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The non-electric scattering of charged mesons by protons
and neutrons is calculated as a 6rst-order effect in the
heavy electron pair theory of nuclear forces. The latter
theory regards the mesons as heavy electrons, that is, as
particles with spin k/2, obeying the Dirac equation and
diGering from usual electrons only in their rest mass p.
An upper limit for the scattering cross section of mesons
by nuclear particles is derived; it is found that the cross
section is less than 4)&10 " cm' for mesons of energy
B=IJc~ and less than 1.6X10 "for 8=3pc . These values

are about 1000 times smaller than the corresponding
cross sections obtained on the basis of meson theories of
nuclear forces which ascribe to the meson a spin k. In
contrast to the latter theories the values obtained in the
present paper are in agreement with the upper limits of the
scattering cross section found experimentally by Wilson
and others. For meson energies large compared to the rest
energy of the proton or neutron, the scattering cross sec-
tion increases linearly with the energy; it first attains the
value 10~~ cm~ for meson energies of the order of 10n ev.

)1. INTRODUCTION AND DISCUSSION OF RESULTS

HE scattering of mesons by neutrons or
protons has recently been investigated both

experimentally and theoretically. The experi-
ments by Blackett and Wilson' have shown that
the scattering of mesons by nuclei consists
mostly of Rutherford scattering due to the
Coulomb forces between the electric charges of
the nucleus and of the meson. More recently,
J. G. Wilson" observed the scattering of mesons

by metal plates in a cloud chamber and found
that only one track out of 185 showed a scattering
angle appreciably outside the range expected
from multiple Rutherford scattering; this par-
ticular meson had an energy of 1.6Xj.0' ev.
Wilson also quotes four other tracks of particles
with still higher energy, previously measured by
Wilson and by Brode and Starr, and which could
not be attributed to Rutherford scattering. The
cross section for this large angle scattering (due to
short range non-electric forces) computed from
the three sets of experiments is of the order of
10 " cm' per proton. The possibility that the
tracks were due to protons scattered by the
specifically nuclear forces cannot be excluded.
Thus the available experimental material indi-
cates that the cross section of meson scattering
by nuclear particles is at most 10 "cm' in the
energy region: 2)(10' to 2)&10' ev.

This result, however, is in striking contrast to
the theoretical calculations carried out by

+m &+') P N+m '+'
~

Here N stands for neutron, P for proton, m1 2' '

designates a positive meson in two states 1 and 2,
respectively. The cross section of this process was
first calculated by Heitler' with the result

4X p4
& =—(gi'+2g~')
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' P. M. S. Blackett and J. G. Wilson, Proc. Roy. Soc.
165, 209 {1938).

"- J. G. Wilson, Proc. Roy. Soc. 174, 73 (1940).

' W. Heitler, Proc. Roy. Soc. 166, 529 (1938).' H. J. Bhabha, Proc. Roy. Soc. 166, 501 (1938).
4 A. H. Wilson, Proc. Camb. Phil. Soc. 36, 363 (1940).
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Heitler, ' Bhabha, ' and Wilson4 on the basis of the
current meson theories of nuclear forces. These
theories regard the mesons as particles with spin
5 obeying Bose statistics, and interacting with
nuclear particles (proton, neutron) in a way
similar to the interaction between charged parti-
cles and light quanta. However, in order to
describe the actual nuclear forces by means of a
meson field it was necessary (a) to introduce an
additional interaction of a kind that does not
have its analog in electrodynamics —depending
on the spin of the nuclear particles, (b) to
introduce neutral mesons besides charged mesons
("symmetric" theory) or even to ascribe the
nuclear forces entirely to the virtual emission and
reabsorption of neutral mesons alone ("neutral"
theory)

These theories (with the exception of Bethe's
neutral theory which of course has nothing to say
about charged mesons) give rise to a scattering
of charged mesons by nuclear particles in virtue
of a second-order process, e.g. :
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TABLE I. Vatues for the cross section computed from Efjs. (4),
(5) and (6) for three characteristic energies.

