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The purpose of the present investigation is to explore the
possibilities of the “itinerant” or ‘collective’” electron
picture in the theory of metals to explain the quenching
of orbital angular momentum in solids and, through the
introduction of I,s coupling, the phenomenon of ferro-
magnetic anisotropy in cubic crystals. The approach used
is that of the Bloch “‘approximation of tight binding” in
the theory of metals, the exchange energy being treated as
a Weiss internal field as in the work of Stoner and Slater,
and the spin-orbit coupling being introduced as a perturba-
tion. The anisotropy is shown to appear in the fourth

approximation, and to have the correct order of magnitude
for iron and nickel. The model also predicts the correct
sign of K, in nickel and iron, but this prediction is not
entirely satisfactory because computational difficulties
prevent the inclusion of all the d-wave functions in the cal-
culation. A qualitative discussion of the behavior of iron-
nickel alloys is given. The chief weakness of the model is
its failure to take account adequately of Russell-Saunders
coupling within the atom, and the dependence of many of
its predictions on details of the model which are not very
well established.

INTRODUCTION

CONSIDERABLE amount of experimental

data has accumulated in recent years on
the magnetic anisotropy of ferromagnetic cubic
crystals.! Most of the observed effects can be
interpreted on the assumption that the crystal is
composed of a number of magnetized domains,?
whose energy depends upon the orientation of the
magnetic intensity in the domain relative to the
crystalline axes. Thus the energy of a domain
takes the form

E=E0+f(a1y [23]) a3)y (1)

where ai, a3, a3 are the direction cosines of the
magnetization. Fortunately the form of the func-
tion f(au, s, @3) may be deduced from the sym-
metry class® of the crystal without any assump-
tions as to the mechanism responsible for the
anisotropy. In a cubic crystal, for example, it
may be shown that the energy must take the
form

E=Ey+Ki(a?a?+atag?+ a’as?)
+K2(0112¢1220£32) (2)

plus higher degree terms which have never been
found necessary in practice. The magnitude and
general properties of the coefficients K; and K,
are not, of course, determined by the symmetry,

1R. M. Bozorth, J. App. Phys. 8, 575 (1937); E. C.
Stoner, Magnetism and Maiter (Methuen, 1933).

2 Cf., for example, W. Heisenberg, Zeits. f. Physik 69, 287
(1931); R. M. Bozorth and E. C. Stoner, reference 1.

3F. Bitter, Introduction to Ferromagnetism (McGraw-
Hill, 1938).

but may be deduced from experiment.! The
elucidation of the magnitude, sign, and tempera-
ture and alloy composition dependence of K; and
K, is a task for the electron theory of metals. The
Heisenberg exchange coupling, which accounts so
nicely for the existence and general properties of
the ferromagnetic state,* is of no use in explaining
the anisotropy since it depends only on the
relative orientations of neighboring spins and not
on their absolute orientation with respect to the
crystal. The earliest such mechanism proposed
was the magnetic dipole interaction between
spins. This interaction contains a term depending
on the orientation of the spins with respect to the
line joining them, and such terms are naturally
structure dependent since they depend on the
actual positions of the spins in the lattice. In
cubic crystals, however, the magnetic interaction
vanishes in first approximation because of the
symmetrical arrangement of nearest neighbors,
and the second approximation of perturbation
theory gives much too small a magnitude for the
anisotropy constants.® Bloch and Gentile® sug-
gested instead that the spin-orbit coupling,
acting in conjunction with the electrostatic
coupling of the orbit to the crystal, would provide
an anisotropy of the proper magnitude, and at
present this is the generally accepted view. The
two models are not dissimilar from the mathe-
matical viewpoint, since, as Van Vleck® has

¢ W. Heisenberg, Zeits. f. Physik 49, 619 (1928).
- 8 R. Becker, Zeits. f. Physik 62, 253 (1930) ; F. Bloch and
G. Gentile, Zeits. f. Physik 70, 395 (1931).

8 J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).
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910 HARVEY
indicated, the mechanism of Bloch and Gentile
gives rise to an apparent dipole-dipole as well as
quadrupole-quadrupole coupling which is of much
greater magnitude than the purely magnetic
interaction. Calculations using this somewhat
phenomenological substitute for the true mecha-
nism were undertaken from different viewpoints
by Van Vleck and van Peype, a pupil of Kramers.”

In spite of their success these methods
are not entirely satisfactory because of their
semiphenomenological approach, and it therefore
seems worth while to attempt a calculation with
a more explicit model, which gives a more
detailed insight into the origin of the coupling
terms. Van Vleck’s theory is based on the many-
electron (Heisenberg) model, which is too compli-
cated for rigorous solution. At Professor Van
Vleck’s suggestion, accordingly, we have treated
ferromagnetic anisotropy from the standpoint of
the “itinerant’ or “‘collective” electron model of
Bloch, Stoner, and Slater,? in which each electron
is treated as belonging to the metal as a whole
and as moving independently of the other elec-
trons in a self-consistent field determined by the
potential of the ions and the ‘‘time exposure”
field of the other electrons. Although this model
is a far poorer approximation for the tightly
bound d electrons involved in ferromagnetism
than the Heisenberg model, it leads to a secular
equation which is reasonably manageable, and
which, with the introduction of spin-orbit inter-
action, gives rise to ferromagnetic anisotropy in
a straightforward manner.

