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The temperature dependence of the thermal diffusion
constant « of a mixture of isotopes is determined for the
9,5 Lennard-Jones model of intermolecular forces by the
use of the Chapman-Enskog theory of transport phenomena
in gases. The treatments of the Sutherland model and the
special Lennard-Jones model given in the first paper of this
series were subject to the drastic restriction that the depth
e of the potential energy minimum must be small compared
with £7. The present treatment of the 9,5 model is valid to
all orders of ¢/kT; this advantage is gained, however, at the
expense of substituting laborious numerical methods for the
analytical methods that were used in the previous paper.
The results indicate that the thermal diffusion constant
first increases slightly as the temperature decreases, and
then decreases rapidly, passing through zero and becoming

negative at a temperature about 1.5 times the critical
temperature. The constant becomes strongly negative as
the temperature decreases still further, and then ap-
proaches zero as the absolute temperature approaches zero.
When the theoretical results are modified to account for the
fact that the neon molecule is much harder than is indi-
cated by a repulsive force index of 9, a quantitative
agreement is obtained with Nier’s experimental data on
mixtures of the neon isotopes. Fair agreement is obtained
with the data of Atkins, Bastick, and Ibbs on mixtures of
the noble gases. An approximate method is presented which
permits one to obtain from the results for the inverse power
model, the first two terms of the series development of & in
powers of e/kT for the general Lennard-Jones model of
intermolecular forces.

HE present paper is a continuation of the
previous one of the same title,! and is
devoted primarily to a treatment of the Lennard-
Jones 9,5 model which is not restricted by the
requirement that the attractive force be weak.
Although this model of intermolecular forces is
more specialized than any of those treated in I, it
has turned out to be of much greater interest
because the results are free of the restriction just
mentioned. .
In order to avoid too extensive reference to I,
the general formulae will be given briefly in
Section 1.

I. INTRODUCTION

The equation of diffusion, with the effect of
thermal diffusion included, may be written in
the form

c1(Vvi—V) =c162(v1i—V3) = c2(V—vy)
=Dyp(—gradei+acice grad logT) (1)

for a mixture of two gases. In Eq. (1), ¢; is the
fractional particle density of the first gas, and ¢,
is the fractional particle density of the second gas;
vy and v, are the convection velocities of the
molecules of the first and second gases, re-

*N atiL)nal Scholar, Harvard University.
1 R. Clark Jones, Phys. Rev. 58, 111 (1940). This paper
will be referred to as I.

spectively, and v is defined as
v=c1Vi+caVe; (2)

Di, is the coefficient of diffusion; and « is the
thermal diffusion constant.

It is to be noted that since v is obtained by
averaging with respect to the number of the
molecules of each kind, the total mass flux is not
given by pv, where p is the density, but is rather
given by pv,, where v,, is defined by

C1m V1 CamiaVe
vm = ——1 (3)
Cimy1+Cotmy

where m; and m, are the masses of the molecules
of the first and second gas. A confusion between v
and v, led to the publication of an incorrect
formula in a previous paper.?

From here on, we restrict our discussion to the
case in which the two gases represent different
isotopes of what is chemically the same gas. In
this case it is a close approximation to replace
D, by D, the coefficient of self-diffusion of either
gas. _

Therigorous Chapman-Enskog theory of trans-
port phenomena in gases yields the value of the

?W. H. Furry, R. Clark Jones and L. Onsager, Phys.
Rev. 55, 1083 (1939). Equation (10) of this paper is correct
only if p is regarded as the density the gas would have if
all of the molecules were of species 1.
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thermal diffusion constant in terms of certain
cross section integrals which refer to collisions
between molecules of the first and second gas.
Let the impact parameter of such a collision be
indicated by b, and the relative velocity at
infinity by g. Now let us reduce b and g to
dimensionless form by means of the trans-
formation:

g=(2kT/m)y,

b=sa(7)B, 4)

where m=mms/(m,+m,) is the reduced mass, s
is an arbitrary constant length, and o(y) is an
arbitrary function of v and therefore of g. Finally,
let 6(8, v) be the angle of deflection suffered by
either molecule when it is deflected by the field of
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force of another, as measured in the center-of-
gravity coordinate system.
We may now define the quantities

O () = f (1—Pi(cost)}Bd8  (5)
0
and in turn the quantities
Q“""=f exp(—v)a* (V)OO (y)dy.  (6)
0

The Q's are dimensionless collision cross sections
suitably averaged over 8 and .

In first approximation, the Chapman-Enskog
theory yields the following general formula:

where Ry is the ratio of a to the value predicted
by the theory for molecules which behave as hard
smooth elastic spheres:

RT = Ol/ahard spheres (8)
105 my—m,

118 motm,

)

Qhard spheres —

Equation (7) cannot be given in any more
explicit form without specifying the nature of the
intermolecular forces.

The material presented thus far is given in
much greater detail in the first three pages of I.

It seems worth while to indicate the general
formulae for the first approximations to the
coefficients of viscosity and of diffusion in terms
of the Q’s; we have

15 mkT\*
n=—~——(-—) (10)
3252000\ 1
and for the coefficient of self-diffusion :
3 mkT
D=————( ) (11)
16ps2QH\ 7

In Egs. (10) and (11), and only in these two
equations, m is the mass of the molecules, rather
than the reduced mass. The elimination of s?
between (10) and -(11) leads to the useful

(20017 — 5QL9) (15019 42021
. : , 7
7 QED(165Q15 — 60011 4120019 41602 D) )
formula
Do 2 Q2D y "
“ s gue], (12)

We may now obtain the result (29,I), which was
stated without proof, by substituting (26,I)
in (12).

Note added in proof.—As we pointed out in I,
Eq. (7) is an approximation in the further sense
that the expression on the right is the first term
of a power series expansion in the relative mass
difference (mqy—my)/(mo+m1). The equation is
approximately -correct, however, even when the
ratio of the masses m/m; is large compared with
unity. In a recent paper?* Chapman has discussed
numerically the dependence of Ry on the relative
mass difference for the special case of the inverse
power model.

His results may be summarized as follows. For
the sake of specificity we assume that mgy2 m;.
When the concentration of the heavier molecules
is small, we find by inspection of Chapman’s
Table 6 that Ry is essentially independent of the
relative mass difference for all values of the
force index ». When the concentration of the
heavier molecules is not small, however, we find
from Tables 4 and 5 that Ry decreases as the
relative mass difference increases from zero to

22 S, Chapman, Proc. Roy. Soc. A177, 38-62 (1940).
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unity, and that the amount of the decrease is
greater the greater the value of ¢y and the
greater the value of ». In the most extreme case,
when the mass ratio and » are both infinite, the
value of Rr decreases by the factor 2.3 as the
concentration of the heavier molecules rises from
zero to unity. The corresponding factor is much
closer to unity, however, for the isotopic mixtures
which one meets in practice. For example, when
me=2m; and v is infinite, the factor is 1.2; and
when »=15 with the same mass ratio, the factor
is 1.1.

