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which, for our purposes, is more conveniently expressed as

(
d' 2 d L'—+————+k' %=0
dr' r dr r~

multipole of order 2j. Using the recursion relations

f)+i+f~-i = (2j +1/kr)f~,
(j +1)f~+&—jf; &

———(2j +1/k) (d/dr) f;,
(A19)

employing Eq. (40a) of the text. All three possible types
of radial functions associated with a given orbital angular
momentum l thus satisfy the differential equation

one may verify that

+i= ~'~+i+@'&-i=—2j+1 &r d rXL
f,. i f, P,.~ (A20)

Lrdr
' r'

d' 2 d l(l+1)—+——+k'— f)(r) =0,
dr' r dr r2

(A18)

The solution +; for l=j (or more exactly the real part of
+ .e-ikcc) ~

+;= Lf;(r)Pp

represents a transverse wave field (& +;=0) which is to
be identified as the vector potential describing the radi-
ation emitted by a magnetic multipole of order 2j. Ap-
propriate linear combinations of the solutions for l =j+1

+j+1 I (j+1)(r/r) +i((r/r) XL) If&+i',
%; &

——
I
—j (r/r) +i ((r/r) XL) If; &P;,

may be found to represent the longitudinal and transverse
parts of the vector potential associated with an electric

= —(2j +1/k)vf&P"

by Eq. (40) of the text. Similarly

= j j+1
2j+1 2j+1

j(j+1) r rXL 1 d
-f;—i ——(rf;) P; (A21)

kr r r kr dr

= —(ilk)v X(Lf P ").
These functions therefore satisfy

~X@&=0, ~ ~2=0,
and are thus to be identified as the longitudinal and trans-
verse fields of an electric 2j-pole.
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In Section I a general formula for a, the coefficient of recombination of ions in gases, is de-
veloped. It covers all ranges of pressures and temperatures and can be made to include all types
of recombination (preferential, initial and volume ionization). The evaluation of the general
formula, (1.1), depends on the relative values of three linear quantities: the mean free path of
the ions ), the mean distance between ions of diferent signs r and the well-known parameter
ao=e'/(kKT). In Section II the case )((ao is treated. The mechanism of recombination then
depends on the ratio ao/r. If ao/r is large the migration of the ions under their mutual attraction
prevails and (1.1) leads to Langevin's formula; in the opposite case, ao/r((1, diffusion is the
decisive feature and 1.1 leads to a formula which is practically identical with that of Harper. In
Section III the case ) ))ao is treated by a method previously developed by the author. Under
certain restrictions (1.1) reduces to Thomson's formula, but in general a depends on the concen-
tration of the ions. In Section IV it is shown that (1.1) is in fair agreement with such experi-
mental data as are available for the region of transition between the cases treated in Sections II
and III.

'HE problem of recombination of ions in
gases under varying conditions of ioniza-

tion, pressure and temperature has proved to
be much more complex than was originally
anticipated. Various types, such as preferential,
initial and volume recombination are involved. '

' For the definition of these types and a survey of the
whole subject see the excellent treatment in: L. B. Loeb,
Fundamental Processes of Electrical Discharge in Gases
(John Wiley and Sons, New York, 1939).

It has been recognized in recent years that the
two most important theoretical formulae for the
coefficient of recombination, that of Langevin
and that of Thomson, have separate domains of
applicability. Harper' and Loeb' have given
formulae which bridge the expressions of
Langevin and Thomson in a formal way, but it

' W. R. Harper, Phil. Mag. 18, 97 (1934);20, 740 (1935).' I.. B. Loeb, Phys. Rev. 51, 1110 (1937).
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seems desirable to establish a general theoretical
expression from which either of them, and
eventually others, can be derived. It is the object
of the following paper to give a theory that
covers the whole range of physical conditions
and that can be made to include the various
types of recombination.

I. THE GENERAL FORMULA

We start by defining three probabilities. Let
n+ and n be the instantaneous average volume
densities of positive and negative ions, respec-
tively. The ionization is considered to be homo-

geneous in a macroscopic sense and no preferen-
tial directions are assumed to exist. Still, in order
to include preferential and initial recombination,
we shall admit microscopic inhomogeneities.
Then let p~(r)n dr be the probable number of
negative ions which are located in an element of
volume dr at a distance r (irrespective of direc-
tion) from a positive ion.