QUENCHING OF ORBITAL MOMENTUM

The whole mechanism of ferromagnetic ani-
sotropy bears an intimate relation to the
quenching of the orbital angular momentum in
solids. Determinations of the gyromagnetic ratio
for the ferromagnetic metals and alloys give a g
factor only slightly less than 2, showing that even
though the electrons involved in the magnetic
properties are d electrons, their orbital angular
momentum is not free to orient and precess in an
external field. This means that there is a powerful
force within the crystal tending to orient the

7W. van Peype, Physica 5, 465 (1938).

8 F. Bloch, Zeits. f. Physik 57, 545 (1929); J. C. Slater,
Phys. Rev. 49, 537 (1936); E. C. Stoner, Proc. Roy. Soc.
A165, 372 (1938).
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charge cloud around each atom in a definite
manner with respect to the crystal axes. The
weak magnetic coupling of the spin to the orbit
insures that this force will be “felt’” slightly by
the spin, whose energy is therefore not entirely
independent of orientation. The most obvious
orienting or ‘“‘quenching’” mechanism would be
the crystalline Stark effect,® lifting as it does the
degeneracy between the various magnetic sub-
states of a given total angular momentum, but
unfortunately this is not an adequate mechanism
for cubic crystals, where the asymmetry of the
electrostatic field is not sufficient completely to
destroy the degeneracy with respect to the
magnetic quantum number. In a cubic field, as:
shown by Bethe,® an atomic d level subdivides
into two levels, forming the representations I's
and T5 of the cubic group. The T'; level is doubly
degenerate but magnetically inactive, but the T's
level is triply degenerate and possesses matrix
elements of the magnetic moment between its
substates. If the level is not completely filled in
the solid state, therefore, we should expect
contributions to the magnetic moment from the
orbit as well as the spin, and a g factor con-
siderably less than 2. In order to remove this
discrepancy Sommerfeld and Bethe!® suggested
an additional quenching arising from an antifer-
romagnetic coupling between orbital angular
momenta on different atoms, and this is the sort
of quenching postulated by Van Vleck and van
Peype. In the itinerant electron picture the
quenching arises naturally from the hopping of
electrons between adjacent atoms. Even in the
tightly bound & band the hopping takes place
with sufficient frequency to destroy any ori-
entation in an external magnetic field. In more
quantum-mechanical language, the situation may
be described as follows. In the Heisenberg model
each electron is confined to its own atom, and its
energy levels are determined by a field having the
symmetry of the point group about a fixed atom.
In this field the representations and energy levels
are degenerate as described above. In the

9 H. Bethe, Ann. d. Physik 3, 137 (1929); Zeits. {. Physik
60, 218 (1930); H. Kramers, Proc. Amst. Acad. 32, 1176
(1929); 33, 959 (1930); W. G. Penney and R. Schlapp,
Phys. Rev. 41, 194 (1932); 42, 166 (1932); J. H. Van
Vleck, Electric and Magnetic Susceptibilities (Oxford, 1932),
Section 73.

1 A, Sommerfeld and H. Bethe, Handbuch der Physik
(second edition, Berlin, 1933), Vol. 24/2, p. 613.



FERROMAGNETIC ANISOTROPY

itinerant model, on the other hand, each electron
moves in a field whose symmetry is determined
by the space group of the whole crystal, including
translations as well as rotations. For the majority
of wave vectors k the representations are non-
degenerate, the space-group insuring the removal
of the degeneracy which may exist under the
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point group alone. The reality of the resultant
nondegenerate wave functions then precludes the
existence of diagonal matrix elements of the
magnetic moment, and such nondiagonal ele-
ments as there may be join states whose energy
differences are large compared to the magnetic
perturbation.

APPROXIMATE STRUCTURE OF D BANDS

In order to put these ideas on a quantitative basis it is necessary to say something about the form
of the d bands in cubic crystals. This is a case where the Bloch ‘‘approximation of tight binding”’!! is
reasonably reliable, since the overlapping of the d shells is small. The energy levels are just those of
the single atoin subject to the crystalline Stark effect, except that each level is broadened out into a
band, arising from the possibility of leakage of electrons between atoms. When the original atomic
levels are degenerate, however, the substates give rise to a number of overlapping bands, and con-
siderable care is necessary in choosing the correct linear combinations of wave functions which
diagonalize the perturbing energy.

