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The Electromagnetic Properties of Mesotrons
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A general theory describing particles of unit spin and arbitrary magnetic moment is developed
and applied to the motion of such particles in a Coulomb field. In the particular case of mag-
netic moment unity (Proca theory), the exact equations for the radial components of the wave
functions possess regular solutions only for those states (j=l/0 and j=0, /=1) in which the
orbital angular momentum l is a constant of the motion. For particles possessing a magnetic
moment of two mesotron magnetons, the radial equations are free of singularities for all states
but two: j= 1, l =0 and j=0, L = 1.The cross section for a fractional energy transfer to electrons
by energetic mesotrons is calculated for the various simple possibilities of mesotron spin 0.

(0, -„1)and magnetic moment p (arbitrary except for zero spin), and it is shown that only for
0. =-,', p&1 (in particular, p=0) and 0 =1, p, =1 is the cross section of the correct magnitude
and form (i.e., essentially independent of the mesotron energy) to account for observed burst
phenomena at energies greater than 2X10" ev. Criteria for the validity of these formulae
indicate that the region of applicability for the theory tT = 1, p/1 is more limited than that for
o- = 1, p = 1 (Proca).

I. INTRQDUcTIQN

HE electromagnetic properties of nuclear
systems depend on the interaction of meso-

trons both with heavy particles and with the
electromagnetic field. Indeed, so simple a quan-
tity as the magnetic moment of the neutron is
completely determined only by both of these
interactions. Data obtained experimentally from
electromagnetic nuclear properties do not there-
fore determine independently the mesotron-
heavy particle coupling and the mesotron-
radiation interaction, and it would be of
advantage to study each of these forms of
interaction directly. Information concerning the
inHuence of the electromagnetic field on meso-
trons may be obtained by the investigation of
recoil electrons resulting from collisions with the
mesotrons forming the penetrating component of
cosmic radiation. This process presumably
accounts for the fraction of the soft component
(apart from secondaries arising from the disin-
tegration of mesotrons in the atmosphere) which
is in equilibrium with the hard component. The
observed dependence of cosmic-ray bursts on
their magnitude and the surrounding material
indicates that mesotrons may, with appreciable
probability, transfer a large fraction of thei
energy to the soft component. Phenomena asso-
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ciated with bursts of energy greater than
2X10" ev may be adequately described by
assuming that the cross section for a given
fractional transfer of energy to the soft com-
ponent is independent of the mesotron energy.
A cross section of this nature possessing the
correct magnitude would indeed be obtained' '
if the electromagnetic properties of the mesotron
were those deduced from the Proca equations'
by the application of the Born approximation.

To examine the validity of the Born approxi-
mation, one may consider the limiting case of
scattering by an electron of infinite mass, the
process involved then being the scattering of
mesotrons by a static Coulomb field. An exact
solution of this problem would enable one to
judge the reliability of the Born approximation
as applied to this type of process. Unfortunately,
as will be shown in Section I II, when one
attempts to follow this program one encounters
singular equations which admit of no complete
set of regular solutions. This implies either that
the theory is wrong or that the model of the
scattering of a mesotron by a Coulomb field is
too great an abstraction of the physical process
to which it purports to approximate.

' Oppenheimer, Serber and Snyder, Phys. Rev. 57, 75
(1940).' H. S.W. Massey and H. C. Corben, Proc. Camb. Phil.
Soc. 35, 463 (1939).' A. Proca, J.de phys. et rad. '7, 347 (1936); N. Kemmer,
Proc. Roy. Soc. A166, 127 (1938).
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The electromagnetic properties of a particle
with given charge and mass are essentially deter-
mined by its spin and its magnetic moment. One
may therefore use the experimental evidence
available from cosmic-ray . measurements to
determine these two characteristics of the
mesotron. Of the three simple possibilities for the
spin (0, ~~, 1) the case of zero spin may be
excluded, for the impossibility of associating an
intrinsic magnetic moment with a scalar mesotron
implies an energy transfer cross section varying
inversely with the mesotron energy, thus con-
tradicting the experimental evidence. Were the
spin of the mesotron —,', one could exclude the
possibility of a magnetic moment of one mesotron
magneton, as predicted by the Dirac theory, for
this would lead to a cross section of similar
character. 4 However, an alteration of the mag-
netic moment changes the energy dependence of
the cross section to that demanded by experi-
ment. On the basis of cosmic-ray evidence,
therefore, one cannot exclude the possibility of
a mesotron of spin -', and magnetic moment
different from unity (in particular, zero) although
such evidence as is available from nuclear phe-
nomena indicates that this is not likely.

The current theory of mesotrons postulates a
spin of unity and a magnetic moment of one
mesotron magneton. The physical adequacy and
the mathematical difhculties of this theory have
already been mentioned. The sole remaining
simple possibility is that of a mesotron of spin
unity and magnetic moment different from that
assumed in the Proca theory. The following
pages are devoted to the development of a
general Lagrangian theory of such particles
(Section II) and the application of the theory
to the motion of mesotrons in a Coulomb field
(Section III) and the problem of electron recoils
(Section IV).

II. GENERAL THEORY

The most general bilinear Lagrangian density
which involves only a four-vector p„, and the
electromagnetic potentials A„ in the form of the
first-order gauge covariant derivative

D„y„=$8„+(ie/kc) A „jy„,

4 H. J. Bhabha, Proc. Roy. Soc. A164, 257 (1938).

condition of gauge invariance. Here the A„are
numerical tensors which can depend only on the
values of the metric

g"=0 (v &~)
=1 (p= v=1, 2, 3),
= -1 (p= v=4).

A general form of such a tensor is

pv pp V VA„=g g„+Pg,g, +rg,g„ (2)

where p and y are constants. The choice of unity
for the first coeKcient on the right-hand side of
(2) is not an essential limitation. To guarantee
the reality of I., one must impose the condition

-V»
+0'T A To'

which implies that P and j are real.
The equations of motion derived by variation

of (1) are

A„D„Dpy'= K'y, (4)

and the conjugate complex equations. Inserting

the form (2) for the A„one obtains

DI D„p,+PD„D,Q"+yD.D,g"= ~'p,
or

D D,~.+(P+v)D.(D.~")
+ (ie/kc) P@"IX„.= ~'@., (5)

where we have used the commutation relation

D„D„D„D„=(ie/kc) H—„„

and the H„„are the strengths of the electro-
magnetic field.

