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Interpretation of Torsional Frequencies of Crystal Specimens
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A crystalline cylinder when subjected to a harmonically
varying twisting moment in general not only twists but

.bends. A correct interpretation of the response frequencies
is important in dynamical determinations of the elastic
constants of crystals, and it is desirable that the measure-
rnents be made under such conditions that a simple
formula, similar to that for isotropic materials, may be
used without fear of serious error. In static rneasurernents

two such formulas are required, one for twist with bending
prevented and the other for twist with bending unre-

strained. It is shown here that each of these is a good
approximation in dynamic measurements over certain

ranges of frequencies and of specimen lengths, and formulas
are derived by which the errors may be estimated. A

simple straight-line plot based on approximate values of
the elastic constants gives all the information that is
needed for the selection of good working conditions in the
final measurements. For the sodium and copper-gold
crystals on which measurements have been reported, the
pure torsion formula is a good approximation when no
parasitic response frequencies are observable; but it would

cease to be a good approximation for specimen lengths
below about 3 cm.

' 'N a crystalline cylinder whose axis is oriented
~ - arbitrarily with respect to the crystal axes,
application of either a bending or a twisting
moment alone produces both bending and twist-
ing. In static experiments the effective Young's
modulus E' and rigidity G' measured under these
conditions differ from the values E and G

obtained when only pure bending or pure twist is
allowed to occur. ' If the specimen axis is Os and
if the plane of the torsion-coupled bending is
taken as the sx plane, then in terms of the elastic
moduli s; referred to the xys axes

E'=E(1—e) =1/s, ,',

G' =G(1 —e) = 2/(s44'+s; ),

$34 /$38 ($44 +$5' ).

In dynamic measurements of the elastic con-
stants of crystals, it has usually been possible to
choose an orientation for which ~ =0; the inter-
pretation of the observed resonance frequencies
under torsional excitation then offers no diffi-

culty. ' In recent measurements on metal crystals
this has not been possible. '4 The experimental
results have been consistent with the assumption
that the effective rigidity was G, but a theoretical
analysis of the problem seems desirable. The

formulas derived by Goens' are unsatisfactory
because in their rigorous form they are incon-
venient for numerical calculation, and the first-
order correction derived from them is not always
reliable.

THEORY

The elastic properties of the specimen are
completely described by three quantities E or E',
G or G', and t.. Let E*and G~ represent whichever
values of Young's modulus and the rigidity are
chosen for this purpose. Then the actual prop-
erties may be regarded as produced by a gradual
increase of e from zero to its actual value in an
originally isotropic specimen with the same E~
and G*. The actual frequencies emerge during
this process from original unperturbed frequencies
which may be classified unambiguously as
flexural or torsional but whose values will depend
on the meanings of E* and G*. Since the "free"
frequencies (E*=E', G*=G') may be as much as
20 percent lower than the "pure" frequencies
(E*=E, G =G), it is clear that a first-order
correction for the perturbation, if it is adequate
at all, can be so only when the "unperturbed"
frequencies are properly chosen.

In terms of E and G, the differential equations
' W. Voigt, Lehrbmch der Eristallphysik (Teubner, 1928), of motion of a cylinder of density p and radius a

pp. 638, 734, 738.'F. Rose, Phys. Rev. 49, 50 (1936); M. Durand, Phys.
Rev. 50, 449 (1936). ' E. Goens, Ann. d. Physik 15, 455 and 902 (1932). See

'S. L. Quimby and S. Siegel, Phys. Rev. 54, 293 (1938), also R. Kimura, Proc. Phys. -Math. Soc. Japan 21, 686
4 S. Siegel, Phys. Rev. 57', 537 (1940). (1939).
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may be written'

where

pP = —', a'—L'8 "g/Bz'+ 2CB'f/Bz'

p4 = 4—a'—C84& tBz'+ GB'P/Bz'

C= (eEG/2)*'.

(2)

(Here rotatory inertia about the transverse axis

Oy has been neglected. ) The variables @ and P
are the bending and twisting moments exerted
across a cross section, divided by the moments
of inertia —,'mu' and —,'m.a' of the cross section
about the corresponding axes. These are more
convenient variables than the transverse dis-

placement and angular twist because they make
it possible to write the boundary conditions in a
form not containing e. For a rod with free ends
at z= &I/2 the boundary conditions are

y=g=0, Bp/Bz=0; (4)

j is an integer, and n; is the ith nonvanishing root
of

tanh' (ns/2) = tan' (n /2)s(7)
(nr=1.506, n, =i+z' to four figures for i)1).
If the frequencies are plotted logarithmically as
functions of specimen length l, the torsional fre-

quencies lie on straight lines of slope —1 and
the flexural on lines of slope —2; these are the
fine lines (both solid and dashed) in Fig. 1. The
free frequencies (E*=E',p;*=p, ' etc.) are lower

than the pure (E"=E, p;"=p; etc.) 'in the ratio
(1 —«) l.