In the same paper, Chapman points out that
the values of A4:® and A4.® which he had
previously given and which were used in I, 0.812
and 1.825, are incorrect. He states that the
correct values are 0.796 and 1.584. As a con-
sequence of this change, the first line of Table I
in I should read

0.796 1.584 1.327 1.592 0.807

The next line, which was obtained by inter-
polation, should be modified, and the first line
of Table V should also be changed in an obvious
manner. The correction of these errors removes
a noticeable discontinuity in the functions f(»)
and C(v).

Ternary and Higher Order Mixtures

Note added in proof —Further on in this paper
it is suggested that measurements of the thermal
diffusion constant of xenon are desirable, and
this suggestion brings squarely before us the
question of mixtures of more than two isotopes.
The results presented below have been known to
the author for some time on the basis of plausi-
bility arguments, but only recently have they
been derived from the rigorous general theory.

The general theory of thermal diffusion in
ternary and higher order gas mixtures has been
given by Hellund.?® In his article Hellund stresses
quite properly that thermal diffusion in ternary
and higher order mixtures contains essentially
new features, and that the results, therefore,
cannot be obtained by extrapolation from the
theory of binary mixtures. In the special case,
however, in which the molecules differ only with
respect to their mass, the equations of thermal

® E. J. Hellund, Phys. Rev. 57, 328 (1940).
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diffusion in higher order mixtures may be written
in terms of the binary thermal diffusion con-
stants.

In order to indicate the nature of the general-
ization, it is convenient first to rewrite Eq. (1)
in the following form: :

vi—v=D(—grad logci+aiscs grad logT) (A)

where a;; is the value of « defined by Egs. (7)-(9).
We see that the presence of the second gas occurs
explicitly only in the combination ajscs. It is
plausible to suppose that in a mixture of three
isotopes the factor aisc; would be replaced by
a19Ce+ascs, and similarly for the case of more
than three isotopes. This suggestion has been
confirmed by the general theory of ternary and
higher order mixtures.

The following relations have been derived
from Hellund’s general theory for a mixture
whose component gases are all isotopic with
respect to one another. Let the number of com-
ponents be N, and let the fractional particle

density of the 7th component be ¢;, where
Eka =1.

(B)

The remaining relations in this section are valid
only to terms of the first order in the relative
mass differences (m;—m;)/(m;+m;). We have

©)
(D)

a;,=—aj, a;=0,

@it aE = o — o= o
The equation of diffusion for the 7th component is

v;—v=D(—gradlogc;+ (Sramci) gradlogT) (E)
k=1,2, -+, N
where :

()

is the particle convection velocity of the gas as
a whole. The equation for v; which has just been
given involves all of the ¢’s. From Egs. (B), (C)
and (D), however, we find that the expression
for v;—v; contains only ¢; and ¢;:

vi—-vj=D(—grad logCi/Cj+aij grad logT). (G)

V=20 Vi

This equation is identical in form with the

equation for a mixture of only two isotopes.

In application to the Clusius-Dickel thermal
separation column, we find by the use of (E) that
the equations for the equilibrium concentration
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distribution are of the form

dci/dy=cZromc (H)

where y is proportional to the coordinate along
the column. In analogy with Eq. (G), we find
from (H)

d log(ci/c;)/dy=au;. (D

The Egs. (H) or (I) form a set of simultaneous,
nonlinear differential equations for which the
general solution may be found as follows: In-
tegration of (I) yields N—1 independent equa-
tions of the form

log(ci/¢j) = atis(y —yii).- )
The N—1 constants y;; may be determined from

the N—1 independent conditions that the total
mass of each component be conserved.

II. TuE GENERAL LENNARD-JONES MODEL

General formulation

Lennard-Jones has proposed® and used ex-
tensively? in theoretical treatments a law of
intermolecular force of the form

F=x/r—«/r’, (13)

where 7 is the distance between the centers of the
molecules, and where «, «’, v and v are positive
constants. A positive value of F corresponds to a
repulsive force.

The modern quantum theory of van der Waals
forces suggests that »" should have the value
seven ; quantum theory further suggests that the
first term of (13) should be replaced by a term
involving the radius exponentially. For the ranges
of radii which are concerned in molecular colli-
sions at ordinary temperatures, however, an
exponential term can be approximated closely by
a term involving a large inverse power of the
radius.

As in I, we use a polar coordinate system 7, ¢,
with its plane in the plane of motion of the two
molecules whose collision we wish to study, and
with its origin at one of the two molecules. In
terms of the reciprocal radius #=1/r, the first

8 J. E. Lennard-Jones, Proc. Roy. Soc. A106, 441 (1924). .

4 See, for example, R. H. Fowler and E. A. Guggenheim,
Statistical Thermodynamics (Cambridge, 1939), Chapters
VII and VIII; or R. H. Fowler, Statistical Mechanics
(Cambridge, 1936), Chapter X.
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integral of the equation of motion in a spherically
symmetrical field of force may be written

du\? 1 2 ®
(-—) =——y2— f Fdr. (14)
do b? mg?b? J,

We now substitute (13) in (14), and subject b and
g to the transformation (4) with

s=(k/2ET) 16D,

oly)=7-HeD. (1)
With the further substitution
x=bu, (16)

Eq. (14) becomes

dx\? 2 /x\"!
do y—1\g ,
2p sx\""!
() an
v —1\8

where we have used the abbreviation

KI

p= (18)

D=1 (2R Ty 2) o= =1
The quantity p is important because it is the
means by which the temperature dependence is
introduced into the final results.

The physical significance of p is more easily
grasped when it is expressed in terms of ¢, the
depth of the potential energy minimum ex-
pressed as a positive quantity. When » >, such
a minimum exists for the law of force (13), and is
easily shown to have the value

(v—»)

—=1)0"—1) K==

K =D16=")

(19)

The elimination of the «’s between (18) and (19)
leads to the result
=Y (v—1)
| (20)

[(V—l)(u'—l) €

B 2(v—9") kTy?