In setting up the secular equation we confine ourselves to the I'; level, although this is a poor
assumption, in that there are matrix elements of the magnetic moment between the I's and T'; levels
as well as between the substates of I's. For the purposes of this paper we shall assume that the
separation between I'; and T'; is large compared to the broadening of the individual levels. The atomic
wave functions of the T'; level are:
bs=xyf(r). (3)

o1=yzf(r), b2=2xf(r),

In the approximation of tight binding we start with the linear combinations:!*
Ya(k)=N"% 3 exp (ial-K)¢.(r—al), (4)
1

where ¢ is the lattice constant, N the total number of atoms in a domain, 1 a vector representing the
lattice points. With these wave functions and a perturbing potential equal to the difference between
the crystalline self-consistent field and the potential due to the free ion, the secular equation factors
according to k, but for each value of k there are in general matrix elements of the ‘“‘hopping” energy
(perturbing potential) between states of different #. Thus for each value of k, the wave vector, the
energy is obtained as a root of a third-degree secular equation :

H,—E Hy, Hys H;= f‘/’l*(k)flil/l(k)dﬂ
Hy, Hy,—E Hy |=0, (5)
|Hw M He—E|  Hu= S0 0 Hp®)dr

This equation was first obtained by Jones and Mott* for the body-centered cubic lattice. In this
case the matrix elements are:

Hy,=H,=H3= —8A cos { cosn cos ¢,
Hy3;=28B cos £ sin 7 sin ¢,

Hy,=8B sin £ sin 5 cos ¢,
H,3=8Bsin £ cos g sin { (6)

}i‘ F. Bloch, Zeits. f. Physik 52, 55 (1928); N. F. Mott and H. Jones, Properties of Metals and Alloys (QOxford, 1936),
Chapter I1.
2’H, Jones and N, F, Mott, Proc. Roy. Soc. A162, 49 (1937).
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where £, 9, ¢ are defined by ¢=3%k.a, n=3%k,a, {=1k.a and where
A = _f¢l(xyz)H,¢l(x+%ar y+%a’y z+%a’)dV1 (7)
B=— f¢1(xyzs) H'¢po(x+3a, y+3a, 2+3a)d V.
Since the perturbing potential is negative, 4 and B are positive.!®
For the face-centered cubic the matrix elements are readily obtained. The diagonal elements are:
Hy=4A(cos £ cos n-+cos £ cos {) —4A4; cos 1 cos {,
Hy=4A(cos £ cos n-+cos n cos §) —4A 2 cos £ cos {,
H;=44(cos £ cos {+cos 5 cos {) —44, cos £ cos 1, (8)
Ar= Sayf(nH' (x+3a)yf(| (x+3a)*+y2+ (3+30)? [ DAV,
As=— Sryf(NH' (x+30) (y+30)f(| (x+30)*+ (y+3a)*+22 | DA V.
A simple argument shows that 4; and A4, are positive as defined and that 4,>4,%
The off-diagonal elements are
Hy;=—4Bsin ¢sing, Hy=—4Bsingsin{, H;3=—4Bsin {sin{ 9
and B as defined is positive. :
SOLUTIONS OF SECULAR EQUATION

1. Body-centered cubic
The solution has been obtained in approximate form by Jones and Mott.!? The result is expressed
in terms of a variable x= (E/8B)+ (A /B) cos £ cos 5 cos {. For most values of the wave vector the
approximate solutions are:
x=0, x=ze=x(a?+b2+c?)}, (10)
where
a=sin §singcos{, b=sin {cosqsin{, c=cos £sin 9 sin ¢.

With these energies the approximate form of the diagonalizing transformation is:

1 ) o3
0 —ce! be! ae!
+ | W2ret  IN2rl(atbee) IVZri(btace™) (11)

— | =1V27et W27l a—bce™) $V2Zrl(b—ace™)
where
r=(a*+0)}, e=(a*+b2+ )
This gives the energy correctly except for terms of order abc/ e, which happens to be small for most
values of the wave vector k. Thus the continuum generated by the three T's functions really consists
of three overlapping bands. Each band is referred to an atomic function which is a linear combination
of the functions (3), and which is different for each choice of propagation vector.

2. Face-centered cubic
We divide the secular equation through by 4B and define

x=(E/4B)—(A1/B)(cos £ cos n+cos £ cos {+cos n cos {), Q=(41+A4,)/B. (12)

Here it must be remembered that B< (414 A4,), and that therefore Q is large compared to unity. This
being the case, the secular equation is largely dominated by its diagonal elements, except for the
special values of k for which they become nearly equal. This means that in the face-centered cubic
the original ¢1, ¢s, ¢3 are nearly the true atomic wave functions for the three bands of the I's level.

Similar results apply in the simple cubic lattice, but here it may be shown that the off-diagonal
matrix elements vanish altogether so that the functions (3) are just correct.

13 This follows from the fact that xyf(r), y2f(r), and zxf(r) are even with respect to reflections along the body diagonal.