Specializing Eqs. (5) to the field-free case one
obtains

~"~A.+(p+v)~. (~A") = ~'4' (6)

Solutions of these equations may be written in
the form

Qa = $s+~ePg

where P' satisfies the condition B,g'=0 and e

together with the conjugate complex quantities
y, i Qvy, i-"

L=A.,(D„y )(D„y )+~'@.y.,

a quantity which automatically satisfies the
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is a scalar. . Hence

(8&B —~') P =0 (P+y+1)8&B„p= a'q (7)

Writing a= Me/k we may identify the first of
Eqs. (7) a.s that satisfied by a particle of spin
unity and mass M, and the second as that of a
scalar particle of mass M(P+y+1) &. One there-
fore has a theory of a particle which may exist
in two states, with which are associated different
spins and different masses. The theory may be
restricted to particles of spin 1 by the choice

A+v+1=o
which implies @=0. Were this restriction not
imposed, there would be a finite probability for
a particle to change its mass and spin in an
external electromagnetic field, a phenomenon for
which there is no experimental evidence.

With this restriction, the coefhcients assume
the form

pv pv p V P v /4~.,= (a g- —g.g.)+v(a.a.—g.a.),
to which corresponds the Lagrangian density

(10)

where F„„=D„P„—D„p„.This Lagrangian may be simplified by noting that the expression in brackets
may be rewritten

The first two terms of (11) may be disregarded, for, possessing the form of divergences, they con-
tribute nothing to the variation of the Lagrangian. We have therefore arrived at a convenient
expression for the Lagrangian density,

L = ,'F„„F""+—~'j,0" (ie/2ac—)~H„„(4"y" y "0"), — (12)

which differs from that of current theory by the addition of 3, term involving the explicit appearance
of the electromagnetic field strengths. This term may be interpreted as corresponding to an additional
magnetic moment for the mesotron.

The linear equations of motion which follow from (12) are

D& F„„=z'P„+ (ie/hc) pqPH„„; D„P. D„g„=F„„— (13)

The electromagnetic current four-vector of the mesotrons which follows by variation of the
Lagrangian with respect to —A„ then assumes the form

which differs from that of the usual theory by the term in y which is independently conserved. To
show the interpretation of this additional term, we rewrite the expression for the current in the form

P = (ie/hc) [(y„D~y" y„D~@")+—(q+1)a„(y~y" y"y~)+@~—(D„y")—y~(D„y")].
The second term represents a polarization current arising from the magnetic moment. Indeed, its
coefficient is to be identified as the magnetic moment of the mesotron, which thus has on this theory
the value 1+p mesotron magnetons. The first term has the appearance of a convection current yet
may not receive this interpretation for it is not by itself conserved. It is, in fact, conserved only
upon the addition of the terms involving D„p&—terms which have no simple physical interpretation.
The importance of the proposed generalization now becomes apparent, for, by proper choice of p
these terms may be made to vanish under certain conditions.

One may evaluate D,@"by applying the operator D„ to the first of Eqs. (13), with the result

~'D„p"= (ie/2hc) (y —1)H„„F&" (4sie/hc') yJ Q"— (16)

where J„ the current-vector of the external charges, has been introduced by means of the equation

a~H„„= (4~/c) I„. —
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Thus in regions outside those occupied by the external charges (i.e. , J„=O) the choice y = 1 implies
D,g"=0. It would then appear that the choice of y=1, which in the absence of external charges
guarantees the subdivision of the current into independently conserved conduction and convection
currents and imparts to the particle a gyromagnetic ratio of 2, places the theory in close analogy
with the Dirac theory of the electron.

This simplification finds its counterpart in the equations of motion

D&D„p„'D„(D„&—I') = »'P„+ (ie/hc) (&+1)P"EX„„, (17)

which are obtained from (5) by writing P= —(y+1). In comparison with the rather complicated
equations of the current theory (y =0) vis. :

one obtains, for y=1,
(D~Dp K )P„=(ie/hc)p&IX„„(ie/2—hc) (1/» )D„(II„,F&')

(D&D„K')g„= (2i e/hc) q)"H„„(4~ie/—hc'»') D (I P') (19)

which in regions external to charge and current distributions reduce to

(D&D, »') y„=—(2ie/hc) y"H„„ (20)

To complete the theory, it is necessary to construct the stress-energy-momentum tensor and
show that it satisfies all conditions that may be reasonably imposed on it. The real tensor con-

structed by the recipe

T&„=2 I (BL/BF„.)D„y,+ (BL/8 F„.)D„y.+ (BL/BIZ„.)Ei„.} —5„I'L

satisfies the conservation equation

(21)

(22)

and thus may be interpreted as a stress tensor. For the Lagrangian (12), it assumes the explicit form:

T„„=F„,D„y'+F„,D„y' (ie/hc) qH—„,(@„qv @'y„) g„—„L. — (23)

In order to guarantee the conservation of angular momentum it is necessary that a theory yield a
symmetric stress tensor. Although (23) is not symmetric, it may be replaced by the symmetric tensor""

P„,=F„,F„'+F,.F„'+»'(Q„Q„+Q„P„)+ (ie/hc) y }H,„(4„4' PQ„)+H,—„(4,$ g'$„) } g„„L, (2—4)—

which also satisfies the conservation equation

since
P~~ = T~„g,I Fu~@„+F u~y„} (25)

Although the energy density derived from this stress tensor is not positive definite, it does become

so in the absence of an external electromagnetic field, which is all that may reasonably be required

of the energy density derived from a theory of particles with integral spin.

