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Theory of the Resonance Scattering of Protons and Neutrons on Helium
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A treatment of the general dispersion problem is presented in which the wave function,
describing a resonance process appears as a monochromatic Fourier component of a wave packet,
which is built in such a way that it represents for t )0 the decay of a compound state and for
t (0 the building up of the same compound state. The method is applied to the resonance P
scattering of protons and neutrons on helium.

HE existence of an unstable p state of He'
and Li' and the correlated anomalies' in

the scattering cross sections of protons and
neutrons on He' represent a particularly inter-
esting case of nuclear dispersion. It seems worth
while to work out this case separately both for
its simplicity and for the fact that here the finer
features of the theory, arising from two levels
with a splitting comparable to their width and
from the interference of the so-called "potential
scattering" with the resonance scattering are
essential in the discussion of the experiments.

we start from the very existence of the compound
state without any further assumption as do
Kapur and Peierls. Particularly we want to
abandon the unnecessary restriction that all
nuclear processes which do not show resonance
are to be described as potential scattering, i.e. ,

are caused by forces acting solely on the incident
particle. It is indeed noteworthy that the dis-
tinction between resonance and nonresonance
processes is merely an approximate one, to be
made only so long as the compound state has a
comparatively long lifetime. * While for certain
states of one and the same dynamical system
this condition may be fulfilled, it will generally
turn out that for others, particularly the states
with higher energy, this distinction becomes
entirely impracticable. In the study of resonance
processes one is only interested, however, in the
anomalies occurring within a certain small range
of energies and it is quite sufficient to examine
specially only those compound states which lie
close to or within that range. We can and shall
choose the number of these states to be finite,
since, as we shall see below, it is by no means
necessary that the eigenfunctions describing
them form a complete set.

Let us consider a dynamical system consisting
of certain nuclear particles. These particles may
be any heavy nuclear fragments or even light
quanta, electrons, neutrinos or mesotrons. If one
could find the rigorous stationary solutions of
the wave-mechanical problem they could ob-
viously be classified into those which are ener-
getically stable and those which are not. The
stable solutions would be described by wave
functions which vanish if any one of the particles

i. THE DISPERSION FORMULA

The general theory of nuclear dispersion has
been well worked out by several authors. ' Among
these the treatment of Kapur and Peierls de-
serves special attention insofar as it requires a
minimum of assumptions, the compound state
of the system being introduced merely by the
condition that at sufficient distance one will

observe only out-going but no incoming waves.
Their general results, however, become simple
and useful, without a detailed knowledge of the
system, only if one assumes further that the
compound state has a long life.

We want to indicate a simple derivation of the
dispersion formula where this assumption is
introduced from the beginning, thus allowing the
usual methods of perturbation theory, but where

' See the preceding paper of H. Staub and H. Tatel; also
W, P. Heydenburg and N. F. Ramsey, Phys. Rev. 57,
106 (1940).

2 G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936);
H. A. Bethe and G. Placzek, ibid. 51, 450 (1937); H. A.
Bethe, Rev. Mod. Phys. 9, 69 (1937); F. Kalckar, J. R.
Oppenheimer and R. Serber, Phys. Rev. 52, 273 (1937)
P. L. Kapur and R. Peierls, Proc. Roy. Soc. A166, 27
(1938);A. Siegert, Phys. Rev. 56, 750 (1939).

7 Note added in proof.—This point is also emphasized in a
recent paper by G. Breit, Phys. Rev, 58, 506 (1940).
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where the quantities c„and c, are arbitrary con-
stants.

The rigorous time-dependent Schrodinger
equation which P has to satisfy, will now imply
that these quantities are generally no longer
constants, but depend on the time in a way
which, without further restrictions but merely
by an appropriate choice of the states r and s is
described by the equations

—(gg/i) c —P U ei (zr Eg)t/5—
—(0/i) c, = p., U„e"s

(2a)

(2b)

with V„,= U. , *. It is not necessary and generally
not even possible to know the quantities V„, nor
any "small perturbation" U of which they may
be considered to be the matrix elements.

As in the theory of spontaneous emission of
radiation, one can show that there exist n char-
acteristic solutions of Eqs. (2) which after a

is moved to, infinite distance from any other,
while the unstable ones could be written asymp-
totically (i.e. , for large distances of certain par-
ticles from a remaining residual nucleus) as a
product of a free solution of that particle times
a wave function, describing the residual nucleus.
In the idealized limit of infinitely long lifetimes
of certain compound states there will now be a
degeneracy between some of the unstable states
which, by proper linear. combinations, will yield
new states of the same energy whose wave func-
tions have the same asymptotic behavior as those
of the energetically stable states, i.e. , to vanish,
as any one of the particles is infinitely removed
from any other. A finite number of such meta-
stable states, obtained in the way just described,
we shall denote by a subscript r(r=1, 2 n)
and their wave functions by p„. Besides these
states r there will of course still be an infinite set
of states, to be described by the subscript s,
whose wave functions p, have the asymptotic
behavior generally characteristic of unstable
solutions.