The appearance of the temperature at this stage
of the derivation is somewhat fictitious, of
course; it appears explicitly because of the substi-
tution (4). According to (4), kT¥* is equal to
img?, so that p is a quantity which is proportional
to a power of the ratio of ¢ to the kinetic energy of
the molecules at infinity.
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By exactly the same procedure that was used
for the case of the inverse power model in I, we
find from (17) for the angle of deflection

x0 2 v—1
08, 7)=7r—2f ‘1—x2~ 1(Z)
0 [

2p fa\VH !
-+ (—) . ] dx, (21)
v —1\B

where x0(8, p) is the smallest positive root of the
equation obtained by setting the right-hand side
of (18) equal to zero.

The integration indicated in (21) cannot be
performed in terms of known functions for the
general case, so that it is usually necessary to
resort to numerical methods from here on.

Specialization to the 9,5 case

The Sutherland model (v= «) and the special
Lennard-Jones model (»'=3) represent special
cases of the general Lennard-Jones model, and
have been worked out as far as terms of the first
order in ¢/kT. Subject to this limitation, the
derivation of the value of « for these models was
given in 1.

For the 9,5 model, Hassé and Cook® have
proceeded from Eq. (21) by purely numerical
methods, and have obtained the values of
O® and O® for 18 different values of p. The
authors exhibited admirable foresight in com-
puting the values of both @™ and ©®, inasmuch
as they were interested in the coefficient of
viscosity, which involves only ©®,

The work of Hassé¢ and Cook appeared only a
year before London® showed by a simple calcu-

TaBLE 1. Comparison of the notation used by Hassé and
Cook, and by Jones, I and II.

H anp H AND
C C J H anp C J
/] X A K
0 ¢ w &' | For the (9,5) model only:
T—20 0 n v 1/s q
V. o g| m | L(k)/2r=(2k)}V (k) OW (y)
2 y| a B |I(k)/27=(2k)}Ys(k) 30®(y)
P b|Et=ay «x I(s) Q@0
R k| at %o
kE p

8 H. R. Hass¢ and W. R. Cook, Proc. Roy. Soc. A125,
196 (1929).
8 F. London, Zeits. f, physik. Chemie B11, 222 (1930).
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lation that the interaction energy of two mole-
cules without permanent moments would fall off
as the inverse sixth power of the distance; it was
later shown quite generally by Lennard-Jones?
that the leading term in the energy of mutual
polarization is always of the form — ur—%, where u
is positive. We may feel quite certain, therefore,
that Hassé and Cook would have performed their
computations for the 13,7 model if they had done
their work slightly later, inasmuch as the
trigonometrical substitution which they used to
facilitate the numerical evaluation of (21) is
equally effective for any pair of values of » and »’
which satisfy the relation »=2y"—1. The 13,7
model has since found extensive use in the
statistical-mechanical treatment of the properties
of fluids and solids.*

Because a substantial part of the task of
computing the @’s has already been accomplished
for the 9,5 model, it seems worth while to
determine the temperature dependence of « for
this model before proceeding to the working out
of the 13,7 model from the beginning. This order
of procedureis further justified by the expecta-
tion that the results for the 13,7 model will not be
greatly different.

For the special case v=9, »'=35, Egs. (15) and
(20) reduce to

st=(k/2kT)%, o y)=~"} (22)

2/ € \?
b 'y( kT)
The relation between the notation used by Hassé
and Cook and that used here is given in Table I
for the convenience of those who wish to refer to
the paper of Hassé and Cook.*

The values of ®®W and ©® determined by
Hassé and Cook are given in Table II. The values
of 6 were determined to an accuracy of one
second of arc, and the writers state that the @’s’

(23)

( 7] E Lennard Jones, Proc. Phys. Soc. London 43, 461
1931

* It may also be helpful to point out the few typo-
graphical errors which occur in their paper: 1. The state-
ment on p. 207 that I(s) is the integral with respect to z
in (13) should be replaced by the statement that I(s) is
1/2x times the integral with respect to z in (12); 2. The
variable of integration in (12) should be changed from %
to z; and 3. The four polynomial approximations on p. 207
which are indicated as expressions for Iy(k) are actually

‘approximations to I3(k)/2.
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TABLE II. The exact values of ®® and OP, and the values given by the approximate formulae.

eow 1) om ew/(2p)} 10@ 10® 10@ 10@/(2p)}
4 ExacTt Eq. (25) Eq. (32) ExAcCT Exact Eq. (26) Eq. (33) Exacrt
0.00 0.38080 0.38080 0.16520 0.16520
0.25 0.35947 0.35947 0.15108 0.15110
0.50 0.34766 0.34766 0.14435 0.14431
0.75 0.34972 0.34988 0.14929 0.14931
1.00 0.37066 0.37066 0.17059 0.17059
1.25 0.41584 0.41450 0.21165 0.21262
1.50 0.49001 0.48592 0.27171 0.27988
1.75 0.59603 0.58944 0.34269 0.37686
2.00 0.73297 0.72956 0.95377 0.36648 0.40754 0.50802 0.38640 0.20377
2.3835 0.98228 1.06480 0.44990 0.44926 0.42190 0.20577
2.8563 1.23697 1.18818 0.51754 0.44778 0.46189 0.18735
3.4641 1.32953 1.33076 0.50511 0.50824 0.50866 0.19309
4.0 1.44530 1.44530 0.51099 0.54659 0.54658 0.19325
6.0 1.81155 1.81153 0.52295 0.66923 0.66927 0.19319
8.0 2.11888 2.11658 0.52972 0.77264 0.77264 0.19316
10.0 2.38356 2.38357 0.53298 0.86366 0.86368 0.19312
© 0 © 0.55260 © o 0.19257

are accurate to five significant figures. The values
of the ©'s are now to be determined by performing
the integration with respect to v which is indi-
cated in Eq. (6). In this integration the depend-
ence on v is, of course, eliminated, so that the
Q's are functions of the quantity

q=py=2(¢/kT)% (24)

The temperature dependence of the @’s will enter
through their dependence on g.

Before proceeding to the numerical evaluation
of the Q’s, we shall derive expressions for the Q's
which are valid for the two limiting cases of ¢
small, and ¢ large, compared with unity.

For values of p lying between zero and unity,
the following polynomials are very close ap-
proximations to the data given in Table II:

O® =0.38080—0.09834p

+0.04004p2+0.04816p%, (25)
10® =0.16520—0.06507p
+0.02268p2+0.04778p%.  (26)

It happens that (25) fits the data in Table II to
within two percent for values of p between unity
and two, but such is not the case for (26).