III. STATIQNARY STATEs IN A CQULQMB FIELD

The importance of a rigorous treatment of the equations representing the mesotron in a Coulomb

field has been stressed in the Introduction. An attempt to construct exact solutions of these equations

forms the basis of this section.
The spherical symmetry of the Coulomb problem introduces the possibility of defining conserved

' This symmetric tensor noway be also derived directly from the l.agrangian by the prescription

0&,= 2 I (aL/aF„, )I'„,+ (aL/ay„) @„+(aL/a F„,)F„.+ (aL/a@„)y„+(aL/@II„.)II„.I —s„&L.
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&ngular momentum integrals. Appropriate definitions, in terms of the stress tensor O„„are:
1

M;k ———I (x;OA:4 xi—.0,4)dr,
c'~

which, by employing the definition (24) of O~„may be written

(26)

rV;p (i%——'))I {F4)( i)—(x;BI,. x)—,B;)y' F—, I i(x;8). xg8;—)y'}d7.

+ (i/c')
~

{(—i) (I"4;g„F4~4;—) i (F~;4&~—F4~4;) }
—dr. (27)

The first term, with its associated operator

L;g
—— i (x;8 I„.

—x1,8;)—
is obviously to be interpreted as the orbital angular momentum, thus endowing the additional term
with the properties of spin angular momentum. The operator representing the total angular mo-
mentum may therefore be defined by the equation

&)14'=L a4' &(&'&~~-~s'~ )4"~ (28)

from which one infers the operational definition of J, the square of the total angular momentum, vis. :

1'P) ——(L'+2) Q) —2iL(;y& (29)

To express these formulae in a more amenable form, we may introduce space-vector notation,
representing the space-components of p& by the vector + and the time-component p4 by the scalar
function iq. The angular momentum definitions thus assume the guise of vector formulae:

J,+=L,++ie, X+, etc. , J'N= (I,'+2)@+2iLX4, (30)

wherein e, denotes a unit vector in the s direction. The analogous definitions involving operations
on the scalar p are simply

(31)

Stationary states of the system may be characterized by m and j(j+1), the proper values of J,
and J, respectively, and by the parity, the eigenvalue of the reflection operator R which is defined by

RC (r) = 4 (
—r); Rp(r) = —p( —r). (32)

This latter equation is a consequence of the opposite behavior of vector and scalar functions under
spatial reflection. The construction of stationary state wave functions is facilitated by the con-
sideration of auxiliary +-functions which are also eigenfunctions of I.' associated with the proper
value l(l+1) By virtue of. Eq. (30), such auxiliary wave functions satisfy the condition:

(j(j+1)—l(l+ 1)—2)+= 2i (L X@'). (33)

The detailed consideration of this equation is deferred to the Appendix, wherein it is shown that
there exist three types of auxiliary +-functions which may be symbolically expressed in the form:

1=j: e=LF(r)p"
f,=j+1: 4&= {(j+1)(r/r)+i(r/r)XL}F&'&(r)P,

l= j 1: += { j(r/r—)+i(r/r) XL—}F&'&(r)P,'",

(34)

involving three arbitrary radial functions. The general solution associated with the eigenvalue j
is obtained by linear combination of these auxiliary 4-functions. The existence of the parity quantum
number permits a further classification of these solutions, for the parity associated with a state of
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orbital angular momentum / is ( —1) ', thus assigning to the state l =j a parity opposite to that of
the state 3=j+1.The state l =j and a linear combination of the states l= j+1 therefore constitute

. independent stationary states. No further sub-division will be possible in general, for the spin-orbit
coupling introduced by relativistic requirements destroys the constancy of orbital angular mo-
mentum. Turning to the scalar function q, we observe from (31) that

p =G(r)P '"

introducing an additional arbitrary radial function G(r). For /, =j the requirement that &» and +
have opposite reflection characteristics can be made compatible with the equal parities of these two
functions only by demanding that y—=0. These remarks find their complete expression in the follow-
ing formulae for the two distinct types of admissible solutions:

+= LF(r)P m

l= j~1:
(p=0,

4 =
I (r/r) F,(r) +i [(r/r) XL]F~(r) I P;",

G(r)P .m
(35)

which are written in terms of the linear combinations

F&(r) = (j+1)F&'&(r) —jF&'&(r) F&(r) = F&"(r)+F&'&(r). (36)

These formulae express all the information available from the general symmetry properties of the
system; to proceed further we must resort to the specific dynamical equations. The equations (18)
of current theory, specialized to represent the motion of a mesotron with energy W in a static field
described by a scalar potential V(r), read

pW+eV) ' (Mc) ' e rdV e5 dV W+eUr B&»"+{ &+
I&c ) ( 5 ) kc r dr 3Pc' dr I&c r Br

(W+eV) ' f'Mc) ' e dUr ek W+eVdU W+eVr B&»

~'+I —++
I&c ) 0 l& ) Ac dr r M'c' I&c dr kc r Br

(37)

when translated into vector notation. These equations must be supplemented by the subsidiary
condition contained in (16), r&is. :

W+t. U
V. @+

Ac 3SI'c' dr

ek dU 8'+eUr Bq

kc r Br
(38)

This set of equations then yields the radial equations appropriate to the two types of solutions (35).
The treatment of the state l=j affords no difficulty, for q =0, (r/r) 4 =0, V +=0 (L= ixXV)—,

thus effectively reducing the set of Eqs. (37), (38) to

)W+eVq ' pic~ 't'+{
I

—
{ I

e=o,
Pic & 0 &&&

or, in radial form
d' 2 d l(l+1) pW+eVy ' pMcq '

+-— +{ F(r) =O
dr' rdr r' ( Sc & 4 5) (39)

This is simply the canonical form of the Klein-Gordon equation, which requires no further attention.
The radial equations for the second type of solution (l =j&1) are readily derived with the aid of a
few elementary lemmata. The gradient operator finds its most convenient expression in the form:

r 8 r&L
V' ————i

r ar r2
(40)
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with the derivative relation

Further

28 I'
p2 — +

Br r Br
(4oa)

L'+ = (j(j+1—)F,+2F,+2j(j+1)F2)+i
i

—XL 1(g(j+1)F&+2Fi) Pp,
(1'

r

which is most easily obtained by reverting to the original expression of + in terms of eigenfunctions
of L . It is now possible to write the terms of the first of Eqs. (37) as linear combinations of the two
angular functions (r/r)Pi and i[(r/r) XL]P;, the coefficients of which yield the desired radial
equations for Fi and Fm. The radial equation corresponding to the latter part of (37) may be written
down by inspection, while to perform a similar operation for (38) requires only the observation that

r r ( 8 2) j(j+1)
v' e= v. Fi+iv—. XLF2 —P, =

(

—+—iFi+ I'2 I'7
r r &ar r) r

The complete set of radial equations thus obtained is:

e dV e df' dVi
QFi= —(Fi+j(j+1)Fg)—— G ———

i Q
r2 kc dr ficdr ( dr)

