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The Thermodynamics of Irreversible Processes

III. Relativistic Theory of the Simple Fluid

CARL ECKART

Eyerson I'hysical Laboratory, University of Chicago, Chicago, Illinois

(Received September 26, 1940)

The considerations of the first paper of this series are modified so as to be consistent with the
special theory of relativity. It is shown that the inertia of energy does not obviate the necessity
for assuming the conservation of matter. Matter is to be interpreted as number of molecules,
therefore, and not as inertia. Its velocity' vector serves to define local proper-time axes, and
the energy momentum tensor is resolved into proper-time and -space components. It is shown
that the first law of thermodynamics is a scalar equation, and not the fourth component of the
energy-momentum principle. Temperature and entropy also prove to be scalars. Simple
relativistic generalizations of Fourier s law of heat conduction, and of the laws of viscosity are
obtained from the requirements of the second law. The same considerations lead directly to
the accepted relativistic form of Ohm's law.

INTRODUCTION

N the second paper of this series, ' the theory
-- of e-substitutions was outlined, and it was
shown that this device can be used to simplify
the derivation of some thermodynamic formulae.
However, the author was reluctant to use it in
the derivation of any fundamental formulae
because the e-substitution depends on the fact
that the internal energy contains an arbitrary
additive constant, while the principle of the
equivalence of mass and energy appears to give
an absolute meaning to the energy content of
any portion of matter. Thus it seemed possible
that in a relativistic theory of thermodynamics,
e-substitutions might be inadmissible. The con-
siderations which follow show that this is not
the case. To establish this result, it was necessary
to develop a complete relativistically invariant
theory of the simple Quid —a project which is of
interest in itself, even though the departures of
such a theory from a classical theory must be
negligible in most cases.

In I, four general principles were used:
(a) The conservation of matter; (b) the con-
servation of momentum; (c) the conservation of
energy; and (d) Kelvin's hypothesis concerning
the thermodynamic temperature. It might seem
as though the equivalence of mass and energy
would make (a) superRuous in a relativistic
theory. This is not the case, as becomes clear if
maNt!r is interpreted as number of molecules

' C. Eckart, Phys. Rev. 58, 267, 269 I', j.940}; hereafter
cited as I and II, respectively.
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rather than inertia. The principles (b) and (c)
combine into a single tensor equation, as is
well known. This is somewhat disconcerting, for
the first law of thermodynamics is a scalar
equation; its relation to the energy-momentum
principle must be discovered. Moreover, the
correct form of the energy-momentum tensor is
still a matter of discussion, and some assumption
must be made before the theory can be corn-

pleted. Finally, Kelvin's hypothesis involves
Fourier's law of heat conduction, and the
relativistic generalization of' this presents a
difhculty, arising from the fact that in the
classical theory there is a three-vector that
represents the flow of heat, but no density of
heat to combine with it to form a four-vector.
A somewhat similar diAiculty arises in connection
with the stress-tensor. ' It will be shown that all

of these problems can be solved in a systematic
manner if one defines proper-time and proper-
space in terms of the velocity of matter.

5'I ATTER, PROPER- TIME, AND PROPER-SPACE

A Galilean coordinate system (x'= ct, x', x', x')
will be assumed, in which the metric tensor is

0 0 0
0 1 0 0g"'=
0 010
0 0 0

~ R. C. Tolman has solved this problem for the stresses;
see his Theory of the Relativity of 3&tioN (University of
California Press, 1918), Chap. X, and Relativity, Thermo-
dynamics and Cosmology (Oxford, 1934},Chap. III.
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and this tensor will be used to raise and lower
indices in the usual manner. Matter wi11 be
represented by a four-vector, m, which has the
units g/cm', and depends only on the molecular
weight and on the motion of the molecules. The
inertia and internal energy of the molecules will

be introduced later, so that the molecular weight
is to be considered only as a convenient con-
version factor. The conservation of matter is
expressed by the equation

am /ax =0 (2)

It is to be assumed that m')0, and that the
invariant density

m=( —g.pm m&)& (3)

f= u, F, —
fa —g aFP

sp = Sp +u Qp.