' Reference 1, p. 673, or reference 5.' H. Lamb, Dynamical Tifeory of Sound (Arnold, 1910),
p. 124.

only this case will be considered in detail.
The differential Eqs. (2) may be written in

three other forms, corresponding to other choices
of E*and G"; these may be obtained from (2) by
means of (1).If E*and G* are held constant but e

is set equal to zero, the equations reduce to the
form for isotropic specimens, and for vibrations
of frequency p/2~

pp2$ 1a2E8$4$/gz4 pp2$ G4$2$/(jz2 ($)

The corresponding fiexural frequencies p,*/2s.
and torsional frequencies co;*/2~ are given by'

The normalized eigenfunct. ions g;, P; corre-

sponding to p;* and ~;* are

p;=I '* [cosh k;z/cosh (k;I/2)
—cos k;z/cos (k;I/2) j, i odd,

=I ' [sinh k;z/sinh (k;I/2)
—sin k;z/sin (k;I/2)], i even;

f;=(2/I)'*' cos jmz/I, j odd,
= (2/I) '* sinj 7rz/I, j even;

k; = n;~/t.

(9)

(10)
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The solution for e/0 may be expressed in the
form

4=RA 4*, 4=2&A (11)
1 7

Equations determining the A s and 8 s may
be found by substituting (11) in (2) (with
8'/Bt'= —p'), using the differential equations
satisfied by the p„'s and P s, multiplying the first
of the resulting equations by p& and the second
by tp&, and integrating over the length of the

0.5 I 2 4 8 IO

LENGTH OF SPECIMEN IN CENTIMETERS

FIG. 1.Unperturbed and perturbed torsional and flexural
frequencies for a hypothetical sodium crystal cylinder of
the diameter used by Quimby and Siegel, with specimen
axis in an orientation for which the coupling between
torsion and bending is large. E=5.47 &(10', G =2.804&(10'0'
dyne/cm', e =0.3628. The fine solid and dashed lines repre-
sent the unperturbed frequencies as functions of specimen
length: the p's are flexural, the co's torsional; the primed
are "free," the unprimed "pure. " Of these, the ones repre-
sented by solid lines are a better approximation to the
actual frequencies, which are given by the heavy curves and
the circles. The circles have been calculated by a rigorous
but laborious method, the curves by the approximate
methods of this article, The subscripts are the number of
moment loops in the specimen; the strongest interaction
is between torsional and flexural modes of vibration for
which this number is the same.
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specimen. This gives

(p' p~—')~I (—c/G) 2 CI M'B =o
(12)—(C/8) p p city;+(p' Mi2—)Bi=0,

where

FLEXURAL TORSIONAL

L/2

c'4 = J~ 4»4p;d.-.
—E/2

For i and j both even or both odd,

(13)

j
C;; j

= (4&2/2r) n j /(n j4); — (14)

the other c; s vanish. Thus Eqs. (12) break up
into two sets. One set contains only odd i's and
j's and refers to modes of vibration in which p
and 4P are symmetrical about s=0 (see Fig. 2);
the other contains only even i 's and j's and refers
to antisymmetrical modes. There is no inter-
action between a flexural mode of one type and a
torsional mode of the other type.

From (14), c222 =0.972, c222 =0.952, c222 =0.919,
~ ~ ~, c;22~0.810 as j~ ap; and since P,c;42

= P;c;42 = 1, the other c; s are small. Therefore a
torsional mode interacts chiefly with the flexural
mode for which the number of moment loops in
the specimen is the same (i =j, Fig. 2), and only
weakly with the others. As a first approximation,
account may be taken of this strongest interac-
tion alone by setting

j c;;
j

= 1 for i =j, =0
otherwise. Then Eqs. (12) separate into pairs; the
kth pair contains only A I, and Bz, and for non-
vanishing values of these

(p' p")(p' »')—2p2'M2'—= o — (1~)

whence P'=P22 or M2'2 for P22»M22, and P'=P2'2
or &I„. for pj,'((cvz. Thus if the strongly inter-
acting frequencies are not too close together, the
effect of their interaction is that the lower of
them is approximately free and the upper ap-
proximately pure. These frequencies correspond
to the fine solid lines in Fig. 1.

To obtain a better approximation, the best
choice of unperturbed frequencies is p; and co for
lengths below that at which the frequency under
consideration and its strongest perturbing fre-
quency become equal; p and co; for lengths above
this. The fact that the lengths actually used in
the experiments lie in the latter range explains
the success of the pure torsion formula. The
following corrections to the unperturbed fre-
quencies may be derived by standard methods

:Y

FIG. 2. Unperturbed flexural and torsional modes o
vibration and relative degrees of interaction between them
@ is proportional to the bending moment and P to the
twisting moment. The double arrows indicate strong
interaction, the single arrows weak interaction.

from the equations that now replace (12); the
range in which each formula is to be used will be
evident from the frequencies occurring in it,

Very near a perturbing frequency, provided
the effect of other perturbing frequencies is
negligible,

or

and

p' = -'Lb& (b' —4c) &$,

b=p ~2+~'+gC p-

b=pf2+M, "2+pc M",

C —p.42M, 2 —p.2M I2

g = 2/(1 —2).