2 e1dV sdV e W+eUdV
Q,F2 Fi+ ———Q— , —QG =— Fi

r' Ac r dr Sc dr Sc kc dr

dFi 2 j(j+1) W+e V e d U
+ ~1+ ~~+ G= ——Q

dr r r fic Ac dr

(41)

where 0 symbolizes the Klein-Gordon operator

d' 2 d j(j+1) (W+eVi ' iMci '
n=

dr~ rdr r' ( hc ) I, 5)
and Q is defined by

(3IIc) ' dG t/t/'+e V

& 5 ) dr Sc

(4-')

(43)

It should be noted that if j=0 the second equation of the set (41) disappears, for this equation was
inferred from the coefficients of i[(r/r) XL]PP, which identically vanishes for zero angular
momentum.

In order that regular solutions of these equations exist for the Coulomb field, V=Ze/r, it is neces-
sary that the functions FI, F2 and G vanish at the origin at least as rapidly as some power of r, e.g. ,
rr, so that, from Eqs. (41), Q must exhibit a radial dependence proportional to rr+' To test the c.on-
sistency of these requirements with the definition of Q, we may employ the equations obtained by
substituting the fourth member of (41) into the first and third members, namely:

W+« f & i'j(j+1)
Q=F +i i F,i (rF)1

Ac (Mc) r' dr ]
(44)

dQ 2 ( 5 i ' j(j+1) W+eV—+—Q=G+( i G+ (rF2)
dr r K Mc) r' f/IC



960 H. C. CORBEN AND J. SCHWINGER

In states of nonvanishing angular momentum (j&0), the second terms of these expressions for Q
are dominant near the origin, thus imparting to Q a radial dependence two powers of r less than that.
of the functions I'1, F2, and G, contrary to the mathematical regularity requirements. Therefore, no
regular solutions exist for states possessing finite angular momentum. Whether any solutions com-
patible with the physical requirements exist remains an open question. For j=0, these Eqs. (44)
become simply

W+eV dQ 2
~1 Q G=—+-Q,

Ac dr r
(45)

which, coupled with the definition (43) of Q, imply that

d'Q 2 dQ 2 (W+eUq ' (Mcq -'

+ Q+Idr' rdr r' 0 Ac ) ( k) (46)

the Klein-Gordon equation for a state of unit angular momentum. This result is quite satisfactory,
for a state of zero total angular momentum is rigorously a state of unit orbital angular momentum.
The general conclusion to be drawn from these considerations based on the Proca theory may be
summarized by the statement that regular solutions exist for the Coulomb field only for those states
in which the orbital angular momentum is a rigorous constant of the motion, namely l= j&0 and
l=1, j=0.

The technique developed for the expression of the Proca equations in radial form is immediately
applicable to the equations of the modified theory (y=1). In vectorial notation these equations
comprise the following set:

(W+e V) ' (Mc) ' 2e r d V 4mek
17'+I

Ac ) E 5 j Sc r dr

(W+eV) ' (Mcq ' 2e d V r 4~e
1r2y

]
—e — (W+ev) r(r) &,

kc ) & 5J kcdrr 3Pc4
(47)

S'+e V
++

47rek
I'(r) p,

M2c'

wherein I'(r) = J4/c denotes the density of the static, spherically symmetric charge distribution
under whose influence the mesotron moves. The treatment of the state l=j need not detain us,
the Klein-Gordon equation being obtained as before. The radial equations describing the coupled
states 1=j&1, vis.:

2 2e dU 4~eh d
&F& (F,+j (j +1)F——,)——— G ———(I'(r)G),

r2 Ac dr M2c' dr

2 4~eA 1 2edV 4~e
ftF~ F&+ —I'(r——)G—, QG =— F& (W+e V) I'(—r) G,r' 3I2c' r Ac dr M2c4

dF& 2 j(j+1) W+e V
+—F1+— F~2+ G=-

dr r r ac

47reA
I'(r)G,

M2c'

may be obtained, rnut. rnutand , from the previou. s set (41). A complete solution of these equations
can be effected in regions of space unoccupied by external charges (I"(r) =0). Within such domains,
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the radial equations assume a particularly simple aspect:

QF~ ——(2/r')[F, + j(j +1)F2+ZaG], QF~ ——(2/r') F~, QG = (2/r') (—ZaF~),

dF, 2 j(j+1) W+eV
+—~a+ ~2+

dr r r Ac
(49)

when the Coulomb field (e V=Ze'/r=Zahc/r) is introduced explicitly. A process of diagonalization
reduces these equations to a canonical form.

The linear combination
XFg+j(j+1)F2+ZnG

provides a solution of the differential equation

QQ = (2X/r') Q

if ) is chosen to represent one of the roots of the eigenvalue equation

X(X—l.) =j(jP1)—Z2n&

(50)

(51)

yg ——g~+ ((g y ~p)~ —Z20 ~]'*; $2 ——~g—p(g+ ~)2 —Z2~2] ~

Associated with these roots, therefore, are two functions:

which satisfy the differential equation

d' 2 d W' M'c4 —2W Zn XP +1)
+——+ +

dr' r dr k'c' Sc r r2

(81 BX, r Q2 QX2) i

(Xg —X2)/A=X)Fg+j(j+1)F2+ZnG, (X2—Xg)5'2=X2Fg+j(j+1)Fg+ZuG,

(52)

(53)

(54)

the form assumed by the Klein-Gordon equation in a Coulomb field. The two Eqs. (53), supplemented
by the fourth member of (49), vis. :

F,= &&+ &g, j(j+1)Fg+Z~G= —(Xm&&+X&&u)
(55)