(8)

The scalar f is the projection of F"on the axis of
proper-time, and fa is the projection of F into
proper-space. It is easily seen that

F =fu +f
and that

Q~p =0, QPsp =0. (10)

Covariant vectors can be resolved into proper
components in an analogous manner.

The tensor sp has several important proper-
ties: it is easily seen that

spos, p =s~~

and
s~p=s ~g»7 g

gap+Qaup (12)

is real and positive. The (dimensionless) velocity
of matter is

u =ma/m,
so that

Q Q

and
u (au /ax~) =u. (au /ax~) =0. (6)

The vector u' will be a function of the co-
ordinates, and wi11 determine a direction at each
point of four-spac- -the local axis of proper-
time. Three directions orthogonal to this are the
local axes of proper space. Any vector Ji, then
gives rise to a scalar and a vector by means of
the equations

&'F-Fv =g"f.fi ~~o (14)

the equality holding only when F =fu
This resolution of vectors into time and space

components is quite consistent with Einstein's
theory of simultaneity, since there is no reference
to separated points of four-space. This becomes
clearer on defining the proper-rate of change of
a quantity:

D@=u. (a@/ax.). (15)

This may be called the derivative of @ with
respect to proper-time. However, proper-time
itself has not yet been defined; one may try to
define it by the equation

but this does not determine a unique function v.

To make 7 unique, it is necessary to specify one
surface in four-space on which v=0, i.e., one
locus of simultaneous events. The essence of
Einstein's theory is that this locus cannot be
specified in a physically unique manner, so that
v remains somewhat arbitrary. The differential
operator D is unique, however, and corresponds
closely to the classical operator D/Dt.

The Eq. (2) is readily transformed into

au /ax = vDm=mDv—, (16)

where v=1/m is the invariant specific volume
(cf. I, Eq. (2)). Equation (6) yields

Q DQ =u Du =0.

RESOLUTION OF THE ENERGY-MOMENTUM

TENSOR INTO PROPER COMPONENTS

The energy-momentum principle will be as-
sumed in the usual relativistic form,

aW-v/ax-=o, W-s= Wv-, (18)

the units of W being erg/cm'.
The equation obtained by setting P=O in

Eq. (18) is variously called the equation of
conservation of matter, of mass or inertia, and
of energy. It seems to the author that, while
each of these designations can be justified in

is a symmetric tensor. A simple calculation shows
that

sN p =s~~s~p =s~~g'~s, p, (13)

so that, because of Eq. (5),
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special cases, the first two are misleading in
general. He wouM prefer to retain only the third,
and refer to the equation 8'~'= W' as the
principle of the inertia of energy. Even the third
is misleading unless a distinction is made between
the principle of conservation of energy and the
first law of thermodynamics, the two being
identical only when matter is at rest (see below).

For the moment, no assumption will be made
concerning the form of g &, but it will be used
in defining other quantities, such as the internal
energy and heat How. Assumptions concerning
the form of these quantities will be made below.

The tensor 8" may be resolved into proper-
components: if'

Multiplying Eq. (18) scalarly by —up and
rearranging, we have

—(B/Bx~)(upW P)+W P(Bup/Bx ) =0 (2'I)

because of Eqs. (19), (20), (22)

—upt/V t'=au +m
=m(e+u)u +q /c.