For small values of ¢, we may obtain the Q’s by
substituting (25) and (26) in (6). This procedure
may at first seem questionable, since the integral
involves large values of ¢ as well as the small
values for which (25) and (26) are good approxi-
mations. The error would be expected to be
greatest for small values of v, which correspond
to large values of ¢. It is easily confirmed,

however, that the factor y* in the integrand of
(6) vanishes so strongly at the origin that the
error is inappreciable for sufficiently small values
of ¢, when k takes values as large as 5, 7 or 9. We
find

Q1.9 =0.30623 —0.05571¢

+0.01840¢2+0.02183¢%, (27)

QD =0.84213 —0.12535¢
-+0.03220¢%+0.02728g%, (28)

Q19 =3,15801 —0.40738¢
+0.08855¢2+0.06139¢%, (29)

1021 =0.36534 —0.08294¢
+0.01824¢240.02707¢%.  (30)

If now the expressions (27-30) are regarded, not
as polynomial approximations, but as power
series expansions of the Q@'s about the point ¢=0,
they may be substituted in (7), and the result
expanded in ascending powers of ¢. One finds at
length

Rp=0.43241{1+40.4026¢ —0.1392¢?
—0.1616¢°+ - - - }
=0.43241{1+0.8052(¢/ET)*

—0.5568¢/kT —1.2930(e/kT) +---}. (31)

This expression is compared with the precise
result in Fig. 1.

Similarly, for values of p greater than four,
the following “expressions are very close ap-
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proximations
O®=0.78149;p*—0.03621—0.16295p~%, (32)
19®=0.27234p1+0.00344 —0.00300p~%.  (33)

For sufficiently large values of g, the values of the
©’s for which (32) and (33) are not good approxi-
mations will not contribute appreciably to the
integrals (6). Substituting (32-33) in (6) yields

QL9 =0.51944¢4 —0.02912 —0.16295¢~,  (34)
QLD =1.20859¢% —0.08008 —0.48885¢%,  (35)
QL9 =4.5451gt —0.3003 —1.9554¢+, (36)
10D =0.45254¢140.00761 —0.00927¢~+.  (37)

If now we substitute these expressions in (7), and
expand the result in descending powers of pt, we
find that the constant term is identically zero,
and we are left with

Rr=—0.03390¢—4—0.37935¢~'+ - - -
= —0.02397 (kT /e)}
—0.18968(ET /) +---. (38)

This expression is also compared with the precise
result in Fig. 1.

Numerical results

The values of the Q@’s have been obtained by
purely numerical methods from the data given
in Table II. The values of Q@7 for 0.25<¢< 20
were determined by Hassé and Cook;® the re-
mainder of the entries in Table III were deter-
mined by the writer.

The method of integration used by Hassé and
Cook was to split the range of the variable p into
four parts, and to find accurate polynomial
approximations to ©® for each of these ranges.
The integration was then accomplished by use of
tables on the incomplete gamma-function.

The writer used a different method, which was
essentially ordinary numerical integration. In-
stead of integrating O® itself, however, the
integration was actually performed using as the
integrand the difference between (25) or (32) and
the exact value of ®® as given in Table II. The
numbers obtained were then applied as correc-
tions to the approximate values of the Q's ob-
tained from (27-29) or from (34-36). This
method has the advantage that the quantity

1025

obtained by numerical integration was nearly
always a small fraction of the final value of the @
in question. .

For values of ¢ equal to or less than four, the
correction to (27-29) was determined, whereas
for values of g equal to or greater than five, the
correction to (34-36) was determined by nu-
merical integration. The interval used in the
integration (6) with respect to v was 0.25; in only
one case, that of ¢=35, it was necessary to
subdivide the interval of integration over part of
the range. It was usually sufficient to carry the
numerical integration out to y=35.0. All of the
calculations were carried to six significant figures
although the accuracy of the results did not
always warrant such precision.

The one drastic limitation on the accuracy of
the results obtained lies in the fact that because
of the great labor of the calculations, Hassé and
Cook computed only three values of @™ and ®®
in the range 2 <p <4. Although these values were
computed to an accuracy of five significant
figures, the function behaves so irregularly in
this interval that the interpolated values may be
in error by as much as one percent. The irregu-
larity is more apparent in the values of ©/(2p)?,
which are also given in Table II. Accordingly, the
values of the Q's for which the main contribution
comes from O’s in this range have a probable
error of something less than one percent. The

0.6

0.4 /“N\
0.2 \ \

Rr

0.0 \\

-02 W /

-04

\_/

-06

-08
0.0 0.5 1.0 20 30 50 70 100

(e/kT)”?

F1G. 1. Showing the dependence of Rr on ¢/kT for the
Lennard-Jones 9,5 model. For approximate purposes, the
abscissa may be considered as the square root of T./T,
where T, is the critical temperature. The two shorter
curves represent the results yielded by the approximate
formulae (31) and (38).
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TABLE IV. Table of Rr as a function of e/kT.

1/¢ Q5 Qun Qu.9 1000 1/q o/kT Rr 1/¢ /KT Ry
® 0.30623 0.84213 3.1580 0.36534 o 0.0 0.43241 0.8 0.3906  0.1617
20.0 0.30349 0.83595 3.1379 0.36124 10.0  0.0025 0.44898 | 0.6 0.6944 —0.153
10.0 0.30086 0.82994 3.1182 0.35726 5.0  0.01 0.46304 | 0.5 1.0 —0.384
8.0 0.29960 0.82702 3.1097 0.35531 4.0  0.0156  0.4687 |04 1.5625 —0.573
6.0 0.29756 0.82230 3.0928 0.35215 3.0  0.0277 04753 [0.3333  2.25 —0.629
5.0 0.29600 0.81857 3.0806 0.34970 2.4  0.0434 04771 |0.25 4.0 —0.465
4.0 0.29379 0.81323 3.0626 0.34617 2.0  0.0625 0.4753 | 0.2 6.25  —0.232
3.0 0.29051 0.80494 3.0343 0.34072 1.6  0.0977  0.4605 |0.1 25.0 —0.040
2.4 0.28779 0.79746 3.0081 0.33590 1.2 0.1736  0.4036 |0.05 00.0 —0.023
2.0 0.28570 0.79092 2.9841 0.33181 1.0  0.25 0.3243 | 0.0 w 0.000
1.6 0.28390 0.78303 2.9530 0.32722
1.2 0.28484 0.77581 2.9156 0.32445
(l)g 8%3222 8;;%; 588(7)3 832;;3 TABLE V. Quantities for the special Lennarfl-fones model.
0.6 0.35051 0.84733 3.0101 0.39214
0.5 0.40624 0.93189 3.1899 0.4;5%3 v G H(»)
0.4 0.51020 1.12014 3.6433 0.57470
0.3333  0.63116 1.37246 4.3201 0.70133 3 1.000 0.000
0.25 0.86044 1.95803 6.1680 0.90432 5 0.833 0.833
0.2 1.03951 2.48879 8.1644 1.02595 7 0.392 0.557
0.1 1.56006 3.87286 13.4659 1.44991 9 0.156 0.293
0.05 2.25604 5.61808 19.5888 2.02936 11 0.030 . 0.120
0.025 3.22935 8.05563 28.1362 2.86826 15 —0.0928 —0.0833
0.0125  4.59797 11.48021 40.1337 4.05421 ® —0.2662 —0.4822
0.005 7.30491 18.25020 63.8389 6.40684 :

relative accuracy of the @'s is much higher, of

course.

tuted in Eq. (7). The values of Ry so obtained are
given in Table IV as well as in Fig. 1.
We shall defer the discussion of these results to

The Q's given in Table III were then substi- Section IV.