1 4, is positive since the perturbing potential is negative while x and x4 }a have opposite signs on nearest neighbors.
A, is positive because the integrand is positive in the region between nearest neighbors. 4;>4: because y~0, 1.e., the
wave function has a node in the region of maximum perturbing potential,
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SPIN-ORBIT INTERACTION

In order to carry on the discussion it is necessary to obtain the matrix elements of the spin-orbit
interaction in the system of representation in which the band or “hopping” energy is diagonal. This
interaction may be expressed in the form

0'=% ¢(|]r—al|)S-L(r—al), (13)
1

where L(r —al) is the arigular momentum operator about the atom at lattice position 1, and ¢(|r—al|)
is a function falling off as 1/73 at large distances and depending only on the absolute magnitude of the
radius vector.!s O’ is an operator which is periodic in the fundamental lattice translations, and hence
is rigorously diagonal in k.1® I'ts matrix elements between Bloch functions of the same k and different »
are furthermore independent of k to a first approximation. It is easily shown that

(nk|¢(|r—al])S-L(r—al)|n'’k) =3 exp (—ial-K) S ¢ (r—al){(r)S-Loa(r)dV. (14)
1

If ¢(7) falls off sufficiently rapidly the integral in (14) will be inappreciable unless 1=0.17 Thus we see
that the matrix elements of the spin-orbit interaction with respect to Bloch functions are practically
the same as between the corresponding atomic functions, that is -

SV (RO, (RK)AV=A(n'm, |S-L|nm,). (15)

In this equation 4 is the ordinary spin-orbit interaction parameter for free atoms. It is the interaction
for an individual electron, corresponding to the small a; in Goudsmit’s!® notation, and must not be
confused with the spin-orbit interaction parameter for the atom as a whole. The point is that we are
here assuming the “hopping’ energy sufficient completely to destroy the Russell-Saunders coupling
within the atom, so that there is no question of the individual electronic angular momenta combining
to form a resultant L and S. This is a poor approximation since, owing to the tight binding of the d
shell, there must be a rather high degree of internal coupling, but so far no way has been developed
of taking it into account in the itinerant electron model, where the electrons are treated as essentially
independent. We assume that the secular equation for the T'; bands is diagonalized by a set of real
transformation coefficients a(r, #). In terms of this diagonal representation (labeled by the index ),
we find for the matrix elements of the spin-orbit interaction

(rms|S-L|7'my) =3 a(r, n)(nm,|S-L|n'm)a (', n’)
= ¥ {a(r, n)a(r', n')—a(<’, n)a(r, n')} (nm,)S-L|n'm,’), (16)
n<n’
where the index 7 refers to the original set of atomic wave functions [Eq. (3)]. In this representation
the spin is quantized along the z axis. In practice, however, the spin must be quantized parallel to the
external field. In this new system of representation the matrix elements are as follows:

(r1, 3|S:L|73, 3)=—i cos ¢, (71, 3|S-L]|7s &) =1 sin 0’ sin ¢/,

(r2, %S L|73, )= —isin 0 cos ¢/, (71, 3|S-L|7s, —3) =exp (—i¢’)[—i sin 6’], 1n
(r1, 5|8 L|73, —%)=exp (—i¢')[ —cos ¢’ —1i cos ' sin ¢'],
(72, 3|S-L|7s, —3) =exp (—i¢’)[ —sin ¢’ cos 6’ cos ¢’].

The angles ¢’, ¢’ are measured not with respect to the x, y, z axes but with respect to a new set of axes

determined by the unit vectors i/, j’, k/, which are defined in terms of the transformation coefficients
as follows:

i'= [d(’rl, l)v G(Tl, 2), a("ly 3)]» j, = [a(TZr 1)s G(Tz, 2)1 (1«(7’2, 3)]! k'= [d(Ts, 1)) 0(73’ 2)’ d(’fs, 3)]‘ (18)

B E, U. Condon and G. Shortley, Theory of Atomic Spectra (Cambridge, 1936), p. 120.

16 N. F, Mott and H. Jones, reference 11, p. 59. .

7 A more detailed analysis of the spin-orbit effects would necessitate inclusion of the spin-other-orbit interaction.
For atoms distant from the one in question this would tend to cancel out almost exactly the 1/¢3 term arising from the
ions, and so in effect ¢(r) would probably fall off exponentially rather than as 1/72.

18 S, Goudsmit, Phys. Rev. 31, 946 (1928).



914 HARVEY BROOKS

TABLE 1. Secular equation for ferromagnetic anisotropy, including spin-orbit interaction. Angles measured with respect to
special skew axes determined by transformation coefficients, as shown in Eq. (18).