By p2(r)dr we define the probability that the
nearest neighbor to a positive ion is to be found
at distances between r and r+dr. Evidently we
have to have

J~ pg(r) dr = 1,
rm

if r is the nearest distance of approach for two
ions of different signs.

Further, let pz(r) signify the probability of
recombination. That is, of dN, . pairs of nearest
neighbors of different signs which are at distances
between r and r+dr, p3(r)dlV, are supposed to
recombine on the average. This probability
concept replaces the strict criterion for recom-
bination which other authors4 have tried to
establish.

Finally, we have to define the velocity of
approach of two nearest. neighbors of different
signs. If they are at a distance r apart, u(r) is to
signify the average component, in the direction
of r (from the negative to the positive ion), of
the relative velocity. This is supposed to be the
resultant of all acting influences, i.e. , diffusion

and electrostatic attraction. It might also be

4 (a) J. J. Thomson, Phil. Mag. 47, 337 (1924); (b) L. B.
Loeb and L. C. Marshall, J. Frank. Inst. 208, 371 (1929);
W. R. Harper, Proc. Camb. Phil. Soc. 28, 219 (1932);
3i, 430 (193S).

made to include the action of an external field,
but we limit ourselves to the case where there is
no such external field.

The expressions of n+, n, p~ and pm will, in
general, be functions of the time, as it is our
object only to calculate the instantaneous coef-
ficient of recombination, n.

With these definitions it is easy to write down
a general expression for 0. by generalizing
Langevin's argument. In doing so we first fix
our attention on such positive ions as have their
nearest negative neighbors at distances between
r and r+dr Ther. e are p2(r)n+dr positive ions of
this class per cc. We consider each of them sur-
rounded by a sphere of radius r. The number
of negative ions crossing one of these spheres
during a time interval Af will be given bv
4sr'p~(r)n u(r)At. But not all these ions will

ultimately move up to the positive center and
recombine, but only the fraction p&(r) of them.
Hence

4nr'n+n p~(r)p2(r)pa(r)u(r)drat

is the number of pairs (per cc) of the specified
class which are to be considered as lost by
recombination during At. Adding over all dis-
tances r and dividing by n+n ht we obtain

I

a=47r P~(r)P2(r)P3(r)u(r)r'dr (1.1)
rm

as our general expression for the coe%cient of
recombination.

Before we try to evaluate (1.1) for special
cases, a few words must be said regarding the
physical significance of the various functions of r.
First of all, the probabilities P~(r) and P~(r)
determine the particular type of recombination.
They are not independent of each other.

If the distribution is homogeneous also in the
microscopic sense, i.e. if p~(r) =1, and, further-
more, if the diameter of the ions can be neglected,
the probability p2(r) is known. P. Hertz' has
shown that, in a random distribution of points
without extension (n per cc), p~(r) is given by

p2(r)dr=4snr' exp ( 4snr'/3)—dr (1.2).
This law is modified, though only slightly, if,

instead of points without extension, ' ions of

~ P. Hertz, Math. Ann. 6'7, 387 (1909).
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finite diameter have to be considered. It is,
however, evident that this modification will be
insignificant if the average separation of the ions

is very large compared with their diameter, as
in all cases of gaseous ionization. Then, also, r„,
can be replaced by 0.

If pq(r) is a given variable function of r, it can

be shown by an argument which is exactly
analogous to that of Hertz that p~(r) will be
determined by

p~(r)dr=4~r'n p, (r) exp ( rl P(—r))dr, (1.3)

where

(1.4)

the whole ground, the following calculations are
only intended to give a survey of possible cases.