Ac
G = ———Fg+

W dr

1+'Ag d 1+F2
&i+—&~+

r dr r

constitute a complete solution of the problem in terms of g, and $2.
In states of nonvanishing angular momentum, there exist two linearly independent solutions

associated with p& and with $2, which we label by a quantum number "I"=j+1,j—1, respectively.
In the nonrelativistic limit, "I"becomes the orbital quantum number. gz and g2 may not be con-
sidered as independent in states of zero angular momentum, for a relation between them is implied
by the Eqs. (55) specialized to the state j=0. The last two equations —equations for G—now serve
to determine the arbitrary constants in g& in terms of those in g& thus providing only one independent
solution. To show this in detail, we observe that, if Pq is a solution of (54),

whence

d 1+1 8 Zn
+) —i=—&) +

dr r Ac )

1+&i d 1+4 Sc
F'I+ —5'1+ 5'2+ +2 ~' = (~2 ~1+~1+2) (5'4—1+ ~Am —1) &8' dr r dr r J Za t/V

(56)

(57)
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in which the relation X&X2 ——Z'n' (j=0) has been utilized. Since X&(X&—1) = &2(&2 —1), gz, -i and gz, -i
satisfy the same differential equation, thus enabling one to impose consistently the condition

5)„ i+/~, ~—=0,

which exhibits the relation between g& and g& demanded by the coexistence of Eqs. (55) for j=0.
Although the equations of the modified theory (y=1) are completely soluble in regions devoid

of external charges, a comparable situation does not exist within charge distributions (I'(r) WO).
While the equations presumably possess regular solutions in regions of smoothly varying charge
density, no serious attempt has been made to obtain them. In the limiting case of a point charge,
the presence of the singular terms in I'(r) imposes boundary conditions, which may be inferred from
the requirement of the existence of physically admissible charge distributions. According to Eqs.
(15) and (16), the mesotron charge density p is given by

2e W+e t~ 4m-ek
p= — —— — (e 4+gp) —(e '7)g —(4 7') p+ I—'(r)Pp

Ac" hc M'c'

which would predict an amount of charge

—2Zn (ek/M'c') G'(0) (59)

to be contained within an arbitrarily small neighborhood of a point charge Ze. For solutions of the
type j="I"+1, G(r) r"~ ' in the vicinity of the origin, while for those of type j="I"—1, G(r) r" ~ '
Since X~ is not an integer, G(r) tends to either zero or infinity as r is diminished. In the latter case,
which occurs for j=0, "I"=I, and j=1, "I"=0, the amount of charge (59) in the immediate neigh-
borhood of the origin, and hence also the total charge of the system, becomes infinite. This meaning-
less situation implies that these two states are completely forbidden.

It is of some interest to note that the energy levels of the allowed discrete states are represented
by the Sommerfeld formula, all states of given total angular momentum and principal quantum
number coalescing as in the Dirac theory. This result is inexplicable on the basis of the formula
derived from the Larmor and Thomas precessions, which would predict in addition a dependence
on the orbital angular momentum quantum number l. The origin of this discrepancy is to be sought
in the inadequacy of considering the spin as a simple vector, for the coupling energy between spin
and orbit consists not only of the usual Larmor-Thomas terms but in addition terms which are
nonlinear in the spin. The equivalence between the Larmor-Thomas formula and the corresponding
prediction of the Dirac theory is to be attributed to the necessary linearity of the spin terms for a
particle of spin —,'.

The general program of this section has been an attempt to obtain rigorous solutions of the equa-
tions for a particle of unit spin in a Coulomb field. While for the equations describing Proca particles
this attempt has been abortive, the modified theory discussed in this paper provides regular solutions
for all states save two, these being completely forbidden. The net result of the modification has been,
therefore, the concentration rather than the removal of the singularities. The lack of a complete
set of regular solutions thus compels us to have resort to the Born approximation in order to give
meaning to these two theories.

IV. ELEcTRoN-MEsoTRoN CoLLIsIQNs

Information concerning the electromagnetic properties of mesotrons may be obtained by the

study of various scattering processes. However, it would be difficult to infer such information from

processes such as mesotron-proton scattering and radiative emission induced by mesotrons, which

involve in addition the mesotron-heavy particle coupling. For collisions between mesotrons and

electrons, however, this latter type of coupling is presumably absent, and the energy transfer is

dependent only on the electromagnetic interaction between the particles. Using various mesotron
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models, we shall calculate the cross section for this energy transfer, developing a general analysis,

based on the Born approximation, without use of the explicit form of the mesotron charge and

current densities. The results are applied to mesotrons of spin 0.=0, magnetic moment p=0, 0 =2,
p arbitrary (in particular p=0) and o =1, p, arbitrary (in particular ii=1 and p=2).

Let us consider a transition of the mesotron from a state of energy TV and momentum P' to a
state of energy 8'and momentum P. With this transition are associated charge and current densities

p= p, i exp {i[(P'—P) r —(W' —W)t]/fi}, j =j;q exp {f[(P'—P) r —(W' —W)t]/5} (60)

which produce a transition electromagnetic field

A=
47rji' exp {i[(P'—P) r —(W' —W)t]/l'i} exp {i[(P'—P) r —(W' —W)t]/5}

j;, , V=4~re'p;, . (61)
c !

Po —P}2—&-~(Wo —W)~
'

!
Po —P! ~ —&-2(WO —W)2

This field induces transitions of the electron from a state of energy and momentum 8', p' to the state
E, p. The spin direction of the electron in these positive energy states may be characterized by the

indices ), X =1, 2. If the electron wave functions are taken to be

initially: ui o"' exp [i(p' r —E't)/5], finally: up" exp [i(p r Et)/I'i—], (62)

the condition (ui o"', Ni o"') = (ui ', ui ")= 1 corresponds to one electron per unit volume. The transi-

tion probability per unit time from the state (X', p') to the state (X, p) of the electron is then given by

4~5'e 1
up, (p;f ——n'1 f)uy } '6(W+E W —E )6P+p, P"+p'.

fi !P'—P! ' —c '(W' —W)' ( c
(63)

To find the total electron transition probability, we sum over the final spin and momentum states
of the electron. The summation over the final momentum states has merely the effect of imposing

(he condition of momentum conservation. Summing over the final spin directions, one has

1 ) ' 1
(E'~'~ —p'j'~) (E~ I—p j'~)