™3 T2, % T3 % T, —% T2, —% 73, —%
713 E\+6—E —14 cost’ iA gin 6’ sin ¢’ X 0 —iA sin 6’ —Acose'—iA cost’ sing’
72, % i4 cosd’ Exté—E —1i4 sin ¢’ cos ¢’ 1A sing’ X X 0 —Asing’+1i4 cosé’ cos¢’
73,4 |—1A sin6’sing’ 1A sin ¢’ cos ¢’ E3+-6—E Acos¢’+iA cosd’sing’ Asing’—iAdcost’ cosg’ 0
71, —} . 0 —14 sing’ Acose’—iAcost’sing’ |E1—6—E 1A cost’ —iA sin @’ sin ¢’
72, —3| tAsing’ . . 0 Asing’+iA cosd’ cosg’ [—id cos6’ E:—5—E 14 sin @’ cos ¢’
73, —% | —A cosg’+1A cos8’sing’ —A sinp’—14 cosé’ cos¢’ 0 ~+iA 8in 6’ sin ¢’ —iA sin 6’ cos ¢’ E;—8—E

Because of the unitary property of the transformation matrix the vectorsi’, j’, k’ form an orthogonal
unit set, and 8’, ¢ are the polar angles of the magnetic field vector measured with respect to this set.

The complete secular problem, including the spin-orbit interaction, is of the sixth order, corre-
sponding to the three overlapping bands of the I'; level, and the two possible orientations of the spin.
The secular determinant is shown in Table 1. E,, E;, and E; are the energies of the three bands, and
are, of course, functions of the wave vector k. In this problem we have made the usual approximation
of replacing the exchange energy by an internal “molecular” field §=Fk+'\. Here \ is the fractional
magnetization I/I,, where I, is the saturation intensity, and k7’ is #n.J, where np is the number of free
spins per atom (electrons or holes) corresponding to the saturation magnetization; also J is the
atomic exchange integral,!® thatis, the exchange integral between electronic wave functions normalized
per unit cell rather than for the whole crystal. In the system of representation we have chosen, the
energy matrix is diagonal in everything except the spin-orbit interaction, which may be considered
as small compared to the difference between diagonal elements in Table I. Thus the solutions of the
secular problem may readily be expanded in powers of the spin-orbit parameter 4, the successive
powers being obtained in the successive orders of perturbation theory.

DETAILED DERIVATION OF G FACTOR where ¢1, ¢2, ¢3 are the wave functions for the
three bands and the indices +, — stand for the
spin directions. We must find the mean of the
magnetic energy with respect to these wave
functions. Unfortunately, since it is linear in
the coordinates, the vector potential cannot be
treated as a small perturbation throughout the
crystal. This difficulty may be obviated by a
method of gauge transformations due to Peierls
and F. London,® in such a way that the magnetic
energy for Bloch functions is the same as for
the corresponding atornic functions.?! The cor-
rection to the energy arising in this way is

We have already seen that the removal of the
degeneracy of the cubic levels under the space
group accounts for the almost complete quench-
ing of the orbital angular momentum. There is,
however, a secondary effect which allows the g
factor to differ slightly from 2. Owing to the spin-
orbit interaction there is in effect a small internal
field tending to orient the orbital angular mo-
mentum, in addition to the large field acting on
the spins and arising from exchange. The result
of this field is always to make the g factor
slightly less than 2. From the secular equation
we obtain the first-order correctif)n to the wave- AE = — 2uHA (0?6, 4y e~ 1) +-0(42).  (20)
functions by the usual perturbation method:

iA sin ¢ sin ¢’ iA sin 6 cos ¢’ Here ay’, ;' are direction cosines with respect to

Y=gt — ¢+ ¢t the skew axes defined by (18). Equation (20)
€1 € gives the energy correction for one electron. To

¢A cos ¢’ +14 cos 6 sin q&’* B obtain the magnetic energy for the crystal as a

T 26 ¥1 (19) whole we must sum over the occupied electronic

states of the Fermi distribution, taking proper

. . , ,
 Asing'—id cos ' cos ¢’ account of the symmetry properties of the energy
P2
e +29 ® R, Peierls, Zeits. f. Physik 80, 763 (1933); F. London,
a=FE;—E, e=FE;—E,, J. de phys. et rad. 8, 397 (1937).

- 21 One naturally neglects diamagnetic effects arising
1 J, C. Slater, E. C. Stoner, reference 8. from the migration of electrons among many atoms.
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surfaces.?? Finally dividing by the total angular
momentum leads to a g factor

g=2+34(a + e Da. (21)

The average is taken over all the occupied states
for both directions of spin. Since the second
term of (21) averages to zero when all the d
levels are fully occupied, we may replace the
average over the occupied states by the negative
of the average over unoccupied states or “holes”
of the distribution. In nickel and iron the band
is nearly full, and most of the holes are in the
highest of the three energy bands so that the
energy differences e;(=E;— E;) and e;(=E;3;— Ej)
are positive for the overwhelming majority of the
states involved in the averaging processes. Thus
the second term of (21) is always negative, and
the g factor is slightly less than 2, since A is
positive for single electrons. This is in agreement
with observation, and means simply that there
is a slight tendency for the orbit to aline itself
parallel to the orienting fields (external and
internal). Assuming a spin-orbit parameter of
about 500 cm™, and a mean band width of
about 20,000 cm~!, we obtain a g factor in the
neighborhood of 1.97. Experimentally the de-
partures from 2 range between 0.1 given by

915

Barnett?? to 0.004 obtained by Sucksmith and
Bates for Ni.2¢ Our calculated departure of 0.03
is thus of the correct order of magnitude.