II. SPEcIAL CAsE: PL SMALL IN

COMPARISON WITH 00

up e'/(Xk ——T), (2 1)

The mechanism of recombination depends

upon the relative importance of Brownian

movement and migration under the mutual

attraction of the ions. Whether the one or the
other process is prevalent can be inferred from

the ratio of two linear quantities: r, the mean

distance between an ion and its nearest neighbor

of opposite sign, and a characteristic length
defined by

Thus when p&(r) is determined the probability

p2(r) may be calculated. Bradbury' has recently

determined p~(r) for the cases of preferential and

initial recombination and, therefore, it would

not be difficult to evaluate 0. for these types of
recombination. However, we shall limit ourselves

to the fundamental case of volume ionization

with n+ ——n =n. Not even then is it permissible,

in the strict sense, to replace p~(r) by 1. Owing

to the electrostatic attraction there is a greater
probability of finding a negative ion in an

element dv- near a positive ion than in an equal

element at a greater distance. This is conclusively

shown by the theory of ionic atmospheres as

developed by Debye and Hiickel. ' This theory
is applicable to our case, but for all cases of

gaseous ionization the characteristic distance of

the Debye theory is so large in comparison with

the mean distance between two ions that this

inhomogeneity may be disregarded.
For these reasons we shall, in all that follows,

take pq(r) = 1 and shall also replace r by 0 which

amounts to determining p2(r) by (1.2).
The functions p3(r) and u(r) depend on the

mechanism of recombination which is effective

under given circumstances. Their determination

constitutes the specific difficulty of the problem.

Before starting to effectuate this determination

for particular cases we wish to emphasize that
these evaluations are only approximate. Whereas

our formula (1.1) claims to be exact and to cover

N. E. Bradbury, J. App. Phys. 11, 267 (1940).
' P, Debye and E. Hiickel, Physik. Zeits. 24, 185 (1923),

p3(r) = 1 —exp ( —ao/r).

' G. Jaffe, Ann. d. Physik 6, 195 (1930).
~ L. Onsager, Phys. Rcv. 54, 554 (1938),

(2.2)

where e is the elementary charge, X the dielectric
coefficient and k the Boltzmann constant. If
ao/r is large, migration is decisive, while, if

ao/r is small, Brownian movement predominates.
This fact has been pointed out by Loeb and

Harper and will be shown by our treatment in

a somewhat different way.
A further distinction has to be introduced

according to whether Brownian movement can
be adequately described by the differential

equation of diffusion or not, and this distinction

depends upon whether the mean free path of
the ions, X, is small or large in comparison with

Qo.

Boltzmann's fundamental equation must be

considered the basis for every rigorous kinetic
deduction. The author"- has shown that the solu-

tion of Boltzmann's equation has to proceed

along entirely different lines if the mean free

path 'A is small and if it is large compared with

the linear dimensions concerned in the problem.
The decisive length, in our case, is ao. If, then,

X is small compared with ao the usual treatment

by the differential equations of transport is

adequate, though it represents only a first

approximation.
From the study of the differential equation.

of relative Brownian movement Onsager' has

deduced the following expression for the prob-

ability p3(r):
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ug(r) = e(k~+k )/(Kr'), (2.8)

and for all significant values of r, namely those
in the neighborhood of the maximum r~, (2.2)

'0 In deducing (2.3) we have tacitly assumed that the
mobilities are not affected by the very intense fields in the
immediate neighborhood of the ions, but it must be re-
membered that we are only making an estimate."For an explanation of the numerical factor see para-
graph containing Eq. (2.14).

It follows that ao is, in a certain way, the
length which decides the fate of a pair of ions.
Though there is no definite critical distance, the
pair will recombine if ao/r))1 and will not.
recombine if ao/r«1.

To these two limiting cases correspond two
entirely different mechanisms of motion. To show
this we shall calculate the time which the one
ion takes to travel the distance r relative to the
other, upon the assumption that either migration
in their mutual field or diffusion alone is effective.

If k+ and k are the mobilities of the ions and
if r «r, the time required under the mutual
attraction alone will be"

r'K/[3e(k——++k )) . (2.3)

If, on the other hand, diffusion alone were
effective the corresponding time would be"

t.= "/L2(D. +D )], -(2 4)

D+ and D being the coeAicients of diffusion.
If tD is very much shorter than t& diffusion

will be prevalent and vice versa. Hence the ratio

tn/tq ——3ao/2r (by 2.17) (2.5)

is decisive, as stated above.
The probability function (1.2) has a strong

maximum for
r 0 L1/(27m) ]"——. (2.6)

Hertz has pointed out that this "most probable
value" is numerically very little different from
the "mean value"

(I/43) L3/(4 n)]', (2.7)

and that both are well approximated by the
value 5/9nl which ought to replace the value
(1/n) l usually adopted. For reasons which will
become evident we shall use ro instead of r.