1——',(E'E —c'p'p m'c')(—p;q' j;i j,I)—,
—(64)

C

which is independent of the initial spin of the electron. To calculate the cross section for a given
incident mesotron, we sum the transition probability (63) over all relevant final states of the mesotron

and divide by the product of the mesotron particle density and the relative velocity of the electron
and mesotron. The cross section thus defined is relativistically invariant and is most easily computed
in the center of mass system (P'+p'=0), since in this system the energy of either particle does not
change during the collision. The resulting cross section for the scattering of mesotrons through an

angle 8 into a solid angle des is

(E'I ~+P' j;i) ' ~'&" sin—' k~(~ r' ——j'~ j i)4c'I'" k w'+B')
(65)

if the mesotron particle density is also normalized to represent one particle per unit volume. Here we

have used the facts that the relative velocity is (c'P'/Wo)+(c'P'/E') in this coordinate system and
that the number of mesotron states per unit volume and per unit total energy range is

P' E'TV'

Her"5'c-' I'o+ g 0
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For a particle of spin one-half and magnetic moment unity the charge and current densities are given,
according to the usual Dirac theory, by the four-vector

j"= (e—k/2M) I (4 sop (a—oy) p)+ ,'a, -(y {goy" y—"q~)p) I (66)

Here Q is deFined by p= p+y', and yi' is given in terms of the more familiar Dirac matrices a, p by
i—P, y'= i—Pn' T.he two terms on the right-hand side of (66) are independently conserved and

correspond, respectively, to a convection current and a polarization current arising from the mag-
netic moment. In close analogy with the theory for particles of spin unity, outlined in Section II,
one may develop a theory for which the coefficient of the polarization current is arbitrary, cor-
responding to a particle of spin —, and of arbitrary magnetic moment. We consider here the particular
case for which this magnetic moment is zero. The charge-current four-vector then assumes the
simple form

P = (~eh/2M) I P+PB&$ (8"—P+)Ptf],

an expression which differs from the corresponding result for particles of spin zero only by the presence
of the matrix p. Using plane waves for the mesotron wave functions, viz. :

y;=upo"' exp } o(P'r —Wot)/5], Pf ——up" exp [i(P r —Wt)/5],

one finds that the transition charge and current densities corresponding to a mesotron of spin ~ and
magnetic moment zero are

c'(P'+P) W'
p;i = —e(W'/3llc') (M" puz o"'), );f———e (up", pupo"').

2W' Mc'
The wave functions are normalized by the condition

(68)

(ui "', mo"') =(Np", ihip") =1,

which corresponds to one mesotron per unit volume.
Using the relation

M'c4 f' P"
}(sp",Pupo~')~o=

}
1+ —sin' —'8

}W" 4 M'c' ) (69)

and substituting (68) in (65), one Finds that the cross section for the scattering of a mesotron through
an angle 8 into a solid angle d~ is

e' ( Wo ) ' doi ~ c'Po

I
so+

4c'I'" 4 W'+E') sin' —',i7 4 W' )
2 f' c'P"q M'c'

—c'r" sino -ioe
}

Zo+
W' 0 W' ) W" 3f'c'

sin' —,'0 . (70)

The corresponding cross section for a particle of zero spin —and hence zero magnetic moment—
differs from the above expression only by the absence of the last factor, which, for the case of spin ~~,

arises from the spin summation. It is to be noted that at high energies this factor entirely alters the
dependence of the cross section on the mesotron energy.

To obtain from (70) the cross section for Coulomb scattering it is only necessary to consider the
limiting ease of infinite 8', which yields

eo de
do =—

} } L1+(o'—1) sin' -,'0]
4 g ~co) (o2 1)2 sin4 ~d

(71)
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in which we have set W'=&Me'. At high mesotron energies (71) becomes

1( s i dec
d~=-I

4 (Mc') sin' —,'8
(72)

which differs from the corresponding formula deduced from the Proca theory' by the absence of
a factor 3 cos

The above formulae represent the angular scattering cross section in the barycentric system; we
are primarily interested in the cross section for a given fractional energy transfer to an initially
stationary electron. It is therefore expedient to introduce the ratio, f, of the kinetic energy gained
by the electron to Wo ——eMG2, the total energy of the incident mesotron, measured in the laboratory
system. The relation between f and the angle of scattering in the center of mass system is simply

2s)(c' —1)f=f,„,„sin' —',-8, where f„, = —(~=m/~)
e(1+co'+2am)

(73)

represents the maximum fraction of the mesotron energy which may be transferred to an electron
by impact. Employing the relation between Wo and the electron and mesotron energies in the bary-
centric system, vis. :

id(E+ M)+0- Mc',
(1+a)'+ 2(ue) '*

Wo= 3fc',
(1+co'+ 2 cue) '

we may rewrite the cross section as follows:

df 2 1—f(1—f)+—(1 —f—lf') — f .
g& —1 f~ GOE %262

(75)

At high energies this is independent of the energy of the incident mesotron. For a mesotron of arbi-
trary magnetic moment p, &1 and spin —, the leading term of this expression is multiplied by a factor
(p —1)~. The corresponding result for mesotrons of spin zero is obtained by omitting the last factor
in (70):

e' )' e' df 2 1

4~c') e~ —1 f~ M 6
(76)

which for high mesotron energies e decreases inversely with e.
For mesotrons of spin unity, one again uses plane waves for the mesotron wave functions, vis. :

( c c ) i cP'e'
I

e' exp [~(P' r w'~)/a] q;= —~a~I I exp [~(P' r —w't)/5 J
&2WO) E2W') W'

with similar expressions for the final state. The normalizing condition

e' e' —(cP' e'/W') '= 1

then corresponds to one mesotron per unit volume.
The transition current and charge densities are given by

p;y= —8
I

eo e—
W'Wo

cP'e'cP. e) (cP.ec(P' —P) e' cP'e'c(P' —P) el
I+k v+1

wo wo ) '
I w' &

I'
(77)

G2

(Io+P)I eo e—
2W'

' O. Laporte, Phys. Rev. 54, 905 (1938).