Since mu~ =m~, Eq. (2} results in the disappear-
ance of a from the equation 3

—(B/Bx )(upWop) =(B/Bx~)(meu~+g /c)
=mD p+ (1/c) (Bg~/Bx~)

Equations (6) and (22) result in

then

@=TV t'u up,

m = —sp 8'»u~,

mat'=s as'&W

W P=wu uP+w uP+wPu +w P

(19)

(20)

{21)

(22)

W P(Bup/Bx ) =wPDup+w P(Bup/Bx ),

so that finally Eq. (27) becomes

mDp+(1/c)[(Bg /Bx )+g~Du $
+w P(Bup/Bx~) =0. (28)

is the heat flow in erg/cm' sec. ; the equation

Ng =0 (25)

which follows from Eq. (10) and (20), corre-
sponds to the absence of a density of heat in the
classical theory. The symmetric tensor —m & is
the stress tensor (dynes/cm'); the equation

(26)

reduces the number of its independent compo-
nents to six, as in the classical theory.

THE FIRST LAW OF THERMODYNAMICS

The first law of thermodynamics can be derived
from Eq. (18) and the definitions just adopted.

It will appear that each of these components
has an important physical interpretation. Thus,
w is the invariant density of energy (erg/cm').
The internal energy, p (erg/g =cmm/sec '), is.
appropriately defined by

m(p+c) =w,

u being an arbitrary constant. It will appear
that u does not enter into the first law of thermo-
dynamics. The vector

This is to be compared with the classical form
of the first law (cf. I, Eq. {7))

m(Dp/Dt)+V q —(y V).V=0,

q being the heat flow, V the velocity and p the
total stress. The terms of the two equations are
in an obvious correspondence, except that the
term (1/c)q Du does not appear in the classical
case. This term is very small in all ordinary
cases, and may be interpreted as the work done
by a How of heat through accelerated matter-
a phenomenon not envisaged by the classical
theory.

It will be noted that, up to this point, the introduction
of the matter vector, m~, served no purpose except to
de6ne the density and velocity of matter, m and u~.
Tolman, reference 2, and others avoid introducing m~, but
cannot avoid introducing tP. At this place in the considera-
tions, however, it becomes important that matter be
conserved (Eq. (2)). If this were not the case, the constant
a would enter into the first law of thermodynamics, Eq.
.(28), in the form of a term e(8nP/Bx~). In other words, the
creation or annihilation of matter requires energy ab-
sorption or release. This is as it should be, and indicates
that the theory of e-substitutions may be used even in
relativistic considerations, except when matter is being
created or destroyed. The theory of such nuclear processes
is beyond the scope of the present paper, particularly
insofar as electric charges and radiation are involved.
Insofar as only heavy particles are involved, the device of
using mass numbers (integers) in the definition of m~ (and
thus including the packing-fraction energy in e) will insure
the validity of Eq. (2).
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THE SIMPLE FLUID AND THE SECOND LAW

oF THERMQDYNAMIcs

The theory of the simple fluid is of considerable
importance, since in this case it is possible to
prove the existence of temperature and entropy
(cf. I, Eq. (9) et seg. ). The appropriate definition
of the hydrostatic pressure is

The inequality

mDv+(B/Bx )(9 /c8) &~ 0 (36)

cannot be proved without some assumption
concerning the relativistic form of Fourier's law
and Kelvin's hypothesis. The simplest assump-
tion leading to Eq. (36) is that

3 cx (29) g = ks —PDB8/BxP)+8Dup], (37)

nP&=0, P =0, (31)

which follow from Eqs. (29) and (30), restricts
the form of P very materially. The equation

P p=7cIs &sp'[(Bn„/Bx')+(BN)/Bx&)5
—23s sP&'( uB~/ Bx) I (32)

is very strongly indicated, if not uniquely
determined. At any rate, this expression for P
satisfies Eq. (31), and differs from the classical
expression only by terms that are ordinarily
negligible (see below).

Since
s P(Bup/Bx ) = (Bu /Bx~) =mDv

by Eqs. (6), (12), and (16), the Eq. (28) becomes

m(Dp+pDv)+(1/c)DB9 /Bx )+g Du $
PP(Bup/Bx~) —=0. (33)

For the simple fluid, ~ is a function of p and
v only, so that there are two functions 0 and z
such that

De+pDv= HDg, (34)

the proof is identical with that given in I. Since
p, P and v are scalars, 8 and v will also be scalars. '
Substituting in Eq. (33) and rearranging, we

obtain

mDv+ (B/Bx~) (9 /c8) = —(1/c8') g [(88/Bx )
+8Du j+(1/8)P P(Bup/Bx ) (35).