Now we are prepared to treat the subsidiary
limiting cases. If, besides X«ao, the ratio ao/ro,
is large, migration will be prevalent. Then we
have

yields

p, (r) =1. (2 9)

p, (r) =a,/r. (2 11)

We still have to calculate u(r) and it is this
calculation which introduces a certain ambiguity.
Because, according to the usual treatment of
Brownian movement, a velocity in the proper
sense does not exist, we must define u(r) by
some mean value. In doing so we start from the
point-source solution for relative Brownian
movement, i.e. ,

"

P(r, t)=
[4~(D +D )t]

r2(
Xexp

~

—— (. (2.12)
4(D„+D )t)

Arguing in the usual way we might deduce from
(2.12) the relation

(r'),„=6(D++D )t, (2.13)

but. it must be remembered that this is the mean
square of the distance traveled in time t. What
is required in our case is the mean time required
for a given displacement. This is found from
(2.12) to be

t=r'/[2(D++D )]. (2.14)

By differentiating this expression we obtain
an approximative value for u(r). As, however,
there remains a certain ambiguity regarding
the numerical coefficient, we shall write

uD(r) =f~(D++D )/r, (2.15)

"We have normalized (2.12) in such a way that
J0"471r'pdr=1, i.e., 471-r'p represents the probability of
finding two ions at time t at a distance r if, at time t =0,
they are both at r=0. The solution (2.12) can be verified
either directly as the point-source solution of the differential
equation of relative Brownian movement (see for instance
L.. Onsager, J. Chem. Phys. 2, 599 (1934)), or it can be
derived by multiplying the point-source solutions for a
positive and a negative ion (relative to a fixed system of
coordinates) and subsequent suitable transformation and
integration.

Inserting these expressions into (1.1) and
making use of (1.2), we find

a~ 47re——(k++k )/K, X&&ao, ro&&ap, (2.10)

which is Langevin's formula.
If, on the other hand, ao/ro is small diffusion

prevails and we find from (2.2)
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where f~ represents a numerical factor which is dependent on z, i.e. , on the concentration of the
likely to be equal to 1 and certainly is of the ions.
order 1.

Introducing (2.11) and (2.15)
'

(1 1)
III. SPEcIAL CAsE: X LARGE IN

COMPARISON WITH Cp
obtain

&D 10'Ic (2.18)

This shows the remarkable fact, previously
observed by Harper, that the coefficient of re-

combination is practically (exactly, for f&=1)
the same, whether migration in the field or dif-

fusion is alone effective, though, of course, the
mechanisms are far different.

We shall see in Section IV that the case where

rp and ap are comparable is of no practical sig-
nificance. It is, however, easy to obtain' an
approximate solution which bridges the two
limiting cases treated so far. As a first, rough,
approximation it will be legitimate to assume
that u(r) will then be a simple superposition of
the expressions (2.8) and (2.15). Introducing
this superposition and the general expression
(2.2) into (1.1) we obtain

a=4')" (1—e "'")-
p

X(e(k++k )/K+f, (D++D )r)P2(r)dr, (2.19)

where p2(r) is given by (1.2). As the function
(1.2) has a strong maximum for r=ro we obtain
a good approximation for (2.19) by using the
saddle-value method. Remembering (2.17) we
can write the result in the form:

ng&= fg47r(D++D )ap, X«ao, ro»ao, (2.16)

which is, but for the numerical factor, an equa-
tion previously deduced by Harper. "

Making use of Townsend's relation in the form

(D++D )/(k++k ) =kT/e, (2.17)

the expression (2.17) can be transformed into

With this restriction conditions are analogous
to those prevailing in "molecular flow. " The
solution of problems of this type can be devel-
oped' into a series which progresses with powers
of )—'.

We shall split the probability p3(r) into two
factors, the probability p&'(r) that two neigh-

boring opposite ions which are at a distance r
will be caught into related closed orbits, and the
probability p3" that, subsequently, actual re-
combination takes place. The probability Pq'(r)
could be calculated rigorously by successive
approximations and even the curvature of the
paths could be taken into account (reference 8,
fl4). The problem offers a. comparatively simple

application of the method developed by the
author since no boundaries have to be considered.
Still, some law of interaction between the ions
and the neutral molecules would have to be
accepted and the evaluations would be very
involved.