Omitting the energetically stable solutions, we
can then write the wave function describing our
system in this limit in the form

sufficient time t&&T take the form

C+,,= e
—i(EP—Er—-'iI'P) t(kid+

'7'P 'fPy (3a)

e—i (Ep—Es—~~ f, I'p) t, //i

Ep Es QZFp

d+„„(3b)

p= 1) 2' ' 'n~

where the quantities d+„, are constants, satisfying
the system of homogeneous equations

r=1, 2 ~ ~ ~ n

with the n complex eigenvalues

F,.„,(E,) =2m Q, U„.(E,) i'"...(E,)P.(E,), (6)

where instead of the subscript s we have used
the energy E, of the state s and another subscript
0 which may be necessary for its complete
characterization; the number of states lying
between E, and E,+dE, is given by P (E,,)dE, .

The limits of validity of Eqs. (3) are also deter-
mined by (6); let Eo be the amount by which E,
has to vary in order that F„„varies in the
neighborhood of the values E, by its own order
of magnitude. Eo will largely depend on the
kinds of processes under consideration. If the
outgoing particles are neutrons of not too high
energies so that the main variation in F„,' arises
from P.(E,) one will have to choose Eo of the
order of magnitude of the kinetic energy of the
neutrons. In the presence of a Coulomb barrier
Eo may have to be chosen considerably smaller
and for energies comparable to the nuclear bind-

The index p of the quantities c„and c, indicates
that they refer to a special solution of (4) repre-
senting the compound state p and the + sign
indicates that this solution is valid for suf6ciently
large positive times.

Equation (3a) represents the exponential decay
of the compound state p with lifetime h/F, and
Eq. (3b) the corresponding building up of the
"free particle sta;tes" s.

Both the hermitian matrices II„„and F„„ in

(4) are' to be derived from the matrix function
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(12)

Finally ive can write in analogy to (9)

ingenergyEowill beof theorderof these binding d„(4) and the conjugate complex of (11) lead
forces since in both these latter cases the. quan- immediately to the relation
tity V„V*,', will be the determining factor.

Equations (3) can now claim validity if the Zi d rpd rp =tripp

two conditions

t» T= h, 'F., ; 1,«E. (7) and (8) c,.=P, K,c,, (13a)

are satisfied. Relation (8) expresses the main
assumption which underlies the per turbation
treatment, namely that the lifetime Ii/rp of the
compound state p be large compared to the
characteristic time T= It/Eo.

From the solutions (3) we can obtain a some-
what more general solution of Eqs. (2) in the
form

c+ —P K+ c+

c+,=Q, K+,c+,, (9b)

(10a)

with

e-, (EP-E.+„r»t/a 1
c „=Q,. V„— —d—,.„

F~p F~s+ gSFp
(10b)

with arbitrary constants K,+. Although (9) is
valid only for t&&T we can investigate the form
it will take if we integrate Eqs. (2) backward to
negative times I,. First we remark that the quan-
tities c, and c, satisfy the same Eqs. (2) as c,
and c,* if V„, is replaced by V*„,= V,„and t by
—t. We thus obtain I further solutions of Eqs.
(2), valid for t))T which, in—analogy to (3),
take the form

c p=ZpK pc pp (13b)

with n more constants E, .
In order that (9) and (13) join on to the same

solution at t=0 it can be shown under the con-
dition (8) that there must exist the n relations

p, . K+,d+, ,=p,. K-,d ,„r=-1., 2 .22, (14)

x(E) —f c~fs&IAp(t)dt (15)

between the constants E,+ and E, so that
through (12) one set of constants can be expressed
in terms of the other. Equations (10) evidently
describe the manner in which a compound state
p is built up for negative times which for positive
times decays according to Eqs. (3).

Substituting (9) and (13) into (1) we now ob-
tain two wave-functions lt+ and p which, except
for higher order terms in rp/E0 express correctly
one and the same solution P of the time-depend-
ent Schrodinger equation for positive and nega-
tive times, respectively. For the dispersion
problem we are interested in a stationary solution
corresponding to a given energy E of the total.
system which we obtain froin P by Fourier
analysis in the form

Again condition (8) has to be satisfied and the
sign indicates that (10) claims validity for

sufficiently large negative times. Equations (4)
and (11) lead to the same eigenvalues E, and r„
since H„„=H*„,. and F, 2 =F*„, so that the
conjugate complex of (11)differs from (4) merely
by the interchange of rows and columns of the
matrix H„„—-', iF,.„and thus leaves its complex
eigenvalues E,——,'iF, unaltered. We further not
that with proper normalization of the constants

Furthermore we only need the asymptotic form
x'(E) which (15) will assume as any particle Q is
far removed fmm the residual nucleus. VVe shall
denote by R, 8, 4 the polar coordinates of the
particle Q relative to the center of gravity of the
system and by 7- a system of quantum numbers,
characterizing the internal state of Q and the
remaining nucleus as R appmaches inhnity.
Before we can write down the dehnite expression
for x'(E) we have to define the corresponding
asymptotic forms of the functions y„used in (1)
since these only will contribute to X.
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Including the case where both particle Q and remaining nucleus are charged we then can write
asymptotically

r (E)— p [pr (E)ef(kR k)r+—2! a)o—22kR)+br (E)e—((kR ~z)r+—o) a)o2—21R))Vm(e @) (16)

where the functions F~"' are spherical harmonics, normalized to 4' on the sphere. Here again we have
characterized the state s by its energy E, and by an additional set of quantum numbers 0. The
quantities a'.

, (, „and b', 1, d, epend on all dynamical variables except R, Hand C. If v=v(E, ) is the
relative velocity of particle Q and remaining nucleus, corresponding to the total energy E, of the
system we have

k=mv/5=k(E, )

with m as the effective mass of particle Q. Further it is

n=eseq/kV=n(E, ),

eR and eq being the charges of remaining nucleus R and particle Q, respectively, and 6nally it is

n( ——arg [((+in)!7=s)(E.,).

With (1), (9), (13) and (16) we then obtain from (15) asymptotically

27rA

x(E, Z, e, C)= ——
p, p, ~, j, m

t, i(kR—sI~+qt—e log 2kR)

&o+d+'&'. , 1.»(E)
E —E—-'&I'

p 2 p

+Z, d „b'., 1, „(E)
e
—s(kR —sl~+qI —a lag 2kB)-,

U.,(E)P (E) V("(8, C). (20)

This can be written in a more convenient form by using the relations (14).Writing as an abbreviation

Ep~
5.~(E)= —2vrk Q P (E) V„(E)d+„- (21)

Xr(E g 0 @) Q [5+(E)&r (E)e (kR rr)a+2) —2)og2kR)—

a, l, m

+5 —(E)gr 1 (E)e—((kR $)r+ol 2)olL2k-R-) jV)m(g @) (22)

where the quantities S,+ and S, are related by

F,;„(E)
5.+(F)=5. (E)+i P... 5—.,(E)

E —E—-'ir
P 2 p

(23)

r, ;...(E) =2~ P„'d;,V;;(E)P.(E) V.,(E)d+„. (24)

Equation (22) may properly be called the general dispersion formula, since it contains all those
features in the asymptotic form of the wave-function which are caused by long life compound states,
Comparing (22) with the functions p, '(E) of (16) we see that the compound states establish essen-
tially a changed relation between the amplitudes of incoming and outgoing particle waves which
is described by the relations (23) between the quantities S, and S, . Besides the energies E, and
widths 1', of the compound states there enter in (23) the quantities I'.. ., (E) which over a range of
the energy E, small compared to Eo may be replaced by constants. These values are not quite jnde-
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pendent of the matrices H,., and F„,. from which E„F,and d „are derived through the equations
(4) and (11). Indeed in this range, from (6)

r, , .= F„,..(E) =2~ g, V„,(E) V„.(E)P. .(E),
sg that we have

P, I,;..=P„.d, ,I"„.d+, , (24a)

It seems to us that the closed form (22) forms a most convenient basis for the discussion of dispersion
problems and we shall now proceed to specialize it to the case in which we are interested.

2. ELASTIC SCATTERING OF A PARTICLE WITH SPIN 2 BY A NUCLEUS WITH SPIN ZERO

The main simplifying feature here lies in the conservation of angular momentum. We shall assume
that the incident wave represents a particle with spin —,

' in the direction of incidence (s direction).
We then have to consider only states of the total system for which j„the s component of the total
angular momentum, has the value -', . Assuming that the spin orbit coupling is small compared to the
spacing of levels with different orbital momentum / of the compound state, so that a given value l
is still a good quantum number we can for j,= ~ characterize a state s besides its energy E, by its
orbital momentum l and its total angular momentum j=l+-, . It will be sufficient to replace the
index o in (16) by I&-„having it understood that at the same time the orbital momentum shall
assume the value l.

It is then easily seen that

1 f le
y'&+i(E, ) =—2 sin

(
kR +q—)+—h)+) —n log 2kR (—

2 ) (2I +I)~

XL[I(/+ I) j-'*Q, V,o(S, 4')+IQ, V, (8, 4') j (26)

1 tr l~
y'i i(E,) =—2'sin

I
~R +n~+6~ —

i
—~ log 2kR

R E 2 I (2P jl)&

XLEQi YP(8, 4') —[E(I+1)Q&Q,.V, '(g, C)j, (27)

where Q+i represents a spin eigenfunction of the particle Q with spin orientation in the positive and
negative s direction, respectively, and where A' represents the wave function of the residual nucleus
with spin zero. By comparison with (16) we obtain thus first from (26) and (27) the quantities c
and b, entering in (22). They contain essentially the phases 8~~i about which nothing can be said
without knowing finer details of the interaction between particle Q and residual nucleus except that
they will generally vary slowly with E.

It remains to determine the quantities 5. or 5 i~, in (22). If E lies close to the energy of a com-

pound state with angular momentum I* while all other compound states lie far away, we can for all
values 1/1* write

.5+)~, ——5 g~, ——Cl,~;e'(& +'&~'' .

Since only states with equal angular momentum combine we obtain from (23) two separate equa-
tions for 5 &+& and 5 i; which, using (24a) for I=I*, can be written in the form

( ~ )*&& $ +)s+) E+ozF)~+)
5+~ +~ ——5 qadi) 1+i— )

=5 pa,
Ep+) —E——,'iFp~;

(29)

~ All angular momenta are measured in units k =h/271-.
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Or with
Fp~)

pl*~~ =arctan—
2 8] ~, —2 ——.'iF) ~)

(30)

e "l"~)S+E~)=e'&i )S )~+) ——Cl*+.;e'&&i+'l* )). (31)

Using (26), (27), (28), and (31) we can now write (22) in the form

A'
y'(E. , R, 8, 4) =—P C&+,*e'~'+& sin

(
kR ——+P&+, —alog 2kR ( [[1(1+1)]iQ., Vi'(8, C')

R i 4 2 ) (2P+l)&

lir ) 1
+lQ i Vi'(8, 0)]+Ci ie'&'-& sin

I
kR —+—Pi i n —log 2kR

~

2 ) (2P+l)&

&& [lQ I"(8, C) -D(l+1)]'Q- 1"(8,+)] (32)

where vie have introduced

pi&i = 8i&i+t)i fol l /l

pi ~., =&i ~;+vi*+i+yi"

and where the energy dependent quantities q~, b~~~ and k are to be taken with those values which

they assume for the energy E We now have . to determine the constants Ci~i in (32) in such a way
that the incoming spherical waves are those belonging asymptotically to a plane wave of the form

] OC lx
2's"'s+* '""R s"= 2' P (2l+1)ri'sin

~
kR ———cxlog 2kR ~Qi Yio(8 4).)kR &0 E 2

This means that

lCi+i —[l(i+1)]'Ci,=0, [l(i+1)]~Cg+i+lCi; (2P+1)"*(2l+——1)'*i'/k

Ci~, ——(l+1)4'/k; Ci i l&i'/k. —— (35a) and (35b)

Substituting these values into (32) we find

(e'&&+& sin (kR —2ilir+Pi+i —n log 2kR)[(l+1)Qi Yi'+[i(i+1)]'Q iF&']
kR & (2l+1)'

+s*'&-& sin (kR ——,'17r+pi i
—n log 2kR)[lQiVio —[1(1+1)]1Q)&i']I. (36)

Subtracting (34) from (36) we obtain for the scattered wave

A'
si(ks a iog Rks) Q, Q—

i '[('1+1)s~Pt+j sin Pi i+is~Pi i sin Pi i]1 io—
kR (2l+1)'"-

pl(i+1) q
'-

+Q i Q& I I
[ef*~~'& sin Pi+i e*ii' &sin P—i;]-V,' . (37)

& 2i+1)

The first part in the bracket of (37) represents those particles which have not altered the orien-

tation of their spin in the scattering process, the second those which have reversed it. In the total
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scattering cross section these two parts contribute incoherently and we thus find for the cross section
per unit solid angle

[(l+I) e' e'+ isin Pi+;+le'e«sin Pi-;)Yio
(2l+1)l

l'l(1+I) ~ l

+ Eii ~

[e'~'+& sin pi+i —e'e'-& sin pi ij Yi'
C 21+1 &

(38)

It remains to further specialize this formula to the case where the compound state is a I' state,
i.e., where l =1 and to introduce those simplifications which seem likely to be valid in the case of
the scattering of protons and neutrons on He'. First of all, because of the smallness of spin-orbit
forces we may assume that

This means with Eq. (33a) that
~»+-,' ~»,—$ ~ l.

Pi~.;=Pi i=Pi=gi+8i for 1~1~.

(39)

For 3 =3 this equation cannot be maintained to be valid since y~*+~ and y» ~ will vary irregularly in
the neighborhood of the two diferent values EE*+y and E» ~ of the energy E, respectively. However,
the smallness of spin-orbit forces will allow one further simpli6cation, namely, that we may set

Fp+)=F»* )=F

In Eq. (30). Formula (38) may thus be simplified to

1 e"&&I*+'I*) F F
f(8)+ —,(l'+1)— . +l*

2k (2l"+1)l Ei'; E —,'il' E—i' ,
—E',iI.—'

(41)

with

1 l*(l*+1) I' 'F 2

(42)
4k' 21*+1 E»*+.. —8—-', zF 2»* ) —2——,'zF

and using (30) and (41)

f(8) =—P' (2l+I)'e'i"'+i'i sltl (si+8i) Yio(8)
k

F

(43)

e'«~+'i»+&i* i sin (gi'+bi+ad;~i) —e'&"'*+'i'& sin (qi'+bi) =e"«i'+'i'&
Z» ~)—Z —-', zF

Specializing further to l*= 1 and using

we obtain
V~"=3'- cos 8, V, '=(3!2)le'& sin 8,

d5 1 p
I' 1 I'—= f(8)+—e"&&'+'») — +— —

~
cos 8

de) EE„,—E——,'ir 2E„, r ,"r&———

+
4k' E3, g

—E—-,'iF Ei.f2 —8——,'iF
sin'8. (44)

This formula cannot be simplified any further without special assumptions about the function
f(8), or, according to (43) about the phases 8i.

3. SCATTERING OF PROTONS ON HELIUM

A~e will here for simplicity assume, that for all values of 3 we may take 6» ——0 so that all the non-
resonant scattering is due to the C'oulomb field; there may be course easily be a noticeable nuclear
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"potential" scattering, particularly for I=O and which, if necessary, could be taken account by
taking in (43) i)g&0. Omitting this correction we obtain for f(8) the well-known form which leads
to the Rutherford scattering:

Using with (19)

we obtain from (44)

f(8) — spa )og 2 (1—cop 8)+2(cp

2k sing 8/2

(1+iot) !
q) —p), =arg — =arg (1+g(g) =arctan a,

(ga) !

(45)

dS a

dpp 2 sin' 8/2

r 1 r
(ri[c proton a+a )og 2 ()—co.'. ())1 cos 8! +—

EE /
—E—-,'iF 2 E /

—E——,'iF)
sin' 8 F F

+
4 E3/g —E——,'iF E,/, —E——,'i F

(46)

Here we have written 1/k= X and t)t stands according to (18) for 2e'/kv, v being the velocity of the
incident proton and 2+X its wave-length in the system in which the center of gravity is at rest. It is
evident from (46) that after subtraction of the pure Rutherford term X(g'/4sin'8/2 there still
remains even for appreciable scattering angles 8 and for protons of about 3 Mev (n=0.18) a noticeable
influence of the Coulomb scattering, due to its interference with the resonance term, Particularly for
8(pr/2 this fact must be taken into account for any conclusion drawn from the scattering of protons
on He' upon the existence of a compound I' state of Li'.

4. ScATTERING oF NEUTRQNs oN . HELIUM

Since in this case n=0 it follows from (19) that s(=0 for all values of L Evidently we may not
assume here that also all the phases 8) are zero since otherwise according to (43) f(8) =0 which would
mean, that the scattering of neutrons on He4 is caused entirely by resonance. It will, however, for
the energies actually used be a good approximation to assume that only bo/0. In this case we obtain
from (43), since Y()'(8) =1

and from (44)

f(8) = (1/k)e"p sin 8() (4&)

r 1 r—= X' sin 8g+e'go! +- ! cos 8
de EE„,—E——,'iF 2 E„,—E—-',iF)

sin~ 8 F F
(4g)

4 E /
—E——,'iF E ] —E——,'iF

where we have again written 2)rX=2pr/k for the neutron wave-length in the system in which the
center of gravity is at rest. The discussion of this formula is given in the preceding paper by H.
Staub and H. Tatel.