Energy (Mev) 89 267 1780
Energy (pc') 1 3 20
0 (cm') for
mesons of spin —,

' &4X10 " &1.6X10 " &5.5X10 "
(cm') for

mesons of spin 1 1.5 X10 " 2 X 10—242X10 "

6 W. Heitler, Nature 175, 69 (1940).' G. Wentzel, Helv. Phys. Acta 13, 269 (1940}.

The quantities g~ and g2 are the two factors
determining the meson-nuclear particle inter-
action, both having the dimension of a charge, p
is the meson mass ( 175 electron masses), p its
momentum, 8 its energy; the nuclear particle has
been assumed infinitely heavy. The calculations
of Kilson4 taking into account the finite mass of
the nuclear particle give in addition to (1) a term
proportional to p' and a term which does not
vanish in the limit of zero p; namely,

12~iV' (g(+go) '
op=

((J,+3II)o (p+2M)'c4

M is the mass of the proton or neutron. The
factors gI, g2 have been determined by identifying
the nuclear forces derived from the meson field
with the observed nuclear forces and it is found

2
that g(,/bc=0. 16 and that the order of magni-
tude does not depend on the particular theory
used. The numerical values of the scattering
cross section for three characteristic energies can
then be calculated and are listed in Table I.

Several authors have tried to remove this
large discrepancy with experiment either by
introducing new quantum states of the nuclear
particle with higher multiples of electric charge
or by investigating the possibility that higher
approximations would reduce the cross section.
The first hypothesis' reduces the cross section by
introducing new intermediate states which give
rise to interference terms of the same sort which
occur in the expression for the scattering of
neutral mesons by nuclear particles. As regards
the second suggestion, Kentzel' has shown that
the same large cross section 2)r()o/pc)o is obtained
in an expansion of the meson-nuclear interaction
in powers of (1/g) —which represents the limit
of strong interaction. It seems therefore im-

probable that a more exact approximation
method would give rise to smaller values for the
cross section.

In view of these serious difficulties we have
tried to calculate the scattering on the basis of a
theory of mesons with spin -', and obeying Fermi
statistics. The mesons are supposed to differ
from ordinary electrons by the value of the rest
mass alone. Thus they are to be described by the
Dirac equation, and by a "hole" theory to
account for the two signs of charge. Ke use the
term "heavy electrons" for these hypothetical
particles, which tentatively may be identified
with the observed mesons in cosmic rays.

The interaction between heavy electrons and
nuclear particles obviously must be different
from the interaction in the theories of the Bose
meson. In the present theory the interaction
gives rise to a change of state of a heavy electron
under the inHuence of a nuclear particle. This is
equivalent to the creation of a heavy electron
pair if the change of state consists of a transition
from a negative to a positive energy state. It has
been shown by one of us' that nuclear forces
having a suitable spin and spatial dependerice
can be derived from an interaction of the form:

G(go&(t )y)(pop(e)z(6)y) (3)

~ R. E. Marshak, Phys. Rev. 5'7, 1101 (1940); this paper
will be referred to as I.

In (3) @ and f are the wave functions, o'"' and
p(')o. (') the well-known Dirac operators of the
nuclear particle and the heavy electron, re-
spectively. The interaction constant G can be
computed from the nuclear forces. An upper
bound for G is derived in )3 of this paper, namely

G&7.8&&10 ' Mev cm'. (4)

It is likely that G is considerably smaller.
The scattering of a heavy electron by a nuclear

particle is then a first-order process in this theory.
The cross section is calculated in $2 and the
result for heavy electrons whose energies are
small compared to Mc' (iV is the proton mass) is:

3 G'
o =— (E'+p'c4).

2m 54C4

The cross section for higher energies (E»pc') is
given by (Eo——Mc'):

O' EEo(E+-,'Eo) o 2E+Eo '

0 = ——,'Eo log . (6)
mA4c4 E+2&o &0
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The values for the cross section computed on
the basis of (4), (5) and (6) for three charac-
teristic energies are given in Table I. They are
much smaller than the cross sections calculated
using the theories of the meson with spin one.
The values quoted are upper bounds, since the
actual G is certainly smaller than the value (4)
used here. The results are, therefore, smaller than
the observed upper limit for the cross section.