For these reasons we shall adopt an approxi-
mative procedure which is based on the analogy
with the theory of heat radiation. In the zero
approximation collisions are altogether dis-

regarded and the ion s are considered to be
"emitted" from each element of volume iso-

tropically with their mean velocity.
We start again by considering a positive ion

A which is supposed to be at rest and has its
nearest negative neighbor 8 at a distance between
r and r+dr. The two ions will, on the average,
form closed orbits if B approaches A within a
distance less than4

d = 2e'/(3Kk T) = 2ao/3. (3.1)

a=4m(D~+D )ao(1 —e ')(1+fg/z), We are only interested in the case d(&r. Then

X«ao, (2.20) we shall have in our present approximation

where we have put
z =ap/rp. (2.21)

p, '(r) = (1/47r)(d'z/r') =d'/4r' (3.2)

It will be noticed that in the limiting cases
z»1 and z«1 formula (2.20) leads back to (2.10)
and (2.16), but that in all other cases n is

13 W. R. Harper, reference 4(b).

u(r) =egg, (3 3)

where c» is the average relative velocity.
Assuming provisionally p&'(r) =p3(r) and in-

serting (3.2) and (3.3) into (1.1) we find as zero
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approximation
0. &') =md'cg2. (3.4)

where

pll 7+71, pip= [(7'—71)'+d']~,
This is, of course, the usual formula of the

kinetic theory (for a cross section of radius d),
and it becomes identical with the limiting value
of Thomson's theory if we take

C12 (C+ + C—)* (3.5)

'4 It must be pointed out that, in establishing (3.6), we
have made use of (3.2) (with p1 replacing r) for the proba-
bility of capture after the collision. However, this is not
quite correct because it is not true that d((p1 in the whole
space of integration. The correct value of the solid angle
determining capture would be 0= 27f.t j. —(1 —d'/p12) &g

rather than md'/pP. We have carried out the calculations
with this value and verified that the result is not noticeably
different from (3.6).

In determining the region of integration we have omitted
the whole solid angle 0' subtended at 8 by the sphere of
radius d. This means omitting the negligible probability
of cases in which the ion remains inside 0' in spite of a
collision. The space inside 0' behind the sphere has to be
omitted.

Finally it must be remarked that (3.6) is not a sym-
metrical function of the ions A and 8 unless ) is taken as
the average value for positive and negative ions. In a
somewhat more rigorous deduction (3,6) would have to be
replaced by its arithmetic mean for P+ and X .

If, now, collisions occur, each of them is con-
sidered an act of "absorption" and "re-emission, "
the re-emission being equally probable in all

directions and the velocity remaining, on the
average, unaltered. Since the probability of a
collision along an element of path ds is given by
ds/X, the reciprocal of the mean free path must
be considered the "coefficient of absorption. "

Let us again assume that a negative ion B is

emitted at a distance r from its nearest positive
neighbor A at an angle 8& with the line joining
them. We obtain a first approximation by as-
suming that one, and only one, collision occurs
outside the sphere of radius d around A. If the
collision occurs at a distance r~ from the starting
point of B, at a point which is at a distance p~

from A, B will have to travel a distance r~+ p~ —d

ran+pi before being caught, and its average
radial velocity (as required for (1.1)) will be

S(7) C127/(71+ pl).
It simplifies matters to calculate in one step

(tt(7)pp'(7))av, i.e. , the average of the product for
all possible loci of the collision. We obtain"

(~(7)Pp'(7))"

clld'
I

" e """d71 t'" dP1
(3.6)

SX J p 71 ~ Pl pip(71+pl)

7' = (7' —&E2) *. (3.7)

The first integration in (3.6) is immediate, the
second can be carried out to a good approxima-
tion since the function 712 exp ( —71/X) has a pro-
nounced maximum for rI ——X. We thus find

Q f. 3 f Ay

C I2d r+~
log

8X' r+2'A

C12d (d
gX2 &X 7)

[(7'—X)'+d'j '*

—log—
[(7'—X) 2+ de&+ X (3 g)

The function $1 approaches unity for small
and large values of X/rp Neglecting . terms of the
order (d/7p)' we find