4 The scalar character of g appears to be generally
accepted (cf. Tolman, Relativity of Motion, Chap. XI).
However, M. Planck introduced a nonscalar quantity, T,
which he identified with temperature, and which appears
to be related to the present 8 by the equation T=8u'.
Tolman introduces a quantity 1' which appears to be
identical with 8.

and it is to be assumed that the viscous stress
tensor,

P P= —iv P+Ps P (30)

is a linear function of (Bu~/Bx') and proportional
to the scalar coefficient of viscosity, ). This
together with the equations

8/8 p
= coli st.

Thus Eq. (37) fixes the definition of the tempera-
ture except for a choice of unit.

From Eqs. (14) and (37), it follows at once that

—(1/c8')cf [(88/BxN)+8Du ]~& 0. (38)

It therefore remains to show that

P p(BNp/Bx ) &&0, (39)

the positiveness of ) and 0 being assumed. For
this purpose, the attention may be fixed on a
single arbitrary point, A, in four-space. If the
time-axis of the Galilean coordinate system is
chosen parallel to the proper-time axis at A,

which satisfies Eq. (25) and reduces to the
classical Fourier's law when ordinarily negligible
terms are canceled (see below). The scalar
k(~&0) is the thermal conductivity of the fluid.
The term s P(B8/BxP) is obviously the relativistic
temperature gradient. The term —ODNp has no
classical analog, and implies an isothermal flow

of heat in accelerated matter, in the direction
opposite to the acceleration. It is ordinarily
small, and may be explained as due to the
inertia of energy. Equation (37) shows that
q =0 when the vector B8/BxP+8Dup is Parallel
to the proper-time axis. This seems strange at
first, but on reflection, it is seen to correspond
to the fact that, in the classical theory, there
will be no flow of heat if VS =0 even though
B8/Bt/0 —i.e. , that there are adiabatic changes
of temperature.

As was discussed in I, Eq. (34) does not
determine 8 and p uniquely, 'however, if it be
assumed that Eq. (37) holds for two of the
possible functions 0, 00 and all possible values of

s P(Bv/BxP), s P(BP/BxP), s PDup,

then it can be shown as in I that
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then at this point,

Q =-1, 0, 0, 0,
Q = —1, 0, 0, 0,

and
0 0 0 0

6
0 1 0 0
0 0 1 0
0 0 0 1.

(4o)

Equation (43) is the equation of conservation of
energy, and is (in this case only. ) identical with
the first law, Eq. (33). The Eqs. (44) are the
momentum equations, and it is immediately
seen that g"/c' is a momentum, since its time
rate of increase is equal to the negative gradient
of the pressure.

OHM'S LAW

Substitution into Eq. (32) shows that

+00 jPOI . . . 0
while

P"= -o'Xc{L(Bu~/Bx') —(Duo/Bx') ]
+L(aug/Bx') —(Duo/otxo) ]I, (42)

P"= ),c{(8u, /otx') + (duo/Dx') ], etc. ,

which are the classical expressions for the viscous
stresses. It then follows, as in I, that Eq. (39)
is true at the point A, and thus everywhere in
four-space.