GP'e'GP e&
I+ ('y+1) (e'Xe) X (P' —P),

pro pro )
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TABLE I. Values of fK(f) for particles mt' various spins
and magnetic moments +kick collide mth tke electron.

TYPE

I
II
III
IV
V

SPIN MAGNETIC MOMENT

0
1

@+1
1

@+1

2~ '(1—f)
2n '(1 —f+-'f')
4 —1)'(1—f)
3(1—f+ lf')
l-( —1)'n(1 —f)

For the case of spin —,
' and magnetic moment p, / 1

~=0.2(p —1)'

which is of the correct order for
~
p —1~ &2.

& M. Schein and P. S. Gill, Phys. Rev, 55, 1111 (1939);
M. Schein and V. C. Wilson, Rev. Mod. Phys. 11, 292
(1939); H. Carmichael and C. N. Chou, Nature 144, 325
(1939); Bhabha, Carmichael and Chou, Proc. Ind. Acad.
Sci. A10, 221 (1939).

and on substitution in (65) one may obtain the
cross section. For general y and e the expression
obtained is complicated but for large e and y&0
the major contribution to the cross section arises
from the terms proportional to y' which cor-
respond to longitudinal-longitudinal transitions.
One finds, for fee~&&1, f&f,„=1—-'(1./2cue), and
~~0,

do = 3~-s.(s'/MC2)'y'~g(1 f)df—, (78)

which is to be compared with the corresponding
cross section for y=0

do = ;'s (e'/-Mc')'(1 f+ ',f')—df — (79.)

It is to be noted that for y 40 the cross section
increases linearly with the energy of thc incident
mesotron.

writing

do = ao~(f)df, oo ——7r(e'/Mc' ')' (80)-

for the cross section for a particle of energy
&Me' and mass M to transfer energy feMc' to an
electron of mass m=~cV, we may summarize
the above results for g= fe~&&1 in Table I.

Only cases III and IV lead to cross sections
essentially independent of the mesotron energy,
as required by experiment. In addition, it has
been shown' that in order to account for the
observed size of bursts of energy )2 )& 10" ev
it is necessary for the cross section to be such that

l

f ~(f)f"df-';
dp

Because of the uncertainty in the experimental
evidence the value of p, cannot be assigned more
definitely, but it is to be noted that, for the
particular case p=0 the value of f~: is 0.2, which
is very close to the corresponding value (0.22)
obtained from the Proca theory. It is therefore
impossible to distinguish between cases III and
IV from cosmic-ray evidence alone.

All these results having been obtained by use
of the Born approximation, it is important to
examine the conditions under which they may be
expected to have validity. A necessary condition.
for the validity of the Born approximation is the
smallness of the coupling between the mesotron
and the fields arising from both the electron and
the zero-point fluctuations of the electromag-
netic field, A previous investigation of these
questions by Oppenheimcr, Snyder and Serber'
has disclosed that the more incisive condition
arises from the requirement that the coupling
between the mesotron and the zero-point fluc-
tuations be small; To express this requirement in

quantitative form, we consider the mesotron-
electron collision in the center of mass system,
employing wave packets of approximate linear
dimensions h/P. The kinetic energy density

Pc(P/k)' must then be large compared with
the coupling energy density —(1/c) j ~ A. The
potential A describes the zero-point fluctuations
of wave-length k/P and possessses thc order of
magnitude P(c/h) l. The form of the current
density j depends on thc assumed mesotron
model and is of the order of magnitude ec(P/k)'
X(P/Mc)", where m assumes the value zero for
particles of type I, I I of Table I, n = 1 for types
III, IV, and n=2 for type V. This varied mo-
mentum dependence of the current density is of
course intimately related to the diferent energy
dependence of the cross sections for these several

types of particles. The condition of smallness of
the coupling energy density compared with the
kinetic energy density is then expressed quan-
titatively by

(P/Mc) "«1-
For the various types of particles this condition
assumes the form

(I, II): n'«1,
(II I, IV): Wo«M'c'/ um '=. 2 &(10'-' ev,
(V): Wo«M c'/n*'m'=. 2&(10"ev
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in its limitation on the mesotron energy S"0. The
domain of validity of the modified theory (case
V) is thus more limited than that of the Proca
theory, but it is still of sufficient extent to include
most of the experimental region.

The authors wish to express their gratitude to
Professor J. R. Oppenheimer for his continued
advice and encouragement.

l=j-i, j, j+1, (A4)

a not altogether unexpected result.
Sufficient information is available from the relations

(A2) to determine the properties of the solution l =j. The
equation thus obtained:

APPENDIX

The basic equation determining the simultaneous eigen-

functions of L' and J', Eq. (33) of the text:

((j(j+1)—l(l+1) —2) %= 2i(LX +), (A1)

may be readily solved by elementary quantum algebra.
The operations of scalar and vector multiplication with L
yield, respectively,

(j(j+1)—t(l+1))L.e=0
l(l+1)C' —L(L W) = ~(j(j+1)—t(t+1)) (A2)

X (j(j+1)—t(l+1) —2) ~'.

from which one obtains the characteristic equation

(j(j+1)—l(l+1))((j(j+1)—l(l+1))'
—2j(j+1)—2l(l+ 1)) =0 (A3)

by elimination of L %. The admissible values of the
orbital angular momentum are thereby restricted to

obtained by applying the operations of scalar and vector
multiplication with r/r to the basic equation (Ai). The
introduction of the scalar function v, defined by

(r/r) 4 = —-';(j(j+1)—l(l+1))v, (A12)

permits a more convenient expression of Eq. (A11), namely

(r/r) X C'= —iLv,

L v = -'(j(j+1)—l(t+1))
X (j(j+1)—l(l+1)+2)v (A13)

=jV+1)v.
'I'he relations (A12) and (A13) suffice to determine the
general form of W, for

+—= (r/r) ((r/r) +)—(r/r) X [(r/r) X %j
= I

-', (l(t+1)—j(j+1))(r/r)+i((r/r) XL) I v. (A14)