1 (fp) 3

nl&'1 =irdpc&2 e """+—
~

—
~
+

2 EX)

and
X/70»1, (3.10)

X/70«1. (3.11)

For the latter case, however, our present ap-
proximation is not adequate. The author, there-
fore, has carried through the next approximation
taking account of those ions B which reach A
after two collisions. The result is too lengthy to
be quoted 2n extenso. In the limiting case X/70«1

In order to calculate n, we must remember that
it consists now of two parts, the one being due to
ions which are caught without having undergone
a collision, and the second to ions which have
made one collision. The first part we obtain by
multiPlying (3.4) by exP (—70/X), the second by
inserting (3.8) and (1.2) into (1.1) and evaluating
by the saddle-value method. Thus we finally
obtain

rp2 (d d )
n1&'&=lrdpc12 e '«"+2)' E) rp)

('d d )= lrdpclpipl
(

—,—). (3.9)
Eli 7 i
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it is found ciently weak to make d/ro a small number, P~

can be approximated by 1 (see (3.11) and (3.12))
and our formula reduces to Thomson' s

where

p3"——pg(d/X) = 2a) —(u', (3.13)

Hence our final expression for O.q becomes

nq = 7rd c»f~(d/X, d/ro) p~(d/X), lj &&d. (3.15)

This result, though intimately connected with
Thomson' s, is distinguished from it by two essen-
tial features: It depends upon d/ro, i.e. , upon the
concentration of the ions, and it gives a marked
maximum for O.q at ro ——), as can be shown from
the form of p~(d/lj. , d/ro). Sufficiently above
pressures where ro 'A, and for ionizations suffi-

"See reference 1, p. 130.
' See reference 1, p. 119. The function y2 is found

tabulated there.

X/ro((1. (3.12)

The comparison with (3.11) shows that the
convergence of our procedure for this limiting
case may be slow, though the essential feature,
convergence towards ~d'c~2 for X/r0~0, is
preserved.

So far we have identified p3'(r) with p3(r), i.e. ,

we have assumed that each pair of ions which is

caught into closed orbits will ultimately recom-
bine. It is, however, evident from J.J. Thomson' s
well-known argument that this need not be the
case. Therefore the n so far calculated has still
to be multiplied by the probability p3" as defined
above.

A rigorous calculation of this p3" would have
to be based on a quantum-mechanical study of
the interaction between ions and neutral mole-
cules on the one hand and ions of different signs
on the other. Such a study does not seem feasible
at the present time. We may, however, accept
Thomson's treatment as a first approximation,
though it cannot hold down to zero pressure, as
was pointed out by Loeb."

The probability p3" as calculated by Thomson
is given with sufficient accuracy by "

~q = xd'cgffp2(d/X), X»d, d((rp. (3.16)

IV. DIscUssIoN AND CQMPARIsoN wITH
I' XPERIMF.NT

We have seen that our general expression (1.1)
reduces, for well-defined special conditions, to
the formulae of Langevin, Harper and Thomson.
However, it must be emphasized that only under
the restrictions specified by (2.10), (2.16), and
(3.16) does the coefficient of recombination be-
come independent of the ionic density, n. The
transitional formulae, (2.20) and (3.15), involve
the parameter

q =d/ra= 2ap/3rp =d(2~K) l. (4.1)

It seems to be generally accepted that the
Langevin formula holds with adequate accuracy
for sufficiently high pressures. As pointed out by
Harper, this does not prove the correctness of
the mechanism by which Langevin deduced his
formula, as shown by the formal similarity be-
tween the expressions for ni„. and n~ (see (2.18)).

It is pretty certain that in no direct experi-
ments on volume recombination is the migration
of the ions under their mutual attraction the
predominant feature. The highest observed
values of n are of the order 10' ions per cc. Even
in liquid dielectrics (which behave in this regard
like very dense gases) n never rises above 2 X 10'.
The corresponding values of ro are 2.5)&10 and
0.92X10 '. As d=4.05X10 '273/T, g is never
larger than about 4X10—' and in most cases is
considerably smaller. Under these circumstances
diffusion prevails and the agreement of experi-
mental data with Langevin's formula really
proves the diff'usion formula (2.16).