CALCULATION OF ANISOTROPY CONSTANT

The calculation of the anisotropy constant K,
is made by applying fourth-order perturbation
theory to the secular equation shown in Table 1.
The energy corrections arising from lower orders
of perturbation theory are easily shown to
possess no angular dependence when the summa-
tion is carried out over all the occupied states.
This result follows from the symmetry properties
of the energy surfaces and is analogous to the
argument usually employed to fix the form of
the angular dependence in cubic crystals.?s In
carrying out the fourth-order calculation, we
need include only terms whose angular de-
pendence is of the form «;2«;'2.2¢ In this way we
obtain for the fourth-order energy an expression

(22)

A 12011'2012l2 +4 23012'2013,2 +4 13a1'2a3'2

in which «;’, a)’, a3’ are the direction cosines
of the magnetic field with respect to the skew
axes defined by (18), and A1z, A13, A2 are given
by the following expressions:

A4 1 1 1 1 2 1 1 1 1 1 1 1 1
T R H=-=- + ,
26 €1 €2 €1+25 €g+25 €1 €2 61+26 62+25 612 622 (61+25)2 (Eg+25)2
1 1 1 1 1 1 1 2
PO I UL L W
€2 62+25 26 €1 61+25 €1 61+25 (23)
1 1 1 1 1 1 1 2
T i o
€1 61"*‘25 25 €3 62+26 €2 62+26

where now e,=E;—E;, e=FE3—E,, §=npJI/I,.

In Eq. (22) we must expand the primed direction
cosines in terms of the unprimed ones, using the
definition of the primed axes: a,’=3 ,a(r, #)a,,
where the a, are defined so that a;= a,, az=a,,
3= a,. Substituting into Eq. (22), and using the
symmetry argument once again, as well as the
unitary property of the transformation coeffi-
cients, we obtain a relatively simple formula for

2 Brouckaert, Wigner and Smoluchowski, Phys. Rev.
50, 58 (1936) ; Conyers Herring, Phys. Rev. 52, 365 (1937).
Cf. particularly Manning and Chodorow, Phys. Rev. 56,
787 (1939), discussion in fine print at end of paper.

the anisotropy constant K;, namely
Ki=32 Au[1-57,]

n<v
X {az2az/2+az2a:2+ay2azz} ’

2 S, J. Barnett, Rev. Mod. Phys. 7, 129 (1935).

2 W. Sucksmith and L. F. Bates, Proc. Roy. Soc. A104,
499 ()1923); L. F. Bates, Modern Magnetism (Cambridge,
1939

(24)

26 Details of this argument, which is really quite obvious
physically, are included in the author’s thesis, Harvard
(1940).

26 It is to be understood, however, that all terms in the
fourth power of the direction cosines such as e are to
be expressed as: a;12(1 — a2 —a3'2).
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where the J,, are defined by a biquadratic ex-
pression in the transformation coefficients:

To=X [aw) Tl (25

On account of the terms in J,, the anisotropy
bears a very close relation to the structure of
the energy bands. If the original wave functions
xyf(r), yzf(r), zxf(r) are a good set of atomic
functions for setting up the Bloch waves which
diagonalize the band energy, then the J,, will be
small and the anisotropy, as will be shown, is
negative. But if the bands are not well described
by the functions xyf(7), etc., but rather by linear
combinations such as ¢, = .a(r, #)¢,, then the
Jw» may become important, and the anisotropy
may even change sign and become positive as we
shall show to be the case for iron. This effect has
no counterpart in the theories of Van Vleck and
van Peype, but seems to be characteristic of the
particular model we have adopted.