(16)

Far from all perturbing frequencies,

(p2 M '2)/M '2 = g Q C''2p ~2/(M '2 p'42)

(P2 P '42)/P I2 = g Q C ' '2P '~2/(P '~2
M '2)

(17)
(p2 M '42)/M /2 = g Q C' '2M '~2/(M '~2 p'2)

(p2 p '2)/p'2 = g Q C' '2M '~2/(p '2 M '~2)

1

Occasionally it is necessary to take account
simultaneously of two perturbations, one due to a
weakly interacting frequency too close for use of
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(17), the other to a strongly interacting frequency
still not distant enough to neglect. This is true for
instance in Fig. j. of frequencies produced by
interaction of ~~ and p3 near their crossing point,
where p~' and cv3 still produce a considerable
effect. Formulas for such cases need not be given
here; in the application to experiments the
unfavorableness of such a situation is evident
without detailed calculation.

APPLICATION

In the experiments mentioned, the specimen is
joined end-to-end to a quartz crystal equipped
with electrodes, and torsional vibrations are
excited piezoelectrically. The frequencies ob-
served are the resonance frequencies of this
composite system, but the lengths are so chosen
that the junction of the two cylinders is approxi-
mately a moment node for torsion. The fre-
quencies are therefore almost the same as the
natural frequencies of vibration of the specimen,
as long as there is no torsion-Hexion coupling.
The effect of such coupling on the observed
frequencies cannot be computed accurately by
using the formulas derived above for the effect on
the natural frequencies of the specimen by itself.
If, however, that calculation shows that the
natural frequency of the specimen alone differs
negligibly from the "pure" frequency, it is safe
to assume that the observed frequency also
differs negligibly from the one that would be
observed if bending could be prevented.

The simplest procedure is therefore the follow-

ing. From the observed frequencies, the elastic
constants may be computed by means of the pure
torsion formula; the values obtained will be at
least approximately correct. From the elastic
constants, the unperturbed frequencies may be
calculated and plotted as in Fig. 1, for each
specimen used. An inspection of the plot will

reveal whether any of the experimental points
fall in a range where the error is likely to be
excessive, and in such ranges the error for a
single free rod can be calculated by the formulas
given above. Points for which the error is
objectionably large may be rejected and the
elastic constants recomputed without them; or
the whole preliminary measurement and calcu-
lation may be used merely as a means of selecting
specimen lengths for the final set of measurements.

Figure 1 has been calculated for a hypothetical
sodium specimen in a particularly unfavorable
orientation, from the values of the elastic con-
stants given by Quimby and Siegel. ' ' The heavy
curves are corrected frequencies of free vibration.
These have been calculated by the method of this
article. The circles are check points computed by
means of a rigorous formula similar to that of
Goens; this calculation consists in solving a cubic
equation for some value of p, calculating and
plotting a function f of the three roots and of p
and l for a number of values of /, and thus finding
a combination of f and p for which f=0 The.
calculation for given l would be still more
laborious.

It can be seen that the fundamental torsional
frequency is practically identical with the
unperturbed "pure" frequency for lengths greater
than 3 cm, except when the perturbing frequency
is very close; in this case two response frequencies
would probably be observed and the data would
automatically be rejected. ' The only possibility of
serious error, therefore, lies in the use of too short
a length. For the lengths used by Quimby and
Siegel one would expect the pure torsion formula
to hold quite well, as they found it did. The
length range for which the free torsion formula
would be valid is of no interest, at least for
specimens of this diameter, for at such short
lengths the specimen can no longer be regarded as
thin (a'«P)

Siegel in his torsional measurements on copper-
gold crystals used two specimens. '"One had an
orientation so close to L100j that the frequency
correction at room temperature is only 0.004
percent. In the other cu2, which was measured,
was rather close to p4' and was still appreciably
perturbed by p2'., the effects are 0.7 percent and
0.3 percent, respectively, and additive. The
analogous situation in Fig. 1 is a measurement of
coy at about l =6. Here a correct choice of E*and
G* is essential; for if p~ instead of p~' is chosen as
unperturbed frequency, the perturbation is

shifted to the right and the whole calculation is
erroneous.

8 For cubic crystals, in the notation of reference 3,
1/8' = sn —2sF, 1/G'= s +4sI', ~ =2s~Z'G'(l' —4I'+3X).

~ Reference 3, footnote 12.
' The data required for this calculation were kindly

provided by Dr. Sic@el.