There is, however, indirect evidence for the
correctness of Langevin's formula, including its
mechanism; The theory of columnar ionization,
as developed by the author, seems to be generally
accepted for the ionization with he'avy particles.
The fundamental concept of this theory is that,
inside the columns, recombination (and diffusion)
take place according to the usual laws and with
the same coeS.cients as in cases of more homo-
geneous ionization.
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FrG. 1. The diagram represents n/o. j, as a function of
d/X. The curves for o, ),/uJ, are calculated from (3.16) and
(3.12) for various values of q, and the curve for nD/ng, is
calculated from (4.3) with fl =f2 ——1. The observational
points are reduced values.

The initial concentration in the axis of a
column" is of the order of 5 X 10' in air of atmos-
pheric pressure and rises in liquid hexane to
2.50&10'8, giving values of q from 1.2&(10 ' to
9.5. This brings columnar ionization in dense
gases within the scope of formula (2.20)" and for'

liquid dielectrics even of (2.10). Thus the agree-
ment of the columnar theory with experimental
facts indirectly confirms Langevin's theory.

At low pressures, say up to 1 atmos. , Thomson' s
theory seems to give an adequate representation
of experimental facts. That is to be expected
from our theory as long as X is somewhat larger
than d and, at the same time the pressure is

suSciently high to make X smaller than ro.
In the region where X becomes comparable

with d neither the formula for nD nor that for a),
is a sufficiently good approximation for our
general formula (1.1), as they are only first steps
in the evaluation for X/d«1 and X/d»1, re-
spectively. Theoretically, it would be possible
to carry the two approximations on until they
meet, but practically, that is out of the question.
The failure is, however, not due to a breakdown
of the fundamental concepts (as in the case of
Langevin's or Thomson's theory beyond their
domains of applicability) but to our inability to
evaluate the general formula (1.1). Conditions

"G. Jaffe, Ann. d. Physik 32, 152 (1910);H. J. van der
Byl, Ann. d. Physik 39, 170 (1912).

"According to (2.20) the coeff. of rec. does not vary
much with g. Assuming f1 =1, o. has a maximum, for
u0/r0~2, which is about 30 percent higher than the values
at the extremes.

are thus exactly the same as in the transition
from Poiseuille's "frictional flow" to Knudsen's
"molecular flow. "

As is well known, the critical region is in the
neighborhood of atmospheric pressure, since
X=1X10 ' (760/p)(X/X ) where 'h/X, is the ratio
of the mean free path of the ion to that of a
molecule in air at NTP." For this region of
transition it must be tested whether the two
approximations approach each other sufficiently
to make a graphical interpolation possible.

According to (3.16) n&, is given as a function of
d/X, whereas nD is represented by (2.16) as a
function of (D++D ). To reduce the two repre-
sentations to common terms we must represent
D+ and D by atomic data and this reduction
introduces a further ambiguity. For our purpose
it will suffice to introduce a mean coefficient of
diffusion, defined by D=(D++D )/2, a mean
velocity c= (c++c)/2, and write

D =f,cX/3, (4 2)

where X is also the average value for positive
and nega. tive ions and f2 a numerical factor.
According to the usual elementary theory f2 is
unity, but we insert the factor f& of order 1 to
leave room for the improvements of the more
elaborate theories.

Making use of (4.2) and (3.1) and remembering
that c~2 ——2'c, we find

nn 7rd'c, 2 f,——f22'7/d. (4 3)

"I,0, I.oeb, reference 1, p, 118,

If we introduce the limiting value nz, =m'd'c~2 we
see that both nD/n~ and n&, /nq, the latter given
by (3.16), are universal functions of d/X. We have
represented these two functions by the heavy
lines of Fig. 1, choosing f~ ——f~ ——1. It will be seen
that a fair representation of n/cx~ for all values
of d/P can be gained by the two approximations
from either side, though, of course, we have no
quantitative criterion to show at which particular
values of d/X the deviations become noticeable.

As to the agreement with empirical data we are
of the opinion that neither the present state of
experimental research nor our evaluations of
Sections II and III would justify a comparison
of absolute values. Therefore we have adopted a
procedure of testing relative values. As 0:/uq.
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should be a. universal function of d/X, we have
tried to reduce the n-scale, as well as the P scale,
in such a way that the experimental values fit the
theoretical curves. This, of course, amounts to
taking c~2 (or the mass of the ion) and X as two
constants which are to be determined experi-
mentally.