ITII. TuE SpECIAL LENNARD-JONES MODEL (¥ =3)

This model has already been treated in I.* The result, however, can be presented more simply and
in a more useful form than was done in I. Furthermore, the present formulation is better adapted for
the generalization which will be attempted in Section IV.

Equation (45,I) may be written in the form
v—1 e

—3)/(v—1)
OW =4 z(”’—i-Bz(”)( . ) ,
v—3 kTv?

where 4, and B, are the quantities tabulated in Tables I and V of I. The expression (39) is valid
only to the terms of the first order in (¢/kT)¢—¥/¢=D, From (6) and (39) we find the formula corre-
sponding to (47,1):

(39)

E+1 2 k—1 y—1 €\ 0 D/0eD
Quh =14 l(v)r(__._ ) +1iB 1(")F(——) . ( m) . (40)
2 v—1 2 v—3 kT
The substitution of this expression in (7) now leads to
»—5 € \ =B/ =1 1544By/B1/ € \—»/0-D
) e G
r—1 kT 15+4+6f \kT
Rr=C(») , (41)
[ G2B2( € )“—3%’("*1)][1 G 117+4-32B,/B; [ ¢ <”—3>/<f—1>]
1— - — —
3fB\ kT 177-448(f =1/ (=) +1/G—1)) \ kT
»—5 ¢\ 0=9I0-D
=C +H )(———) J (42)
(V)[V-1 e kT ‘

* The writer is aware of two errors in I, both of which involve the special Lennard-Jones model: 1. The x immediately f)re-
ceding the D(») in Eq. (IV) should be «, and 2. The value of D(15) in Table V should be 0.012 instead of 0.088.
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The function G(») is defined by

y—3\ ~0=9]6—1
Gv)=— ( )

y—1
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B®
A4,90(3-2/(-1))

The second expression for Rrisequivalent to the first as far as terms of the first order in (¢/£T)¢—3/¢=1,
The functions C(») and f(») are tabulated in Table I of I; G(v) and H(») are tabulated in Table V of

this paper.

IV. DiscussioN oF REsuULTS

The results indicated in Fig. 1 were derived
explicitly for the Lennard-Jones 9,5 model. In the
absence of evidence to the contrary, however, it
seems reasonable to assume that the qualitative
features of the result will be much the same for
other molecular models which are similar to the
9,5 model. In particular, we shall suppose for the
present that the behavior indicated in Fig. 1 is
typical of Lennard-Jones models in which the
attractive force index is about half of the re-
pulsive force index, and we know that such
molecular models have had considerable success
in explaining the properties of fluids and solids.

The negative portion

By far the most striking aspects of the results
given in Fig. 1 and Table IV are the rapid de-
crease of Ry as (e¢/kT)* increases beyond one-
half, and the large negative values of Ry as the
temperature decreases still further. This behavior
of Ry was quite unexpected, and it has not yet
received any’ definite confirmation from experi-
ment. The negative portion, if it exists, should
not be at all difficult to observe, as we shall now
indicate.

The theoretical results can be more easily
understood when they are expressed in terms of
the critical temperature of the gas in question.
Since the critical temperature is the temperature
at which the attractive forces are just able to
overpower the disrupting effects of thermal agi-
tation, it is clear that the critical temperature is
given approximately by the relation ET.=e.
Using the Lennard-Jones 13,7 model, and a
simplified model of a liquid, Lennard-Jones and
Devonshire® have found by detailed calculation
the more precise result

To=(2/9)-(e/k), (43)

8]. E. Lennard-Jones and A. F. Devonshire, Proc. Roy.
Soc. A163, 53 (1937); Proc. Roy. Soc. A165, 1 (1938).

where z is the number of nearest neighbors of any
given molecule in the liquid. Fowler and Guggen-
heim® suggest in this connection that a suitable
value of zis 11. With z=11, Eq. (43) reduces to

T,=1.22¢/k. (44)

If now we use the relation (44) to interpret the
results in Fig. 1, we find that Ry is positive for
temperatures greater than 1.547, and negative
for temperatures less than 1.547,. We also find
that the minimum of Ry occurs at the tempera-
ture 0.367 .

Now it is not at all difficult to work with gases
at temperatures less than 1.547T,. In Table VI we
have given the boiling points at atmospheric
pressure and the critical temperatures of the
noble gases and a few others chosen at random.
From this table we may draw the very rough but
rather general conclusion that at atmospheric
pressure one may work with gases at tempera-
tures greater than about 0.67.

For xenon, the range of temperature from the
boiling point to 1.54T, is the range from — 109°C
to 173°C. An experimental determination of the
thermal diffusion constant of xenon in this
temperature range would thus provide a useful
and highly desirable check on this theory.

Application to isotope separation

Itis clear that the attempt to separate isotopes
with a thermal separation column having 1.547",
as its mean temperature would meet with disap-
pointing results, since the integral'® yielding the
value of H would be nearly zero as a consequence
of the reversal of the sign of a. As we have just
seen, however, there is usually a comfortable
range of temperature between the temperature of
condensation and 1.547,. If, therefore, it is

? See Fowler and Guggenheim, reference 4, p. 345.

1 W. H. Furry, R. Clark Jones, and L. Onsager, Phys.
Rev. 55, 1083 (1939); R. Clark Jones and W. H. Furry,
Rev. Mod. Phys., to be published.
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TABLE VI. Values of the critical temperature and the boiling
point at atmospheric pressure for the noble gases and
for a few others chosen at random.

Gas B.P. AT ATMOS. PRESS. Te B.P./T.
He 4.3 5.3 0.81
Ne 27 44 0.61
A 88 151 0.58
Kr 121 211 0.58
Xe 164 290 0.57
Cl, 239 417 0.57
CCl, 349 556 0.63
0. 90 154 0.58
CH,4 108 191 0.57

inconvenient or impossible to operate the column
over the range of temperature in which « is
positive, it should usually be possible to operate
the column so that it utilizes the negative portion
of the curve shown in Fig. 1.