The cross section increases for high energies
(Z»Mc') with the first power of B, just as the
corresponding expression for the scattering of
mesons with spin 1. In our theory the value
10 " cm' is first attained for energies A=10"
ev and is therefore not in conflict with any
experiment performed thus far. There is, how-

ever, reason to doubt the validity of (6) for
extremely high energies. It is known that the
evaluation of the nuclear forces necessitates a
"cut-off" of the potential energy between nuclear
particles at small distances. Whatever the reason
for this "cut-off" is—it may be caused either by
the effect of higher approximations or by the
breakdown of the interaction (3) at high energies—it represents a strong argument against the
application of our theory to processes involving

high energy heavy electrons.
The result that the cross section for the

scattering of heavy electrons of spin —,
' is so much

smaller than of mesons of spin 1 can be traced to
the circumstance that the present theory has a
much smaller interaction parameter. If we ex-

press G by a dimensionless number,

G= I'pc'(5/pc)',

the value of I is 0.95)&10 ', which is 40 times
smaller than the corresponding dimensionless
constant g/(kc)'* of the meson theory. This
difference is due to the fact that the nuclear
forces are represented by a field of two heavy
electrons rather than one meson. Because of the
larger statistical factors involved, a field of heavy
electron pairs gives rise to relatively stronger
nuclear forces than a field of single Bose mesons if
the interaction parameters are equated to each
other.

The calculations presented here show that a
theory which describes the nuclear forces as
arising from the emission and reabsorption of
pairs of "mesons" of spin 5/2 is quite compatible

with the experiments on the scattering of mesons
by nuclei. It must be remembered, however, that
the above result is derived by using the first
approximation only of the perturbation method.
Because of the divergences involved in the higher
approximations, it is difficult to decide whether
the same conclusion would be borne out by a
more rigorous treatment.

)2. THE CALCULATION OF THE SCATTERING

CROSS SECTION

The differential cross section do- for the scat-
tering of a heavy electron into the solid angle dQ

by a free neutron or proton at rest is given by the
well-known formula:

do. =(2~/hv)
i V.pi'pdQ.

In Eq. (8) 0 is the velocity of the incident heavy
electron, V,~ is the matrix element of the
"tensor" interaction V between the heavy elec-
tron and the nuclear particle for the scattering of
the meson; p is the density of final states of the
heavy electron per unit volume, per unit energy
and per unit solid angle. The process is of first
order. Since we wish to examine the behavior of
the scattering cross section for very energetic
heavy electrons, we use the relativistic expres-
sions for both nuclear particles and heavy elec-
trons. At the same time the recoil of the nuclear
particle and the consequent change of momentum
of the heavy electron is taken into account. Ke
may write' for V I, .

V, /=G )dr&'& dr'"'I(cop("'0&"'e0)(lpqp&'0'&$0)
J

+(+ P&n)~(n)~ ) Q, P(e)~(e)I( ) I (9)

In (9) the quantities %0, +q are, respectively, the
initial and final wave functions of the nuclear
particle while p„, ",are the corresponding wave
functions of the heavy electron; these wave
functions are normalized per unit volume. Also
o-'"', IT ') are the Dirac four-component spin
operators of the nuclear particle and heavy

' In I the nonrelativistic approximation (3) was used;
this sufficed for the calculation of nuclear forces. Eq. (9)
is the corresponding relativistic expression; cf. H. A.
Bethe and R. F. Bacher, Rev. Mod. Phys. S, 82 (1936).
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electron, respectively, whereas p&"', p"; (&.("', ()."
are the well-known Dirac operators. In the initial
state a the nuclear particle is at rest so that its
energy is' Bo M/——», while the heavy electron has
momentum p and energy E;= ( p'+1) 1; in the
final state b the heavy electron has momentum q
and energy Zz ——(&I'+1)', the nuclear particle
acquiring momentum Q =p —q and energy Z =Bo
+Ez Z„=—(Q'+. ( M/p)')l. In the notation used

the density of states is given by:

p = &IEg/8&rsc%' (10)

In evaluating
I

V,b I' we must average over the
spins of both heavy electron and nuclear particle
in the state a and sum over the spins of both
particles in the state b. These operations and
integration over the coordinate space of both
particles leads to

G2 3 Spur ( a&'& I&+p&'&q ( a&6& c[+p&'&qp"""I 1+ !p"«"
I

1+
4ai I 4 4 g; ) 0 E~ )

Spnr ( a("' Q+p(")(M/& ) )

