0 for X = 1

(4)

(~)

(6)

(7)

E'(X) =0

we obtain X = 1 Ep /E p", —

R =Rp(1+Ep, /Ep"),
2

E=Ep+E p' Ep./2Ep"—
The last term in Eq. (7) may be called the
Coulomb "expansion" energy.

and terms involving derivatives of Ep(X) beyond
the second have been dropped. Zp, is the Coulomb
energy for the radius Rp. From the condition for a
minimum,

determines the normal state eigenfunction
Pp(x~, ), eigenvalue Ep and radius Rp of a
nuclear model in which there is no Coulomb force
acting between protons. The eigenvalue E and
radius R of the actual nucleus may be obtained

III. ORDER oF MAGNITUDE EsTIMATE oF Ep

The facts mentioned in the introduction are
consistent with the relations

Rp 0.5A&(e'/mc')

Zp —162mC2.

(g)

(9)'G. Gamow, Atomic Nnclei and Nuclear Transforma-
tions (Oxford Press, 1937), p. 106.' E. Wigner, Phys. Rev. 51, 947 (1937).' H. Euler, Zeits. f. Physik 105, 553 (1937). To calculate Ep" we must know the dependence
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of Ep on the nuclear radius Rp. We write

Eo=ALTo —Wo(Ro)], (1o)

in which Tp is the average kinetic energy per
particle and Wp(Rp) the average potential energy
per particle. Since the kinetic energy varies
inversely with the square of the radius Eq. (10)
implies

Ep(X) =A[X'Tp —Wp(Rp/X) j. (11)
The statistical model and Eq. (8) yield the value'
Tp 28mt."'. A convenient unit in which to express
Ep" is provided by Eq. (11). Ke see that the
contribution from the kinetic energy to Ep is
simply 2ATp 56mc'. The results of the next
paragraph show that

Eo"——(2A Tp) k (12)

with k in the neighborhood of 2 or 3.
To proceed beyond this point an explicit form

must be assumed for Wp(R). Three assumptions
are treated here:

(a) Wp(R) =8 exp ( —R/a),
(b) Wo(R) =73 exp (—R'/a')
(c) Wp (R) =3/(R'+ a') '*

Some theoretical basis exists for Case (c).'
Case (a)

B exp ( Ro/a) = 2T—oa/Ro, LEq (3)j
Ep=A Tp(1 2a/Rp),

a/Ro=0. '19, (Eq. 9),
Ep" ——1.73(2A Tp) =97Amc'.

In the same way we find

Case (b) Eo"= 2.73(2A To) = 153Amc'. (15)

Case (c) Ep" ——1.88(2A Tp) = 105Amc'. (16)

Another type of estimate is provided by using
the Hartree approximation to calculate Wp(R)
from an assumed Hamiltonian operator. A calcu-
lation of this type, based on the exchange force
Hamiltonian with error function potentials, has
been made by Bethe. ' He obtains

Ep =2.6(2A Tp). (1'1)

IV. DISCUSSION

The numerical results in this section are based
on the assumed value Ep"——150Ansc'. This gives

R =R,(1yZ'/125A'~'). (18)
4 E. Feenberg, Phys. Rev. 52, 758 (1937).
5 H. Bethe, Rev. Mod. Phys. 9, 69 (1937), Eq. (319).

The following figures show how R/Rp varies with
charge number. Chemical atomic weights are
substituted for A in order to obtain a single
valued function of Z

R/Rp

12

1.016
32

1,027

52

1.034
72

1.041
92

1.046

The most interesting aspect of the energy
formula Eq. (7) is the way in which the Coulomb
energy varies within an isobaric series. If Z is
increased by one unit the Coulomb energy in-
creases by the amount

hE, =Ep, (Z+ 1)—Eo,(Z) —Eo,(Z) 2Z/125A "'.
(19)

If the Coulomb exchange energy is neglected Eq.
(19) becomes

AE, = (6Ze'/SR ) (1—Z'/125A "')= 6Ze'/SR (20).
The effect of the term in brackets in Eq. (20)
is to shift the region of stability toward smaller
values of the isotopic number, N —Z, as compared
with a theory in which nuclear matter is treated
as incompressible. Kigner's theory of stability
relations in isobaric series is of the latter type.
However, the correction to Kigner's energy
formula implied by Eq. (19) is not large enough
to extend the region in which the theory agrees
with experiment, although it is in the right
direction. In fact, a considerable extension of the
range in which theory and experiment agree
could be obtained by arbitrarily taking Ep"

about one-fifth the value used here. signer has
emphasized that the breakdown of his theory
beyond A=52 probably results in large part
from the neglect of the eRect of the Coulomb
interaction in coupling together states with
different types of symmetry. Precisely this
coupling or mixing effect is neglected in Eq. (2)
since the symmetry properties of a wave function
are not changed by a change of scale. Conse-
quently it seems best to defer the application of
Eq. (20) to the problem of nuclear stability until

reliable estimates of the mixing effect and of the
Coulomb exchange energy are available. Then it
may become possible to determine Zp" directly
from stability relations among isobars.