TELE M OMENTUiVl OF H EAT

The general principle of the inertia of energy
leads one to expect that a flow of heat q will be
associated with a momentum q/c'. This result
can be read out of the form of the energy-
momentum tensor (Eqs. (22) and (24)), but it is
interesting to consider the question in somewhat
more detail. It will be supposed that the fluid is
at rest in the Galilean system x, so that Eqs.
(40) and (41) are valid at all points of four-space
and P P=O Then Eq. .(37) yields

q0=0
g = kBtt/Bx—, ~=1, 2, 3,

while Eq. (2) becomes

Bm/Bt = 0

so that m and v are functions of x', x', x' only.
The components of the energy-momentum
tensor are

W"=m(o+ a),
Woe —~s/c —+lao

glKP —Pg Ktt

The Eqs. (18) become

The general problem of thermoelectromagnetic
phenomena is too complex for brief discussion,
but it is of interest to indicate how these phe-
nomena may be included in the present theory.
Consider an ideal fluid whose internal energy is
independent of the electromagnetic quantities,
but which is an electric conductor. A molten
metal approximates such a fluid, but shows
thermoelectric effects, etc. , which indicate a
slight dependence of its internal energy on the
electromagnetic variables.

Let j be the electric current density in

e.m. u. /cm' sec. =e.s.u. /cm', and

0

E,

—E
0
B,

—8

—Ey
—B-

0
B.

—E
B„

—B
0

(43)

be the field tensor, the E's being the electric
field in e.s.u. , the B's the magnetic induction in

e.m. u. The energy-momentum principle is now
to be formulated as

BW p/Bx =j F p. (46)

The tensor TV can be resolved into components
as before, and the first law becomes

—(8/Bx )(upW p)+ W p(Bup/Bx )
jupF P. (47)—

This may be transformed into an equation
similar to Eq. (33), except that the right side is
not zero, but the same as that of Eq. (47).

The entropy and temperature may be intro-
duced in exactly the same manner as above,
and an equation, diA'ering from Eq. (35) only
by the additional term

m(ao/at)+(ag /ax") =0

(8/Bt) (q"/c') + (BP/Bx") = 0.

(43)

(44) can be deduced. The Eq. (36) requires this
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CONCLUSION

term to be positive for all possible values of j the Maxwell equations are needed to complete
and up' , this will certainly be the case if (with the theory.
0 &0 and p a scalar)

= pQ —oF ~Op,

since F t'N~ is a vector in proper-space. However,
Eq. (48) is precisely the well-known invariant
form of Ohm's law;5 in the case of stationary
matter it reduces to the classical form:

j = p, oZ~, aE„, rE,.

Thus p is the charge density and 0 the electrical
conductivity.

The ease with which this law can be incorpo-
rated into the equations lends strong support to
the theory developed above. It will be noted
that Maxwell's equations have not entered this
discussion. However, the Eqs. (47) and (48)
are too few to determine all the variables, and

' See Tolman, Relativity, Thermodynamics and Cosmology,
p. 114.

It has been shown that the classical considera-
tions of I can readily be extended so that they
are consistent with the special theory of rela-
tivity. The further extension into the general
theory should o8er no special difficulties.

One result has appeared clearly: It is necessary
to introduce the current-density of matter sepa-
rately from the energy-momentum tensor. This
is also apparent from other treatments of energy
and matter, but has rarely been emphasized.
From the macroscopic standpoint, therefore,
matter cannot be considered a form of energy,
even though inertia is a property of energy
rather than of matter. Matter has inertia because
it has energy, but is not a form of energy. This
same conclusion can be reached from a considera-
tion of recent attempts to construct microscopic
theories of the ultimate particles.

Correction: The Thermodynamics of Irreversible Processes. II.

(Phys. Rev. 58, 269 (1940))
CARL ECKART

Ryerson PhysicaL I.aboratory, University of Chicago, Chicago, Illinois

On page 274 of the above paper, the sentence beginning "It is not easy to
see. . ." should be replaced by the following:

It can be shown that

for all values of 6;. Let
x, ' = Qg vg, '8 g/Rtt,

x,"= pl„.vk, "Ag/R8,

so that this sum may be written

Rg,a,[x,' —x,"j[exp (x,') —exp (x,")].
Since the exponentials are monotonically increasing positive functions of
their arguments, it follows that both brackets in the above expression always
have the same sign. Since u, &~ 0, the required inequality follows at once.