!p( )~ ( )(1+p( ))p( ),( &I I+ )
p((r ( a&') p+p&'&y ( a&'& q+p&'&q

"I 1+ !p" ("I '+
z, » , z,

Spur ( a("'Q+p(")(M/) )i
p( )o~( )(]+.p( ))p& &&), &

&I

E. )
The cross terms which arise from (9) do not contribute to

I
V &, I'. Evaluation of (11) by means

of the usual rules for taking products of Dirac operators gives:

( 1+-,'p q ) ( M/)
1+

I
1+

(P +I):(q+I)» ~ (e+(M/p) ):&

1 —3I&'q ') ( ' M/IJ,
+I 1- (»)

(P'+1) '(&'+1)'& & (Q'+(M/~)')'&

Of course, the second term in brackets which
arises from the Dirac current operator, vanishes
in the nonrelativistic approximation for the
nuclear particle, i.e. , in the limit SIC —+~. The
first term in brackets, arising from the spin
operators, does not vanish in the limit 2VI—+~.
Ke finally obtain the differential cross section do.

as a function of the angle of scattering O~ by
putting (12) and (10) into (8) and by observing
that () =cp/(p'+1) -*':

do = (P'+1)'(&I'+1)'+—cos 0
Sm-'54 3

M/p g+ —de. (13)
(P'+&I"-—2Pg cos 0+ (M/p)')' P

' Just as in I, the unit of energy is pc', of momentum pc
and of length A/pc.

The momenta p and q are still measured in units
of pc. When p is small compared to M/)&( then
q=p for all angles 0 and we get for the total
cross section:

3p'G'
o = (p'+ 2) for p((M/(J, .

27rfi4

The cross section is therefore finite in the limit of
zero velocity. The integration over 0~ can also be
performed for p&)1; in this case the rest mass of
the heavy electron can be neglected and in virtue
of the conservation laws of momentum and
energy it follows that

q =P(M/p)/((M/p) +P(1—cos 0)).
Putting this value for &I into (13) leads to an
expression which can be integrated exactly with
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the result:

1 GV P&p(P+4Fp)

fL P+ gEp

Ep' 2P+Ep
log

jap
(15) V(r) = a F(r), a = 16m'G', (18a)

units of u'c4/3fc'=8. 7 Mev. V(r) is the singlet
potential given in I (cf. Eq. (8)):

For energies large compared to M/u, Eq. (15)
reduces to

1 0'p, '
p&o.

A4
(16)

It is seen from (16) that under extreme relativistic
conditions the total cross section for the non-
electric scattering of heavy electrons by nuclear
particles increases linearly with the incident
energy of the heavy electron.

$3. THE DETERMINATION QF THE INTERACTION

Cows vAm

Ke follow Bethe's procedure" in order to
evaluate the interaction constant G from the
nuclear forces. Since the experimental material
only provides an upper value for the scattering
cross section, it will suffice for our purposes to
find an upper bound for G; the actual value may
be several times smaller.

The strong singularity of the nuclear forces
which results from the heavy electron pair theory
necessitates a "cut-off" at small distances. The
"cut-off" may be made in different ways; in the
following we use the "zero cut-off" method which
assumes the nuclear potential to vanish within a
certain "cut-off" distance rp. In this way the
constant G will be overestimated since we may
safely assume that the actual nuclear force does
not vanish completely for small distances. There
are now two magnitudes to be determined: the
constant G and the "cut-off" distance rp. How-

ever, values for G and rp may be obtained by
making use of the singlet scattering of neutrons

by protons and of the fact that the triplet ground
state of the deuteron is lower than the singlet
state.

The radial part u(r) of the wave function
describing the scattering of a neutron of zero
energy by a proton is given by the equation:

(d'u(r))/(dr') = —V(r)u(r). (17)

Here r is measured in units of b/uc and V(r) in

'0 H. A. Bethe, Phys. Rev. 57, 390 (1940).

(Ep(2r) 4Ei(2r) Ei(2r) q

F()=i, , +, +

F(r) =0
for r)rp,

(18b)
for r &rp.