NICKEL

The above discussion is well illustrated by the
two common ferromagnetics nickel and iron.
As can be seen by reference to the section on the
structure of the d bands, nickel is a good example
of the case where the functions xyf(r), etc., are a
good approximation and the J,, are small. To
simplify the discussion we shall consider only the
case of magnetic saturation, i.e., very low tem-
peratures. The expressions for the 4,, in Eq. (23)
must be summed over all the occupied states in
the three bands. The summation is carried out
most readily by expressing each of the 4,, as a
sum f1(8)+f2(8) of an even function of § plus an
odd function of 8§, respectively (f1(8)=f1(—3),
f2(8) = —f2(—8)). Here §, it must be remembered,
is a quantity proportional to the exchange
energy, whose sign is negative for spins parallel
to the external field and positive for spins anti-
parallel to this field. The terms in the summation
of the odd function cancel out in pairs for all
states which are occupied by both directions of
spin, so that we are left with a summation over
only those states which contribute directly to the
magnetic moment, whose spins are parallel to
the external field. On the other hand, the summa-
tion for the even function must be carried out
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over all occupied states since the function has
the same sign for both spin directions. However,
> f1(8) vanishes when taken over all states, un-
occupied and occupied alike, as follows by
application of the diagonal sum rule to the
matrix of Table I. Thus the sum over occupied
states may be replaced by the negative of the
sum over unoccupied states, and since the sign
of & is immaterial for the function fi(8), the
summation may be carried out over exactly the
same states as fz, namely, those contributing
directly to the magnetic moment. Thus we have
the result: K;=sum over all occupied states of
(A12+A235+A13) =sum over states of unpaired
spin of —f1(8)+fe(—8)=—[f1(8)+/x(8)] The
last is just the negative of Eqgs. (23) summed
over all the magnetic states, but with &
treated as a positive quantity. Since we are
dealing with a band which is well over half full,
most of the unpaired spins lie in the uppermost
of the three I's; bands, so that both the quantities
e, and e are positive. With these facts it is
readily shown that 4,, in Eq. (23) are all posi-
tive, irrespective of the numerical magnitudes of
€1, €, and 8. Thus the sign of K, in nickel is
proved to be negative under quite general con-
ditions.

The most recent results on the anisotropy of
iron and nickel are due, for nickel, to Bozorth
and Williams?” who find K;=8X10° ergs/cc by
extrapolation to absolute zero; for iron to L. P.
Tarasov?8who gives K;= 5.3 X 10° ergs/cc at room
temperature. The latter value would probably
not be increased by a factor of more than 2 on
extrapolation to absolute zero. It is of course
impossible to reproduce these values to within
better than a factor of 10 by means of the theory,
but with this accuracy the theory predicts the
correct order of magnitude. In his paper on
ferromagnetism Slater?? has given curves showing
the distribution of states in the d band for
copper, which he assumes to be similar to that of
nickel. The six highest energy electrons, which
presumably correspond to those occupying the
states of the I's level in our model, occupy an
energy range of about 50,000 cm™. Thus we

( 27 H) J. Williams and R. M. Bozorth, Phys. Rev. 56, 837
1939).
28 [, P, Tarasov, Phys. Rev. 56, 1231 (1939).

29 J, C. Slater, Phys. Rev. 49, 537 (1936).
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should not be far off in taking as a mean value
for the separation of levels of the same k, (i.e.,
the quantities ¢; and e; in Eq. (23)), a value of
10,000 cm™!. Slater has also estimated the value
of the exchange integral 6, assuming that it
arises from intra-atomic exchange. On the face
of it, this seems highly unlikely, but the work
of Stoner,* on the other hand, certainly indicates
that the exchange energy cannot be much less
than the band spread if ferromagnetism is to
occur at all. We should probably not be far off
in taking 28 equal to 8000 cm™ for nickel.
Estimates of the spin-orbit parameter A4 have
been made for the transition elements by
Goudsmit.!® Again these estimates cannot be
taken too seriously in the solid state, not only
because of the uncertainty arising from the
incomplete destruction of Russell-Saunders coup-
ling, but also because of the entirely altered
screening effect of the conduction electrons in the
solid phase.® With Goudsmit’s estimate of
A =630 cm™! for nickel, we obtain a value of K;
between 10° and 10° ergs/cc, which is the correct
order of magnitude. The screening effect of the
conduction electrons would tend to reduce the
estimate of the spin-orbit parameter somewhat,
and provide worse agreement with experiment.
For iron Goudsmit estimates 4 =390 cm™!, which
would give an anisotropy for iron less than 3 that
of nickel, other factors being equal. However, the
order of magnitude is still correct, and most of
the discrepancy can be accounted for by the
greater exchange energy in iron, and the greater
number of spins per cc.

SigN or K;—IRrRON

Iron is a good example of the case where the
Jw of Egs. (24) and (25) are not negligible.
This arises from the fact in the body-centered
cubic the diagonal elements of the secular equa-
tion for the “hopping” energy are all the same.
For the highest of the three I'; bands, namely the
band corresponding to x=+¢in Eq. (10), the J,,
may be obtained from the transformation matrix

® E. C. Stoner, Proc. Roy. Soc. A165, 372 (1938).
3 This effect is discussed in detail by M. F. Manning and
M. 1. Chodorov, Phys. Rev. 56, 787 (1939).
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(11) by means of (25), and are as follows:
Jie=R, Ju=R, Jis=31-—-R),
R=(a%*+a%*+b%?) /¢,
e=(a2+b24c2)t

(26)

a, b, ¢ are defined in terms of the components of
the wave vector, as shown in Eq. (10). The
maximum value of R is %.