All measurements of o, in air in the interval
between 1 and 8 atmos. have been included.
These are the measurements of Langevin,
Machler, Kraus and Sayers. "The values adopted
for nl, 10' are, respectively, 1.83, 1.71, i.70 and
2.35 and the values for X/X, 0.40, 0.41, 0.33, 0.26,
respectively. "

It will be seen that the points thus determined
seem to confirm the theoretical curve, but we do
not want to stress this kind of agreement. Meas-
urements in the indicated interval which include
the determination of o. and the mobilities in the
same sample of gas are an urgent desideratum.
The differences among the values of cxz, and of
) /h„as assumed above, are probably due to the
fact that different observers have been dealing
with ions of different age and nature.

So far we have limited our discussion to the
case where the parameter q is very small, which
reduces the more general expressions (2.20) and
(3.15) to the simple forms (2.16) and (3.16). To
illustrate the influence of g we have calculated
aq/ar. from (3.12) for the values q=0.01, 0.025
and 0 05 and inserted the curves into the
diagram.

It will be seen that nq/nl. decreases with in-

creasing q and that means with increasing n."A
dependence of o. on the concentration of the ions
signifies that the simple law dn/dt= nn' cease—s
to hold, but the change of 0. predicted by theory
is so slow that it seems adequate to retain the
formal law and to speak of a variation of o. with
concentration. This procedure has always been
adopted by experimenters.

P. Langevin, Ann. Chim. Phys. 28, 289, 433 (1903);
W. Machler, Zeits. f. Physik 104, 1 (1936); P. Kraus,
Ann. d. Physik 29, 449 (1937);J. Sayers, Proc. Roy. Soc.
A169, 83 (1938).

"All measurements refer to "room-temperature, " but
the exact values are not given in some cases. As d depends
on the temperature this ought to be known for a more
exact evaluation. We have chosen t=18'. Furthermore,
Sayers' values had to be taken from his diagram.' A change for nD is hardly to be expected for realizable
v@1&es of n, as long as volume ionization only is considered.

It is well known that the coeKcient of recom-
bination, as determined experimentally, is not
constant. Even after the stage of initial recom-
bination is over, n goes on changing for a con-
siderable time. This lack of constancy has been
explained" by a gradual change in the nature of
the ions and there can hardly be a doubt that this
is the correct interpretation. The aging of ions
will generally tend to decrease n with time and,
therefore, with decreasing ionic density, as is
also confirmed by the corresponding effect on the
mobilities. Apart from this aging effect, however,
all recent observers" have noticed that n is larger
for lower values of the ionic concentration. The
author is of the opinion that this dependence,
which coincides in direction with that predicted
by the present theory, is a genuine effect not due
to secondary causes. The few quantitative data
which are available indicate that the observed
effect is considerably larger than the effect fore-
seen by our theory. This, however, is only true
as long as the ionization is supposed to be homo-
geneous in all cases. The effect would be much
stronger if, for the lower ionic densities, the initial
inhomogeneity became more marked, an effect
for which there are distinct indications. '4 The
dependence of 0. on ionic density is the second
point where an extension of experimental evi-
dence is desirable.

We do not want to dwell here on the question
of recombination at very low pressures. We have
observed (p. 974), however, that, under conditions
where X ro, something like selective recombina-
tion should occur according to Eq. (3.15)."This
fact shows how careful one ought to be in extend-
ing Thomson's formula to very low pressures,
whether in the atmosphere or the discharge tube.
This point requires further study, but the study
will, no doubt, be complicated by the fact that
in the same interval of pressures the carriers of
electricity change character.

The author wishes to express his gratitude to
the Department of Physics of the University of
Colorado for courtesies extended.

23 L. C. Marshall, Phys. Rev. 34, 618 (1929); 0. Luhr,
Phys. Rev. 3S, 1394 (1930); M. E. Gardner, Phys. Rev.
53, 75 (1938);J. Sayers, reference 20.

'4 A. D. Power, J. Frank. Inst. 196, 327 (1923).
'~ The maximum indicated by 3.15 is not erased by the

next approximation, but a second minor maximum is added
for r0=2X.