In virtue of the second of Eqs. (A13), the scalar function
v may be represented as the product of the spherical har-

monic P,m with an arbitrary radial function which is

independently assignable for the two states l= j&1. As

before, the choice of the harmonic P; guarantees that J,
shall have the eigenvalue m. The +-functions associated
with these two states, expressed in terms of the two
arbitrary functions F")(r), F"'(r) then assume the sym-

bolic form

l =j +1: %=
I (j+1)(r/r)+i(r/r) XLI F"'(r)P;"',

l =j—].: +=
I
—j(r/r)+i(r/r) XLI F&')(r)P2™. (A15)

To exhibit clearly the angular dependence of the 4'-func-
tions for the several states, we shall write in detail the
behavior of the components

' [(j—m) (j+m+1) )&P m+'

j(j+1)N=L(L +), (AS)

when reformulated in terms of the scalar function u,
defined bv

L.+=j(j+1)u (A6) t =j+1:

('—"-.').
2j+3

2j—1

yields the general form of %, viz.:
+= Lu, L'u =j (j +1)u. (A7)

The second equation of the set (A7) implies that u is a
spherical harmonic of order j, P;, multiplied by an arbi-
trary radial function F(r). The spherical harmonics are
assumed normalized to provide the conventional matrix
representation of angular momenta. One therefore obtains

t=j: 4 =LF(r)P,-.

[(j+m) (j—m+1) ]lP,"' ' F(r),
1

m P .m
2

m+ il
[(j+1+m) (j+2+ m) )&P2»

[(j+1—m)(j+2+m)]&P;+i '
[(j+1)2—m2j' P m

m+1
[(j—m)(j —m —1))lP; i

m-1 F(2) (r)[(j+m)(j+m —1)~V';, '
m[j'—m2j& P; i.

(A16)

J,e, =L,e, =me, . (A9)

The relations thus far developed (A2) provide only the
information that

L +=0 (Aio)

when restricted to the states l= j+1.To proceed further
one may utilize the equations

( j(j+1)—l(l+1)+2)(r/r) %= —2iL ((r/r) X W),
(j(j+1)—l(l+1)) (r/r) X W = 2iL((r/r) +), (A11)

The choice of the spherical harmonic P,"' guarantees that
J, shall have the eigenvalue m, for

These results are not completely novel, being intimately
related to the angular representation of electromagnetic
multipole fields. The electromagnetic equations are
identical with the field-free Proca equations in the limit
of zero rest mass, the quantities W and ip being identified
with the vector and scalar potentials in this limit. The
vector + satisfies the differential equation

(V2+u2)e=o (u=WPC), (A17)

'W. Heitler, Proc. Camb. Phil. Soc. 32, 112 (1936);
W. W. Hansen, Phys. Rev. 47, 139 (1935);S. M. Dancoff
and P. Morrison, Phys. Rev. 55, 122 (1939).
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which, for our purposes, is more conveniently expressed as

(
d' 2 d L'—+————+k' %=0
dr' r dr r~

multipole of order 2j. Using the recursion relations

f)+i+f~-i = (2j +1/kr)f~,
(j +1)f~+&—jf; &

———(2j +1/k) (d/dr) f;,
(A19)

employing Eq. (40a) of the text. All three possible types
of radial functions associated with a given orbital angular
momentum l thus satisfy the differential equation

one may verify that

+i= ~'~+i+@'&-i=—2j+1 &r d rXL
f,. i f, P,.~ (A20)

Lrdr
' r'

d' 2 d l(l+1)—+——+k'— f)(r) =0,
dr' r dr r2

(A18)

The solution +; for l=j (or more exactly the real part of
+ .e-ikcc) ~

+;= Lf;(r)Pp

represents a transverse wave field (& +;=0) which is to
be identified as the vector potential describing the radi-
ation emitted by a magnetic multipole of order 2j. Ap-
propriate linear combinations of the solutions for l =j+1

+j+1 I (j+1)(r/r) +i((r/r) XL) If&+i',¹»——
I
—j (r/r) +i ((r/r) XL) If; &P;,

may be found to represent the longitudinal and transverse
parts of the vector potential associated with an electric

= —(2j +1/k)vf&P"

by Eq. (40) of the text. Similarly

= j j+1
2j+1 2j+1

j(j+1) r rXL 1 d
-f;—i ——(rf;) P; (A21)

kr r r kr dr

= —(ilk)v X(Lf P ").
These functions therefore satisfy

~X@&=0, ~ ~2=0,
and are thus to be identified as the longitudinal and trans-
verse fields of an electric 2j-pole.
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In Section I a general formula for a, the coefficient of recombination of ions in gases, is de-
veloped. It covers all ranges of pressures and temperatures and can be made to include all types
of recombination (preferential, initial and volume ionization). The evaluation of the general
formula, (1.1), depends on the relative values of three linear quantities: the mean free path of
the ions ), the mean distance between ions of diferent signs r and the well-known parameter
ao=e'/(kKT). In Section II the case )((ao is treated. The mechanism of recombination then
depends on the ratio ao/r. If ao/r is large the migration of the ions under their mutual attraction
prevails and (1.1) leads to Langevin's formula; in the opposite case, ao/r((1, diffusion is the
decisive feature and 1.1 leads to a formula which is practically identical with that of Harper. In
Section III the case ) ))ao is treated by a method previously developed by the author. Under
certain restrictions (1.1) reduces to Thomson's formula, but in general a depends on the concen-
tration of the ions. In Section IV it is shown that (1.1) is in fair agreement with such experi-
mental data as are available for the region of transition between the cases treated in Sections II
and III.

'HE problem of recombination of ions in
gases under varying conditions of ioniza-

tion, pressure and temperature has proved to
be much more complex than was originally
anticipated. Various types, such as preferential,
initial and volume recombination are involved. '

' For the definition of these types and a survey of the
whole subject see the excellent treatment in: L. B. Loeb,
Fundamental Processes of Electrical Discharge in Gases
(John Wiley and Sons, New York, 1939).

It has been recognized in recent years that the
two most important theoretical formulae for the
coefficient of recombination, that of Langevin
and that of Thomson, have separate domains of
applicability. Harper' and Loeb' have given
formulae which bridge the expressions of
Langevin and Thomson in a formal way, but it

' W. R. Harper, Phil. Mag. 18, 97 (1934);20, 740 (1935).' I.. B. Loeb, Phys. Rev. 51, 1110 (1937).