With these values of J,,, the anisotropy con-
stant follows from Eq. (24). The exact expression
is very complicated, but it may be very closely
approximated by the formula:

442 1

P
e2(e+26)2.66 3¢
This expression applies only to the uppermost of
the three bands, in which most of the electrons
will lie in practice. The expression is easily seen
to be positive for all positive values of € and ¢, in
agreement with the observed positive sign of K,
in iron.

The theory is very attractive in that it makes a
satisfactory unambiguous prediction of the cor-
rect sign of K; in nickel and iron. When we come
to examine the data on alloys, however, some
difficulties begin to appear. The theory suggests,
for example, that the sign of the anisotropy is
to be correlated with the crystal structure, the
difference between iron and nickel arising from
the difference in the form of the energy bamds
between the face-centered and the body-centered
lattices. Yet the observations on the Fe-Ni alloy
system3® show no marked discontinuity in the
anisotropy as we pass from the face-centered to
the body-centered phase. In fact the change in
sign of K, takes place well within the y-phase
(face-centered) at a composition corresponding
to one free spin per atom. All the alloy data
suggest a much closer correlation of the aniso-
tropy with the number of free spins per atom
than with the crystal structure. In spite of this
it is possible to devise a crude qualitative ex-
planation of the alloy data, based on the itinerant
electron model, somewhat as follows. In our dis-
cussion of the band structure of nickel we
assumed that the off-diagonal matrix elements of

32 R, M. Bozorth, reference 1.
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the “hopping” energy could be neglected. This
is true in the approximation of wvery tight
binding, but at the lattice spacing which actually
obtains in nickel it is probably a very poor
assumption except in portions of the Brillouin
Zone in which sin £, sin 9, and sin { are very
small, where, as a consequence, the off-diagonal
matrix elements are negligible. The electrons or
holes in the highest energy states occupy just
such a portion of k-space. Now, nickel has only
0.6 free spin per atom, and most of these lie in
states very near the maximum. We should there-
fore expect the anisotropy of nickel to be nega-
tive, since small off-diagonal elements of the
“hopping” energy imply small J,, in Eq. (24)
and hence negative K;. As iron is added the
number of free spins per atom increases rapidly.
The additional holes are forced into parts of
k-space where the off-diagonal ‘‘hopping” in-
tegrals are large, and these holes will therefore
tend to have positive K;, opposing the effect of
holes higher in the band, until finally the interior
holes predominate and cause the K; for the whole
crystal to change sign. For the body-centered
phase a somewhat similar explanation applies in
reverse. Here the experiments indicate a gradual
falling off of K; with increasing percentage of
nickel. In our model of the body-centered
structure we have neglected the effect of next
nearest neighbors. This effect will indeed be
small except when the off-diagonal elements of
the hopping energy are small, namely, near the
top of the band. In this case the secular equation
for the hopping energy takes a form similar to
that for the simple cubic, since the next nearest
neighbors lie in the same relative positions as
the nearest neighbors in the simple cubic. Thus
holes very near the top of the band in iron may
be expected to make a negative contribution to
K,, since K; for a simple cubic may easily be
shown to be negative in our model. Now the
addition of nickel to iron decreases the number
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of free holes, and so increases the relative number
of states of negative anisotropy, as these lie
closest to the top of the band and so tend to
hang on to the bitter end, as it were. There will
thus be a gradual decrease of the positive
anisotropy of iron with increasing percentage of
nickel, in agreement with experiment.

This explanation of the alloy data is very
rough, and an attempt at quahtitative verifica-
tion of it with the present model did not prove
successful. Nevertheless, the effects calculated
were in the right direction, if not of sufficient
magnitude to substantiate the qualitative dis-
cussion. This is hardly surprising in view of the
very approximate nature of our treatment of
the band structure.

It would be desirable to obtain some idea of
the temperature variation of K;. Unfortunately,
this would involve integration over the distribu-
tion with a Fermi distribution function, a task
in which the labor involved is hardly com-
mensurate with the results obtainable from so
crude a picture of the band structure. It was at
first believed that the temperature variation
could be represented by a formula such as (27),
the anisotropy being expressed as a function of
magnetization as in Van Vleck’'s theory. The
variation obtained from this formula, however,
is much too slow, being of the order of the
square of the magnetization instead of the tenth
power as observed experimentally for iron.?? The
agreement with experiment in this respect is
considerably worse than in Van Vleck’s theory.
Probably most of the discrepancy can be taken
care of under the assumption of variations of the
J in Eq. (24) arising from thermal excitation
of the band electrons.

In conclusion I should like to express my
thanks to Professor Van Vleck for suggesting the
problem and for many helpful discussions and
suggestions during the course of the work.

1 N. Akulov, Zeits. f. Physik 100, 197 (1936).