The hardness function

It will be noted that the initial slope of the
curve in Fig. 1 is positive. This corresponds to the
fact that the coefficient of (e¢/kT)* in (31) is
positive. We shall find it convenient to use the
term ‘‘initial slope” in a more general sense in
connection with the general Lennard-Jones
model; more generally, we shall mean by the
“initial slope’ the initial slope of the plot of Ry
against (e/kT)—*7/0-D We then find that the
initial slope for the special Lennard-Jones model
is also positive when » is less than about 15;
according to Table V, the function H(y) is
positive for values of » less than about 15.

In I, this positive “initial slope’” was felt to be
a defect of the special Lennard-Jones model,
since the experiments seemed to indicate a
negative slope. This difficulty has been resolved
by the results in Fig. 1, which indicate that the
initial slope is only a small part of the whole
story.

The writer also stated in I that he did not
know whether the positive initial slope was due
to the choice of » =3, or whether the “‘difficulty
is more deeply seated.” The writer now believes
that he knows the reason for the positive initial
slope, and that it can be explained on the basis of
the inverse power model. Since Frankel'! has
shown that the essential properties of the inverse
power model can be derived from elementary

11 S, P, Frankel, Phys. Rev. 57, 661L (1940).
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considerations, the argument to be given below
furnishes another crumb of information about
the thermal diffusion constant that can be ob-
tained from elementary considerations.

The argument itself is somewhat arbitrary and
approximate, and derives its real justification
from the fact that its result is in good agreement
with the results already obtained for the special
Lennard-Jones model and for the 9,5 model. The
argument follows.

Let 7o be the distance of separation which
corresponds to the minimum of the potential
energy. Then, for values of » greater than 7, the
force is an attractive one, whereas for smaller
values of 7 the force is repulsive. We propose
that these two ranges of » make opposing contri-
butions to the initial slope.

In the case of the Sutherland model 7 cannot
be less than 7y, so that we are concerned only
with the effect of the first of these two ranges. We
saw in I that, for the Sutherland model, the initial
slope is negative for all values of »'. It therefore
appears that the contribution of the first range
to the initial slope is negative.

In order to discuss the contribution of the
second range let us first recall some of the results
for the inverse power model. This model is the
special case of the Lennard-Jones model in which
' is zero. For the inverse power model, we found
in I that Ry is given by

Rr=C(»)(»—35)/(v—1), (45)

where C(v) is a slowly varying function of v
which increases from 0.8 to 0.9 as » rises from §
to 15. Ry thus increases as » increases, or as the
“hardness’’ of the molecule increases. The deriva-
tive dlogF/dlogr is constant for the inverse
power model, and is equal to —». Let us therefore

introduce a ‘“‘hardness function”
w(r)=—d logF/d logr. (46)

For the general Lennard-Jones model, we find
the hardness function to be

W)= (r=0v)/(1=Q)
=r+Q(r—¥)+0(Q?),

where Q is the ratio of the attractive to the
repulsive term in (13):

Qr) =«"/(rr"="").

(47)

(48)
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Now for all values of 7 in the second range, Q is
positive and less than unity. This means that for
all values of 7 in the second range, u(r) is greater
than v; the effect of the second term in (13) is to
increase the hardmess of the repulsive force. We
should thus expect that the presence of a weak
attractive force would increase the value of Ry.
In order to put this argument in a more

As a first approximation, we find

’

p 2k =1 6=D)
=)
k \(v—1)kT
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quantitative form, it is necessary to perform some
sort of an averaging process on u(r) in order to
eliminate the dependence on r. We shall per-
form this averaging by the arbitrary device of
evaluating Q at the distance of separation which
corresponds to an energy of interaction equal to
2kT. We shall also approximate by treating Q as
a number small compared with unity.

vV —1 2e\ ¢—N0=D
(=) )

If now we substitute (49) in (47), and then substitute the average value of u so obtained for » in (45),

we find after a little manipulation

»—5 y—v 20/ —1)\ CDIE=D) 4 e \ O=DIe=D
reco(C—l(Go0) G )
v—1 y—1)2\ p—y kT

(50)

This is the result toward which we have been working. The quantity in the curly bracket (multiplied
by C(»)) is the value of the initial slope predicted by the argument just presented.

In Table VII we compare the value of the curly
bracket in (50) with the value of the correspond-
ing coefficient as given by the results for the
special Lennard-Jones model and for the 9,5
model. The agreement is satisfying ; the approxi-
mate treatment yields substantially correct re-
sults as long as the second range is not too small
in extent; that is to say, as long as » is not too
great a multiple of »'.

The precise value of the initial slope obtained
by this approximate treatment depends, of
course, on the particular method of averaging
which is used to eliminate the dependence of u
on r. Any method of averaging which is physi-
cally reasonable will yield about the same result,
however, so that the writer feels that Eq. (50)
affords a reliable approximate evaluation of the
“initial slope” for the general Lennard-Jones
model, subject to the restriction that » may not
be too great a multiple of »".

It is interesting to contemplate that if the van
der Waals forces were non-existent for any
molecule, and if the only energy of interaction
were an overlap energy of the asymptotic form

E=ae?, (51)

then the hardness function would be given by
u(r) =pr. (52)

According to (52), Ry would 7ise monotonically
as the temperature decreased, and would ap-
proach unity as the absolute temperature
approached zero.

The approximate formulae (31) and (38)

These formulae are indicated by the dotted
lines in Fig. 1. Equation (31) affords the correct
initial slope, but it is clear that the second- and
third-order terms are far from correct. The error

TABLE VII. Comparison of the results yielded by the use of
the hardness function with the results of detailed :

calculation.
Exact CURLY BRACKET
v v COEFFICIENT IN EqQ. (50)

3 3 0.000 0.0000

3.25 3 0.2688

3.50 3 0.4850

4 3 0.7055

5 3 0.833 0.7071

7 3 0.557 0.4444

9 3 0.293 0.2767
11 3 0.120 0.1838
15 3 —0.0833 0.09551

9 5 0.4026 0.35355




1030

TaBLE VIII, The temperature dependence of n according to
the 9,5 model.

e/kT n e/kT n e/kT ”n e/kT n
0.0 0.75 1 0.20 0.77 | 0.50 0.98 |'1.50 1.30
001 0.73 | 0.25 0.80 | 0.60 1.04 | 2.0 1.28
0.02 0.73 | 030 0.84 | 0.70 1.10 | 2.5 1.24
0.05 0.72 | 0.35 0.87 | 0.80 1.15 | 3.0 1.19
0.1 0.73 1 040 091 | 1.00 1.22 o 1.00
0.15 0.75 | 045 0.94 | 1.25 1.27

is due to the impropriety of considering the
polynomial approximations as series expansions.
The approximate relation (38) is quite accurate
for values of ¢ greater than about 20.