In (18) E„(z) is a Bessel function of order r and
related to the we11-known Hankel function of the
first kind:

E„(z)=—ie"'""II&'&(iz)
2

Bethe" finds from the observed neutron-proton
scattering cross section that, for large r, u(r) is
given by

u = 1.+0.1r. (19)

The constant a in (18a) is to be adjusted so that
u(0) =0. It is possible to get an upper limit for a
by replacing F(r) by another function Fp(r) for
which F(r) &~Fp(r) for all values of r. If u(0) =0
for the potential V(r) =b Fp(r), b is an upper
limit to the constant a. Ke have chosen for Fp(r)
the function Fp(r) = Ce «" which coincides in
value and first derivative with F(r) at the "cut-
off" point; i;e. ,

F(rp) = Fp(rp), F'(rp) = Fp'(rp);

these two equations determine C and o.. The
differential equation (17) is now soluble and we
obtain with the potential V=bFp(r) the solution:

(x 2 ys)
u= Jp(se «"")—0.1( —Np(se «"~') ——log —

)

00, n 2)

' u=Xr

for r)rp,
(20)

for r&rp.

In (20) s = 2(bC) ~/u, Jp, Np are Bessel functions
and p is the Bernouilli number. The quantity X
should be adjusted so that u and du/dr are
continuous at r=rp. This is only possible for a
suitable value of s, the lowest one of which
finally determines b. Several values of b for
diff'erent "cut-off" radii rp are listed in Table II.
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TABLE II. Values of b for dhgerent "cut-og" radii rp.

rp 0.2 0.4 0.6 0.8
0.041 0.27 0.56 0.90

At this point we make use of the fact that the
triplet state of the deuteron lies lower than the
singlet state. The triplet state is given by two
simultaneous diff'erential equations:

(d'p)/(dr') ev = —Dx—+Cv.
(21)

is the energy of the triplet state of the
deuteron. In (21) x is the S wave function and y
the D wave function; also we have:

6 6 2a
F(r); C =—aF(r) + —+ —G(r—);

3 3 r2 3

TABLE III. Values of the distance p for several values of a.

1.5 0.75 0.35 0.12 0.04
0.63 0.56 0.50 0.39 0.29

be impossible if LW(r) —V(r) j were positive or
zero for all values of r. It is easily seen that
W' —V~&0 for all values of r greater than a
certain value p. The distance p is a function of c
and several values of p(a) are tabulated in
Table III. In order to depress the triplet state
below the singlet state, the cut-off radius ro must
be smaller than p, thereby providing a region in
which W' —V is negative. %'e therefore obtain
an upper limit for ro by the condition r«p. "Let
us now compare p(a), which is a monotonically
increasing function of a, and b(ro) which is an
upper bound of a and determined in the preceding
paragraph; b(ro) is also a monotonically in-

creasing function of ro. Supposing there is a
value b* of the second function belonging to a
value ro*, so that ro* in turn is equal to the first
function p(a) for a =b*; this is actually the case
for 5*=0.46. The following inequalities are then
valid:

2-'

D = aG(r);—
3

t 5KO(2r) 2K&(2r) SK,(2r) y-+ + [ for r&fo,
G(r) = 4 r' r' r4

for r (r().

According to Bethe" these equations are almost
equivalent to a single Schrodinger equation with
the potential:

W(r) =—'(A +C)& L
—'(A —C) '+D'] ~

6 3 1y' 8
F(r)+—+a—G(r)+

~

aG+—
~
+—. (22)

3 r' E r' ) r4

The lower sign holds for the ground state of the
deuteron, and should therefore lead to an eigen-
value lower than the lowest singlet state given
by Eq. (17).This state of affairs, however, would

G' =a/(16~') (b*/(16~').

Therefore after introducing other units, we
have"

G'(0.9X10 'p'c'(b/(pc))' (23)

"We have checked this procedure by applying it to
Bethe's theory; according to Bethe the correct value of a
is 1.66 for rp=0.3. For this value of a we find p=0.8."It is interesting to note that one gets a value of G'
close to (23) by 'the following approximate method: one
takes the experimental proton potential from the paper of
Hoisington, Share and Breit (cf. Phys. Rev. 55, 884
(1939)), i.e. , J(r) =90mc e "I&/(r/a), (a=5/2pc) and sets
it equal to the singlet potential (18) at r=n, one finds
G'=1.6X10 'p, 'c'(5/p. c)'. If one sets the two equal at
r =20., one finds 0'=8.5&10 5p'c'(A/pc)'.

Here ro is the actual cutting off radius (ro(rp')
and a the actual value of the force constant.
Thus b* is an upper bound of a.

The relation between a and G is given in (18)
and we get:


