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An attempt is made to apply the theory of conductivity to the question of directional
dependence. The first section reviews the usual theory, developing the basic equations in the
somewhat generalized form necessary for the problem. The next section discusses the nature of
che electron-lattice interaction in some detail. This seems desirable since a number of very
significant points—notably the polarization of the lattice waves, and the role of strictly trans-
verse waves when these actually occur—seem to have received much too causal attention in
the past. In a third section the directional dependence is calculated for several simple models.
No very serious attempt is made to relate the theoretical results with experimental data.

INTRODUCTION

HE conductivity of a general metallic
crystal is adequately specified when con-
ductivities along three principal conductivity
axes are given. This means that the conductivity
is completely described by a second-order sym-
metric tensor, and that by proper choice of axes
this tensor can be diagonalized. The effect of an
arbitrary electric field may be determined by
considering the components along the principal
axes. Each component of the current density is
obtained by multiplying the field component by
the appropriate conductivity. In general, of
course, the resultant current is not in the direc-
tion of the field.

What has been said indicates that the con-
ductivity of a cubic crystal is isotropic, an
anisotropy first entering for tetragonal, hex-
agonal and trigonal crystals. These have two
principal conductivities—parallel and perpen-
dicular to the axis of maximum symmetry. The
directional dependence of the conductivity can
be indicated by the ratio of these two. For some
common metals at room temperature:

oy/o,=1.21 (Mg); 0.93 (Zn);
0.83 (Cd); 0.69 (Sn).

The first three are hexagonal close-packed; the
last is tetragonal.

The general equations of the theory of con-
ductivity include the factors from which the
directional dependence arises, but, since in most
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applications this dependence is not of interest,
simplifying assumptions are introduced which
lead to an isotropic result. In the present investi-
gation it is proposed to return to the general
equations and consider the way in which aniso-
tropy enters for certain models. Some attention
will be given to application to real metals, but it
will be seen that any serious attempt to make
such application is premature.

(1) GENERAL THEORY!

A calculation of the conductivity requires the
determination of the slight modification pro-
duced in the distribution function of the electrons
by an external field. The modified distribution
may be assumed to be:

JXK) =fo(E)+¢(K). (1)

This gives the probability that the state K in
wave vector space is occupied. In the absence of
the field it reduces to the Fermi function, fo(E).
The assumed distribution is more definitely
determined by substitution into the stationary
state equation:

( ) lattice

which states that the distribution is unchanging,
the effect of the external field, F being just
balanced by transitions arising from the inter-
action of the electrons with the lattice.

The effect of the electron lattice interaction is

€ f()
*—l—zgrade F (2)

1 This section is based on the treatment of Sommerfeld
and Bethe (Handbuch der Physik, Vol. 24/2). Very slight
modifications have been made to fit the treatment to the
present purpose.
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calculated by the usual perturbation methods.
The*probability that K’ is occupied at some
finite time as a result of the transition K—K/’,
K having been occupied and K’ empty at zero
time is:

K, K|
| UK, K')| o)

B |UXK, K")|22[1—cos (xt/h)]
IR (x/B)2

Here: x=Eg/— Eg+fw (hw is the energy of the
lattice’ quantum involved), and U(X, K’) is the
matrix element of the perturbation. (Departure
of the lattice potential, V(r) from periodicity.)

The probable transitions are those in which
energy is conserved and for which:

K'=K+tq+27g. 4)

q is the propagation vector of the lattice wave;
g a vector in the reciprocal lattice. The plus
sign corresponds to absorption of a lattice

Kj29<EK—EK' +hwq,)
2h2quj

K',§
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quantum ; the negative to emission. The matrix
element to be associated with a given transi-
tion is:

Ng+1\*
UXK,K)= ( ) K; (emission)
2qu,' (5)
No; \}
or UK, K’) =( ) K; (absorption).
Zqui

(j indicates the polarization of the lattice wave.)
Nyj= (exp [Awq;/kT]—1)7" (6)

gives the probability that the wave is excited.

K;= ug(r)(AV/dspur*(r)dr,  (7)

unit cell

dV/3S; being the component of grad V in the
direction of polarization of the wave, and ux(r)
the periodic part of the electron wave function.
The contribution to (9f(XK)/0¢)1attice arising
from interaction with states of higher energy is:

{(Na;+1) f(K) (1 = f(K)) — Noif (K) (1~ f(K)) }, (8)

K—-K'=4q.

The K’ summation may be replaced by an integral if we introduce:

Density of states=1/8x?, 9)
Volume element = (dEx/|gradx: E|)dS’,

where d.S’ is an element of area lying in the constant energy surface. As is always the case in this
type of problem the energy integration can be carried out. One finally has for (3f/d?)1atsice due to
exchange of electrons with states near K’ of higher energy:

K2dS'
8w Mwq; |gradg: E|

The interaction with states of lower energy leads to a similar expression:

K4S
87r2ﬁqu,' i gradKf E i

At high temperatures (I>>0p), hwe;/kT<1 for all lattice waves, so that:

Nq,‘ﬁNq,'-i-likT/ﬁwq,- and f(K,), at EK+ﬁwq,'if<K/), at EK'“thi; fO(EK)éfO(EKﬁ:hwqi)-

{(NVe;+1) fK) (1= f(K)) — No:f(K) (1K) ], (10)
EKI =EK+ﬁwq,'.

I N f(K) (1= f(K)) — (N +1) fK) (1 = f(K)) }, (11)
EK' =EK_ﬁO)qj.

(12)

Both emission and absorption terms simplify and when combined lead to the following condition

for the stationary state:
kT
47 Mh?

2 E 2{g(Ti')ﬂz(I()}***“—:“~—gradz<E-F.
/=)

as’ ed
o (13)

|gradg E| #dE
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The substitution:
gK) = —(dfo/dE)g(d, ¢) (14)

is convenient. Here g(¢, ¢) is independent of the energy, & and ¢ being coordinates which fix the
point on a surface of constant energy in K-space. For present purposes the high temperature equation

can be written:
oE

(g, ¢')—g(8, o) }————=constant . (15)
j;/ (wqi) ) |gradK' E! aKfield

At low temperatures (T'<K0p), hwqe;/kT>>1 for most lattice waves. The energy difference between
initial and final states is important and specific values of Ng; and Ng;+1 must be considered.
(0f/ %) 1attice is found to be proportional to:

5, f f T 5, o =89 )} el B )b fu B—F) ). (16)
[gradKE[ 0 §L ¢ )T e @ ’ ’ )

wy;

Since only small ¢ are significant, K; has been taken proportional to ¢ (K;=C;q) (justification later)
and dS=qdqdB where 8 is the azimuthal angle of a polar coordinate system with axis along gradx E

It is desirable to expand in powers of ¢ the difference entering the stationary state equation. The
linear term is found to give zero on integration over g, so that the approximation is:

g, ¢")—g(9, ) =g(9, ¢, B). €Y))

It is convenient in the low temperature calculations to treat w as the independent variable rather
than ¢. Since for low frequencies ¢ is proportional to w, this can be done by setting:

gi(w, ©, ®) =F(0, ®)w/1;, (18)

where %; is an average velocity of the lattice wave of polarization 7, and F;(®, &) takes into account
the dependence of the velocity on the direction of propagation. Further, the range of the w (or ¢)
integral may be extended indefinitely. Finally the double integral becomes:

fw JEtha)er it fo(E—he) . (C,F s
0

) 0, . 9)05. (19)

eﬁw/kT__ 1 i

In the approximation used here the second integral does not depend on the energy. Its value is to be
determined for E={. With E=¢{, the first integral may be easily evaluated. This brings in the 77
variation of the resistance, but is of no particular interest here. For present purposes the stationary
state equation can be written:

2r CiF#\ 2 : oE
Z,-( ) 3(9, ¢, B)dB=constant (IgradK E| ) . (20)
0 u;’ 0K ie1a/ E=¢

Solutions of the equations

If one assumes (1) that the surfaces of constant energy are spheres, and (2) that the “‘interaction
function” (3 ;(K;/waej)? or X ;i(C;F#/%;%)?) does not depend on the direction of propagation of the
lattice wave the stationarity equations are readily solved. It is found that the modification in the
distribution function is proportional to the cosine of the angle between K and the electric field, and
that the coefficient does not depend on the direction of the field. This means that the distribution is
shifted bodily without distortion, and that the amount of the shift is independent of the field direc-
tion. If either assumption fails, the solution becomes more complicated. The center of gravity of the
distribution is shifted and the shape slightly altered, both the magnitude of the shift and the nature
of the distortion depending on the direction of the field. In Section (3) the equations will be solved
for several simple models.
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Calculation of the current from the distribution function

The current density in the zth direction is:

2e j:i dfo fgg(z?, 0)(0E/K )

.= —E ds. (21)
83k |gradx E!

dE

The functions in the second integral are all taken independent of E and written for E={, since the
integrand in the first integral has a sharp maximum at this value. Evaluating the first integral :

ds. (22)

¢(9, ¢)(IE/IK.)
jo=t f v

sy |gradg E|

For a metal with general axial symmetry and a spherical Fermi surface of radius K this gives:

eK‘.Z T
in=——1 g@) cos ¥ sin 3dY
2wih Jy
(field parallel to axis) (23)
eK?
Ji=

4k

f (l<pf ddg(d, ¢) sin? ¢ cos ¢.
0 0

(field perpendicular to axis).
If the energy depends on the wave vector as:

K12+Ky2 K 22
EE)=¢ ~~7—+~T), (24)
a? 2
we get an ellipsoidal Fermi surface:
(K24+K,%)/a?+K ,2/c?=1, (25)

which may be represented parametrically :
K.=asin ¢ cos ¢, K,=asin ¢ sin ¢, K ,=c cos d.

(¢ is the usual parametric angle—not the polar angle. In the limiting case of the sphere the distinction
disappears.) For this ellipsoid :

dS=a sin ¥(a? cos? ¥+c?sin? §)iddde (26)
AE/0K .= (2¢/a) sin ¢ cos ¢, AE/OK,=(2¢/a)sin dsin ¢, IE/IK.=(2{/c) cos ¥, (27)

.so that for field along z:

ea'l T .
= f 2(9¥) cos 9 sin 3d9, (28)
27(’2h 0
while for field along x:
eac 2 T
Ji= f d<pf ddg(d, ¢) sin? & cos o. (28)
4730 J, 0

In addition to altering g(¢, ¢), the change in the form of E(K) causes the electron velocity to vary
with position on the Fermi surface, multiplying ¢ /o, by the factor a/c.

(2) ELECTRON. LATTICE INTERACTION
This section considers in some detail the nature of the interaction functions:

> (K i/ wa)? (high temperatures),

2i(CiF#/af)? (low temperatures). (29)
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This seems advisable since the published work in explicit calculations treats only spherical distribu-
tions and spherically symmetric wave functions, and assumes that the lattice waves can be treated
as longitudinal and transverse. If this assumption is false the sum over three lattice waves must be
retained in any case. If, further, general wave functions are admitted, even strictly transverse waves
have importance. It is found in what follows that for the hexagonal metals at low temperatures, it is
this last point which is significant. That is, the elastic waves are found to be essentially longitudinal
and transverse, but both types contribute to the resistance. It seems likely that the transverse waves
are the more important for most metals, particularly at low temperatures.
If by use of the wave equation the potential energy is eliminated from K; [Eq. (7)], the following is
obtained :?
h? a4
Kij=—-q- | {2¢grad ug+X+K)ux}-
2m ds;

MKI*

dr. (30)

This simplifies if E is a function of |[K|, (|K|=|K’|), or if # has certain symmetry properties
(see below).

hgi auKr
Kj=—q-f grad ug —)dr. (30")
m as;

In general at low temperatures (q small, K=~K’) it has the form:

auA

h? .
Ky-=~q-f(i grad ux+Kug)—dr. (30")
m as;
‘“‘Hexagonal metal”
We here assume that the scattering depends upon:
k% k¥  Ou du
I(;Z“—‘QC]'Ek f"——"—d'r, (31)
m m aq 9s;

where du/dgq denotes the component of grad # along q. The assumption implies that « is real and
independent of K, and that the second term in the integrand of the matrix element [Eq. (30)] can
be neglected.

Let ¢ make an angle ® with the hexagonal axis and lie in the =0 plane. The unit polarization
vectors are essentially :

Si~sin 0, 0, cos ©® (longitudinal)
S2~0, 1, 0 (transverse 1 plane)
S3~—cos O, 0, sin 6. (transverse in plane)

If we then take u(r) =u(r, ) we have:

du\ 2 ou\ 2
C1=f{0052 @(*) +sin® G)(——) }dT:Cz cos? O+C; sin? O,
0z ox

C2=0, (32)

ou\? fou\?
C3=f sin © cos @{ (—) - (-—-) }dT: (C:—Cs) sin O cos ©.
9z dx

2 See A. Sommerfeld and H. A. Bethe, reference 2, p. 512.
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Integrals for p state symmetric about z axis

BAROODY

Let us now calculate the C; for the wave function:

u(r, 8)=v(r) cos ¥. (33)
For this function:
ou v o(r) du v v(r)
—=sin ¢ cos 0[*- } cos ¢, —=—cos?d+—sin?d.
ox ar r dz  dr r
For a spherical atomic volume the integration over angles can be carried out, giving:
47 v\ 2 v\2  dvo(r)
= J1G) +6) =5
15 or r or r
(34)
4r dv\? \? dvo(r)
C,=— f{3(—~) +8(—) +4——-‘r2dr‘
15. ar r or r
It is to be noted that for this wave function secular equation for the allowed velocities:
the neglected term in the matrix element van- :
ishes. Also, unless the integral of the cross-term, (@—N) h g
(8v/dr)(v/r) is large and negative, C.>C,. Ac- h ®—N) f |=0 (37)
tually this integral should be small since the g foo =N

radial function and its derivative would be ex-
pected to change sign alternately. The assumed
form of K; [Eq. (31)] is reasonable then, and the
C; become [cf. Eq. (32)]:

C,cos?®, 0, C,sin O cos O. (35)

As was to be anticipated the angular depend-
ence of the wave function has given importance
to the transverse waves. (If % were a function
of ¢, C; would also be finite.) At low tempera-
tures the scattering depends upon :

C.2 cos? ©fcos? O(F1/u1)8+sin? O(F;/4;)%}. (36)

Now 43~ 1;1/2 and Fi= F3;~1. This means that
for a spherical electron distribution the second
(transverse) term is more important than the
first. At high temperatures the low velocity of
the transverse wave exerts less influence since
the second rather than the sixth-power enters.
It is to be noted that the nature of the approxi-
mate matrix element to be used in a calculation
would depend very markedly on the shape of
the electron distribution since this determines
which ®’s are of importance.

Propagation of elastic waves in hexagonal
crystals?

An investigation of the propagation of plane
waves in an elastic medium leads to the following

3For a discussion of elastic waves in crystals, see K.
Forsterling, Ann. d. Physik 61, 549 (1920). For curves

A=pu?, where p is the density of the medium,
and u#(a, B, v), the velocity as a function of the
direction cosines of the propagation vector. For
tetragonal and hexagonal crystals:

f=(au+aw)By,
g=(a13+a44)'ra,
h= (012+066)043-

For hexagonal crystals the roots of the secular
equation depend only on v. For these crystals:

a=ola1+B%es+ Y2044,
b=cags+B%11+ v¥a44,
c= a4 P+ vass,

(38)

2a66=0a11— Q12 (39)

and expansion of the determinant shows that «
and B enter the coefficients of the cubic only in
the combination «2+4@2. This conclusion can be
reached without explicit reference to Eq. (39)
by turning directly to symmetry considerations.
The coefficients in the cubic show complete or
tetragonal symmetry about the unique axis.
Hexagonal symmetry is achieved only by re-
moval of the tetragonal terms. Without loss of
generality waves propagated in the ®=0 plane
may be studied. With 8=0, a=(1—1%}! the

showing the directional dependence of wave velocities in
Cd and Zn, see E. Griineisen and E. Goens, Zeits. f. Physik
26, 235 (1924). This paper does not give analytical ex-
pressions for solutions of the secular equation, however,
and arbitrarily labels the waves longitudinal and trans-
verse.



DIRECTIONAL

secular equation becomes:
(@0—N) 0 go
0 (bo—N) 0
8o 0 (co—N)

0 (37)

with the roots:

M=3(ao+co) +3[(@0—co)*+420* ]},
x2=b01
Ns=1%(ao+co) — 5[ (a0—co)*+4g0° I

The polarization of the waves can be deter-
mined from the amplitude equations. The first
wave is nearly longitudinal, the second strictly
transverse, the third nearly transverse.

The directional dependence of the velocity
may be approximated by expressions of the form:

ui(v) = (1 — a;Pa(v)). (41)

The results shown in Table I are obtained for
three common hexagonal close-packed metals.

The above discussion was intended to point out
some important aspects of the electron-lattice
interaction and to indicate some of the things to
be borne in mind if a calculation of an inter-
action function is attempted. The discussion of
elastic waves would have direct applicability
only at low temperatures. In addition to playing
a part in eniphasizing the importance of trans-
verse waves, the calculation can provide the
basis of an estimate of directional dependence in
the conductivity brought about by anisotropy in
the lattice vibrations alone. This will be men-
tioned again in (3, b).

(40)

(3) DIRECTIONAL DEPENDENCE FOR
CERTAIN MODELS

(a) Ellipsoidal constant energy surfaces

We treat here a model characterized by an
isotropic interaction function and the energy
function of Eq. (24):

) K.2+K,> K.
E<K>=:(—~—«+ )

a? c?

TaBLE 1. Values of @ (in units of 105 cm/sec.) and
for Mg, Zn, and Cd.

u u2 us al oz a3
Mg 5.7 3.1 3.2 0.00 000 0.00
Zn 434 280 212 0.19 0.14 0.14
Cd 3.17 1.80 1.36 0.23 0.18 0.00
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From the relations (26) and (27) it is seen that:

as a’c
———=—3sin ddddo,
|gradgx E| 2¢

so that the high temperature equations are:

+1 "
f =gl =6 @)

(parallel field)
(n has been written for cos &)
and

fohd#fﬂdﬁ'{g(n’, ¢')—g(n, 0)}

-1

(1—n?)?
=2rG——.

(42)
a

(perpendicular field—along ¢=0).
These have the very simple solutions:
—(G/2¢)n, —(G/2a)(1 =)} cos o,
corresponding to the conductivity ratio:
o /oL=(a/c)

This is just the result implied in the discussion
of the “effective number of free electrons”’ by
Mott and Jones.* Its simplicity is associated with
the fact that the problem can be treated
without specific reference to the exclusion prin-
ciple in terms of a surface density of states,
dS/8w%|gradk E|, giving the number of states of
energy between E and E4dE in the neighbor-
hood of the element dS of the Fermi surface.
This treatment is possible because the breadth
of the Fermi surface (~kT) is large compared to
the energy of all scattering quanta. At low tem-
peratures the exclusion principle plays a more
positive role. The directional dependence no
longer arises only from variations in the velocity
and effective mass of the electrons.

In treating the low temperature case it is con-
venient to write the condition for the stationary
state as a differential equation. The function
3(¢, ¢, B) which was introduced in Eq. (17) is
the second-degree coefficient in a Taylor expan-

(43)

(44)

sion of g(¢, ¢’) in terms of g. When the interac-

4 N. F. Mott and H. Jones, Theory of Metals and Alloys
(Oxford, 1936), p. 96.
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tion function is assumed independent of the direction of q, integration over B leads to the
Laplacian of g(¢, ¢) for the ellipsoid. The differential equations are:

1 ] ( a sin ¢ ag) 1 d%g
_ )
a sin #(a? cos? ¢ +c? sin? ¥)* 3¢\ (a? cos? ¢+c? sin? #)* 989

a?sin? 9 42

(a® cos? ¢+4c? sin? 9)#
=constant Xcos ¢/c (]])
ac (45)
Xsin ¢/a (L).

Nearly spherical distribution.—
afc=14¢ le|K1. (46)

The equations for the stationary state in terms of n=cos ¢ to first order in € are:

1—-39%0 d 0 d D 3241
e I e
an an an an an M 3

d a%g 1 —3172 d ag d dg 2 d%g
.
an an 1—192 92 3 9 an dn dn 3(1—19?) dp?

D 3n2—2
= (1—m) (1+e ) (47)
M 3

Solutions to first order in € are:

Dn(1+3en*) /2 M, (48)
D(1—7%) (14 (e/3)(2n*—1)) cos ¢/2M.
The ratio of conductivities is:
o al+2e/a 8e a\*
ST 1+f--=(~) (49)
6. ¢ 1—¢/5 5 c

(slightly closer to unity than the corresponding ratio at high temperatures).
Very flat ellipsoid.—
a/c>1. (50)
We are here concerned with the equation: :

Ag=const. |gradx E|dE/K e, (51)

where A is the Laplacian for a very flat ellipsoid of revolution. For points away from the edges of the
distribution (tan #<a/c) the equation can be written:

d’g d%g oE  IF
e +*—— =constant —— (52)
aKa:2 aK 2 aK aKﬁPld
For parallel field this becomes:
( ¢——(a~—p2) ?=K 2+ K, =a%sin?d. (53)
0 ap alc?

(sign changes when & goes through 7/2)
The solution which is well-behaved at p=0 and vanishes at p=a is:

¢(p) = (£A4/16a*c*)(a* — p*) (3a® —p?). (54)
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This is the significant solution of the stationary state equation for parallel field. Its range of validity
covers most of the distribution, and includes the region where g(p) and the contribution of a given
electron to the current are large. It is incorrect only in the exact way in which it goes to zero near
the edges of the ellipsoid.

For perpendicular field the p equation for tan #<a/c has the form:

1ay dg\ g 4
—*(pg) ———=—(a?—p%’p. (53")
p dp\ dp p? adc

(complete solution g(p) cos ¢)

The function:
Aa (14x2) — (1 —x2)52

15¢ x

i x=p/a (54")

is a solution and satisfies the required boundary conditions (behaves like x for small x, and has a
derivative which vanishes at x=1).

Since for perpendicular field g(p) and the contribution to the current from a given electron are
greatest near the edge of the ellipsoid, it seems advisable to investigate the behavior of g for large
tan ¢. By introducing y=cos & (6§ being the angle between the normal to the ellipsoid and the z axis)
a simple equation for the range tan d~a/c to $=m/2 can be obtained:

2 <1—y2)%)— € (5) =A(f)4——1 - (55)
av av 1—v2\a al/ (1—y?)!

Keeping in mind that c/a<1, we see that the solution is essentially constant in this range, that is,
there is no abrupt change in the behavior of g(p) near the edges of the distribution. The solution given
above [Eq. (54')] can, therefore, be used for the whole range of 6.

A computation of the conductivity ratio gives:

oy a* sa®> Sfa\?
T /_=_(_) , (56)
or 24¢*/ 20 6\c¢

slightly smaller than for high temperatures.

(b) Anisotropic interaction function

We now consider the anisotropy in the conductivity when the electron distribution is spherical
and the interaction function of the form:

M(®)=M14u cos? ®), |u|Kl. (57)

Low temperatures.—If as before n is written for cos ¢, the differences entering the equation for the

stationary state are:
Parallel field :
62

og 1 9%
g(n')—g(n) =—(6m) +~ —(om)% (58)
an 2 dn?

Perpendicular field : (58)
og 1 9% 1 9%

gln', @) —g(n, 0) ©—(8m) += —(6m)2+- —(3¢)*,

an 2 9n? 2 9

where , in 8

sin
Lop=Lcospt—n)t, o=,
2K K K (1—n2)t

on=—



802 E. M. BAROODY

(In the perpendicular equation the terms which would finally give zero on integration over 8 have
been omitted.)

To sufficient approximation :
cos @ = —(1—9?%)* cos 8. (59)

The differential equations obtained are:

] ag 3 9% og D
-((1 —n2)~—) (1) (—(1 — 1) ——n—) ===
an an 4 an*  dn Mo

g(n) \ 2?@_ 3_g_£ g(n) b,
{ ((— )—) (l_nz)]ﬁz(l—n){ ()= Z)I— (1= (60)

(complete solution g(n) cos ¢)

and

For small u these equations have the solutions: -

gnln) = (D/2Mo)n[1+(u/12)(n2—3)],

(61)
ga(n)=(D/2Mo)(1 —7*)'[1+(u/12) (n*—5)].

Introducing

M=f M(cos ©)d cos O = M(1+u/3), (62)

the complete solutions for small u are:
(D/2M)n[14(u/12)(n24+1)], (D/2M)(1 =12 1+ (u/12)(n2—1)] cos ¢. (63)

The ratio of conductivities is:

oy 142u/15 i
o 1—u/15 5

High temperatures.—The following are stationary state equations for the model at high tem-
peratures:

1 znd / .+1d it 0 g(r) —g(n)] 2D
— 4 i mcos®)gn)—gn)y=——mn,
2w Jy -1 M,
(65)
1 +1 2D
— d¢’f dn’'(14u cos? ©) {g(n’, ¢') —g(n, 0)} = ——(1—n2)},
2 -1 M,
where
cos? O=3(n"—n)*/{(1=n1") — (1 =)} 1 =72} cos ¢'}. (66)
Solutions correct to first order in u.—If the o
function: 10—\
Bln+bPs(n)) J \
is substituted into the parallel equation it be- '
comes (to first order): 12 cd .
. /
_r ' ! — 2 @ 110 Zn
294-2bP3(n) dn d¢'(n'—n) cos? O %
2r 0 100° 200° 300° _T(°K)

2D '
= . FiG. 1. Variation of o,/0y; as a function of temperature
BM, (data of Griineisen and Goens).
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The ¢’ integral is:
lf” do’ T
2J0 (1—n9")— (1 =921 —9"2)kcos ¢ }n—n'l'

This gives for the u term:

’
K f“d (" —m)*
2J_,

n'—
ln—n']
and the equation becomes:
1+36(592—=3)+3u(3n*+1)=D/BM,.

If we choose:

i D 3u D 4y
15 M, S M 15

the equation is solved. The solution:

(=35) (7o)

can be written:
D/Mn[1—(u/6)(n2+1)].

In a similar way a first-order solution of the per-
pendicular equation can be obtained:

(D/M)(1—%*)[1~ (4/6)(n*—1)] cos .
These correspond to the conductivity ratio:
ayj| 1 —4#/15 2/.L

oy 142u/15 5

=un(§9°+1)

(67)

(67)

(68)

It is to be noticed that the ratios for low and
high temperatures lie on different sides of unity.
Something of this sort might well be expected
since entirely different lattice waves may be of
importance for the two cases. For example,
consider the scattering of electrons near the pole
of the distribution. At low temperatures electrons
are exchanged directly only with neighboring
points on the sphere. Waves traveling at right
angles to the symmetry axis are responsible for
the transitions. At high temperatures transitions
to or from all points of the surface are possible,
involving lattice waves propagated in all di-
rections.

If the anisotropy of the interaction function
is assumed to arise solely from anisotropy of the

lattice waves one has:

M(®)=MF¥®)
M(B)=MF*0).

If the anisotropy
become:
M(0)=M(1+46aPs(cos ©))
M(®) =M (14-2a1Ps(cos 9)),

the corresponding u's being :

(low temperatures)
(high temperatures)

is assumed small these

9(11 and 30:1
and the conductivity ratios:

a)1/o,=14+9a;/5
oy /o,=1—6a1/5.

(low temperatures)
(high temperatures)

The values of oy for cadmium and zinc (0.23
and 0.19) are not small enough to justify the
use of these expressions except for extremely
rough estimates. Results of their use are listed
below. For comparison experimental values from
data due to Griineisen and Goens are written
alongside in parenthesis.

CapMium ZINC
oy /oL 1.41(0.71) 1.34(0.90) (low)
0.72(0.83) 0.77(0.92) (high).

It is seen that although the calculated values
are in accidental agreement with experiment in
the high temperature case, the necessity for
very serious attention to other sources of
anisotropy is indicated by the low temperature
data. In this connection we note that magnesium
has a rather anisotropic conductivity, while the
lattice waves seem to be isotropic at low tem-
peratures.

The value 0.72 for cadmium at high tempera-
tures agrees with that obtained by Houston® in
an early paper on the theory of conductivity
(11/0,=1/1.4). Houston treated the scattering
of the electrons by use of an expression derived
by Debye for x-rays. This gives the probability
of scattering in a given direction in terms of the
binding constants of the lattice atoms, these in
turn being computed from the elastic constants
of the metal.

Further remarks

It is clear that the directional dependence is
an essentially complex effect so that it would be
futile to make estimates for serious comparison

5 W. V. Houston, Zeits. f. Physik 48, 449 (1928).
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F1G. 2. Suggested distribution of electrons in K space for a
metal with a unique axis.

with experiment without having available much
more quantitative information than we do about
electronic wave functions and energy surfaces for
real metals. It is desirable, however, to make
some further reference to measurements and to
point out more or less how these fit with theo-
retical ideas. The following data plotted in
Fig. 1 for cadmium and zinc are due to Griineisen
and Goens:$

T(°K) 373 273 195 130 82 20

1.086 1.082 1.078 1.107 1.170 1.108

oy/oy Zinc
aat 1180 1.191 1.194 1.200 1.230 1.406

Cadmium

As would be expected the ratio is independent
of temperature at high temperatures—each con-
ductivity following the 1/7 law. (A similar be-
havior would be expected at low temperatures—
each conductivity following the 1/7% law.) As

8 E. Griineisen and E. Goens, Zeits. f. Physik 26, 250
(1924).
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one moves from high to low temperatures a
definite fluctuation seems to begin at a point
well below the Debye temperature (Zn~235°K,
Cd =~ 168°K). This means that the temperature
indicating the transition from high to low tem-
perature conditions depends upon the field
direction. For a complex distribution there are
a variety of reasons for expecting this. For
cadmium and zinc the transition evidently begins
at a higher temperature for perpendicular field.

The shape of the K space electron distribution
is of course very important for the directional
effects. Unfortunately little is known at present
about the distribution for multivalent metals.
In general, however, it is to be expected that the
Fermi surface will overlap the first Brillouin
zone. A suggested picture for a metal with a
unique axis is given in Fig. 2. The overlapping
electrons fall into very flat ellipsoids of revolu-
tion. At high temperatures transitions between
various parts of the distribution would be
expected. If overlapping occurred at all places,
as indicated, the anisotropy in the conductivity
need not be large. At low temperatures the dis-
tribution would be equivalent to a number of
independent parts, the observed current being
the superposition of contributions from various
parts. Again a comparatively small anisotropy
would be understandable. On the other hand, it is
entirely possible that for some metal the con-
ducting electrons might lie principally in a
single very flat ellipsoid, so that a large anisot-
ropy would result.

In concluding the report, the author wishes to
express his appreciation to Professor Bethe for
suggesting the problem, and for many helpful
consultations throughout the course of the work.