Viscosity

By substituting (22) and the numerical values
of Q27 given in Table III in Eq. (10), one ob-
tains the temperature dependence of the coeffi-
cient of viscosity according to the Lennard-Jones
9,5 model. Hass¢é and Cook have compared
with experiment the theoretical predictions so
obtained.

During the time since the work of Hassé and

Cook was published, Trautz and his associates'*

have measured the temperature dependence of
the viscosity of a large number of gases. We do
not intend to make here any detailed examination
of these more recent data. We should like to
point out, however, that with nearly all of their
data, Trautz and his associates have given also
the experimentally determined values of

n=d logn/d logT (53)

as a function of the temperature. The quantity »
is important because of its simple interpretation
in terms of the inverse power model, as we
pointed out in detail in I.

The writer has determined # as a function of
¢/kT for the 9,5 model. The results are given in
Table VIII. The predictions of Table VIII are in
qualitative agreement with the experimental
data; the data show a general tendency for # to
increase as the temperature decreases. Values of
n as large as 1.30, however, have not been
observed ; the value #=1.14 for SO; in the range
287°-370°K is the largest found by Trautz et al.

In conclusion, we may say that the 9,5 model
is in qualitative agreement with the tendency of

2 For references, see Table II of reference 1.
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TasBLE IX. Values of a determined experimentally by Nier.

MIXTURE TEMP. RANGE a RT
CrH,—C13H, 296°-728°K 0.0080£~5% 0.30
296°-573°K 0.0074£~5% 0.27

Ne20— Ne22 283°-617°K 0.0302+£29, 0.71
90°-294°K 0.0188+29, 0.44
90°-195°K 0.0165+8% 0.39

nearly all molecules to become, with respect to
viscosity, more ‘soft’” as the temperature
decreases.

There is remarkable agreement between the
values of Rr given in Table IV, and those ob-
tained from Table VIII by the approximate
relation (32,I):

Rr=1.7(1—mn), (54)

which was derived on the basis of the inverse
power model. To two significant figures, the two
methods agree in predicting a maximum of 0.48
at ¢/kT=0.05, and they both indicate that Rr
changes sign at ¢/kT=0.53. Equation (54), how-
ever, predicts a minimum of —0.51 at ¢/kT=1.5,
whereas Table IV indicates a minimum of —0.63
at ¢/kT=2.2. In the opinion of the writer, the
close correspondence between the values of Rr
obtained by the two methods should be con-
sidered as fortuitous, since the use of (54) in the
present connection has no theoretical justification.

If such a close correspondence should turn out
to hold for other Lennard-Jones models, however,
the existence of an empirical relation of the form
(54) should have considerable practical utility,
since it would be possible to obtain an estimate of
the value of Rr at any given temperature by a
naive application of the inverse power model to
viscosity data for the gas in question.

The fact that values of # as large as 1.3 are not
found experimentally, however, may be taken to
suggest that negative values of Ry as large as
those indicated by Table IV will also not be found
experimentally.

V. COMPARISON WITH EXPERIMENT

The only direct experimental determinations
of a for isotopic mixtures which have been
published up to the present are those of Nier.!

13 A. O. Nier, Phys. Rev. 56, 1009 (1939); Phys. Rev.
57, 338 (1940).
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His results are given in Table IX, which is
reprinted from I.

The values of Ry given in Table IX are
“average” values over the temperature interval
in question ; that is to say, they are the values of
R7 which would give the observed separations if
Rr were independent of the temperature. The
relation between Ry and Ry for the “two-bulb”
method used by Nier is

T

2
Rr= Rrd logT/logT2/T1. (55)

Ty

For the Sutherland model, with the approximate
expression for Rr given by Eq. (43,I), Brown!*
has shown by the use of (55) that for any values
of Tyand T, Ry is equal to the value of Ry at the
temperature

T.T, T,
= — log—.
T.—T: T

(56)

r

When Ry cannot be expressed analytically, how-
ever, it is possible to use a simple graphical
method: Ry is plotted against logT"; the value of
Ry is then the average value of the ordinate
between the abscissae corresponding to T,
and T,.

Neon

In attempting to compare Nier’s data for neon
with our theoretical results for the 9,5 model, we
are immediately faced by the difficulty that the
largest experimental value of Ry is much greater
than any of those found in Table IV. This
difficulty simply corresponds to the fact that
neon is much harder than »=9. The experimental
value Rr=0.71 is in good agreement with the
high temperature viscosity data of Trautz and
Sorg, which according to Table II of I, predict
the value R7=0.69 at the temperature 7'=1030°
on the basis of the inverse power model ; at such
a high temperature, the inverse power model
should be adequate for neon because of the small
magnitude of the attractive forces.

In order to take account of the greater hardness
of neon, we take the bold step of increasing the
scale of the results given in Table IV so that the
maximum value of Ry is 0.74 instead of 0.48. We

1 Harrison Brown, Phys. Rev. 58, 661L (1940).
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then find by the graphical method just described
that with e/k=42.5°, the theoretical values of Ry
corresponding to the three temperature ranges
for neon are 0.71, 0.45, and 0.36. These values
agree with the experimental values within the
experimental error, and the value ¢/k=42.5° is
in fair agreement with (44), since we find in
Table VI that the critical temperature is 44°.

Now we should not like to lay too much stress
on the excellence of the agreement between
theory and experiment. After all, anyone can fit
three experimental points, two of them close
together, with a curve involving two adjustable
constants. The important fact is that the large
decrease in Ry, which occurs at temperatures
well above the critical temperature, can be
explained by the use of a value of ¢/k which is in
substantial agreement with the value indicated
by other methods of approach.

It should be remembered in this connection
that we found in I that the Sutherland model in
the approximate form (43,I) could be made to fit
the neon data, but that the required value of ¢/k
was about 350° a value nearly ten times the
critical temperature!

Methane

The methane molecule is far from' being
spherically symmetrical, so that Chapman-
Enskog theory does not strictly apply.

If we use the value of ¢/ indicated by Eq. (44)
and the critical temperature:

e/k=191°/1.22=156°,

then we find by the graphical method that the
theoretical values of Rr which correspond to the
temperature ranges in Table IX are 0.212 and
0.168. If these numbers are multiplied by
0.71/0.48 =1.48, they become 0.31 and 0.25. The
fact that the necessary multiplicative factor is
slightly smaller than in the case of neon suggests

TaBLE X. Values of Rr for mixtures of the noble gases over
the temperature range 0°—100°C.

Ne A Kr Xe
He 0.80 0.65 0.63 0.59
Ne 0.54 0.51 0.43
A 0.19 0.17
Kr 0.08
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TaBLE XI. Comparison of the theoretical and experimental
values of Rr for certain mixtures of the moble gases.

MIXTURE Tc e/k RT(THEORY) RT(EXP.)
He-Ne 25 20 0.74 0.80
Ne-A 98 80 0.51 0.54
A-Kr 181 148 0.15 0.19
Kr-Xe 250 205 —0.12 0.08

that the methane molecule is slightly softer than
the neon molecule.

We may also use the alternative procedure, and
find the value of ¢/k which permits the best check
between experiment and the predictions of the
9,5 model without the use of a correction factor.
It is found that the value ¢/k=120° leads to a
better check than was found in the last para-
graph. It is difficult, however, to justify the
smaller value of ¢/k.

Other evidence, both pro and con

Atkins, Bastick and Ibbs! have measured the
thermal diffusion constant of all of the ten
different binary mixtures of the five noble gases.
The measurements were all made in the same
series of experiments in the same apparatus. The
lower and upper temperatures in every case were
0° and 100°C. The results obtained by these
authors are given in Table X.

The general formula (7), upon which all of the
results derived in the present paper depend, was
derived upon the explicit assumption that the
molecules of the two gases differed from one
another only in that their masses were different.
The theory does not strictly apply, therefore, to
mixtures of dissimilar molecules, even when they
are as much alike as the molecules of the noble
gases. There can be little doubt, however, that
the mass difference accounts for all but a small
part of the observed separations. We shall there-
fore attempt to compare the experimental results
of Atkins, Bastick and Ibbs with the predictions
of the Lennard-Jones 9,5 model.

It is, of course, necessary to determine a
suitable value of ¢, which is now the depth of the
potential energy minimum for the interaction of
the two dissimilar molecules. It is well known!®

15 B. E. Atkins, R. E. Bastick and T. L. Ibbs, Proc. Roy.
Soc. A172, 142 (1939).

16 See, for example, F. Seitz, Modern Theory of Solids
(McGraw-Hill, 1940), p. 84. '
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that the magnitude of the van der Waals at-
tractive force is proportional to the product of
the polarizabilities of the two atoms. If then we
should assume that the fields of force of all the
noble gases differed only by a multiplicative
constant, it is clear that the value of € for the
interaction between two dissimilar molecules
would be the mean proportional of the values of €
for each of the two molecules interacting with
molecules of its own kind. Actually the assump-
tion at the beginning of the last sentence is not
strictly justified, and we shall omit all detailed
considerations by evaluating e from the arith-
metic mean of the critical temperatures of the
two gases which make up the mixture. Of the
four mixtures which we shall discuss, only the
first (He — Ne) provides an appreciable ambiguity
in the proper choice of ¢ and in this case any
reasonable value of ¢ will lie on the broad
maximum of Fig. 1, so that there is no ambiguity
in the predicted value of Ry even for this
mixture.

We shall discuss only the mixtures of adjacent
members of the family of noble gases. We have
given in Table XI the value of the mean critical
temperature of each of these mixtures, and the
value of ¢/k determined from (44). We then
determined from Table IV the value of Ry at the
temperature 7'=2323° and have multiplied this
value by 0.74/0.48, the factor that was found
necessary in the case of the neon isotopes; the
result is given as the theoretical value of Rr.

The comparison between theory and experi-
ment is, for the first three mixtures, better than
we might have expected. The discrepancy in the
case of the krypton-xenon. mixture may be
ascribed to a lack of applicability of the 9,5
model, or it may be written off as experimental
error. The authors reported considerable diffi-
culty in making the measurement in this case.
Since the observed change in concentration was
only 0.098 percent, and since the concentrations
were estimated from the thermal conductivity of
the mixture, it is conceivable that the discrepancy
can be attributed to experimental error. The
authors do not estimate the probable errors of
any of their results.

A serious objection to the present theoretical
results is offered by the work of Groth and
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Harteck,'” who obtained a partial separation of
the mercury isotopes by means of a thermal
separation column of the hot-wire type, operating
between the temperatures 350°C and 1800°C.
Since the free mercury atom is in a spherically
symmetrical singlet S state, and since the critical
temperature of mercury vapor is about 1650°C,
the present theory would indicate that the value
of « would be negative, and that therefore
the lighter fraction would be concentrated at the
bottom. of the column. Actually, however,
the light fraction was collected at the top of the
column. The writer has no explanation for the dis-
crepancy.

Conclusion

The small amount of experimental data which
is so far available lends considerable support to
the accuracy of the predictions of the 9,5 model
for positive values of Ryr. There is, however, no
experimental evidence for the large negative
values predicted, and the work of Groth and
Harteck, as well as the failure of the viscosity
predictions to be borne out for larger value of
¢/kT, suggests that the large negative values of
Ry may not be found experimentally.

Our theoretical understanding of the tempera-
ture dependence of a has increased significantly
since the publication of the first paper of this
series. It will be remembered that we closed in I
on a rather pessimistic note, with the unstated
but implied suggestion that the general Lennard-
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Jones model would turn out to be inadequate for
the explanation of Nier’s data. This pessimism,
the writer now realizes, was founded upon an
incomplete realization of the sad inadequacy of
the “initial slope” determinations.

Ideally, work on this problem in the near
future should proceed along two lines. There is a
need for more experimental data on the thermal
diffusion constant of isotopic mixtures, particu-
larly at temperatures in the neighborhood of the
critical temperature. In order that the Chapman-
Enskog theory be capable of application, the
measurements should preferably be made on the
noble gases and on those metallic vapors whose
atoms have a spherically symmetrical ground
state. Secondly, we must work out the detailed
predictions of other Lennard-Jones models, pre-
ferably of the »,7 type. The necessary numerical
calculations are discouragingly onerous, and it is
to be hoped that the scientific methods of
machine computation, which are just beginning
to be developed at this late stage of scientific
progress, will be of assistance in the execution of
the computations.

ACKNOWLEDGMENT

The writer would like to thank Professor W. H.
Furry for helpful comments on the manuscript,
and he is indebted to his wife, Lois Kathryn
Jones, for assistance in the numerical compu-
tations involved in the investigation of the 9,5
model.



