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Measurements of the elastic properties of an unplated
crystal, the piezoelectric constant fi4, and the clamped
dielectric constant of a Rochelle salt crystal show that
practically all hysteresis and dissipation effects are asso-
ciated with the clamped dielectric properties of the crystal.
A theoretical formulation of the equations of a piezoelectric
crystal has been made which takes account of the dissipa-
tion effects. The formulation is given for the polarization
theory. The frequency variation of the clamped dielectric
constant when interpreted by Debye’s theory of dielec-
trics, modified to take account of hysteresis losses, indi-

cates that there are two components, one of which has
associated with it at high viscous resistance, whereas the
other one does not. The nonviscous component has a
dielectric constant of about 100 at 0°C and is probably
due to the displacement of the ions in the lattice structure.
The viscous component has a dielectric constant of about
140 at 0°C and is probably due to the dipoles of the
Rochelle salt. Both components have higher dielectric
constants and hysteresis between the Curie points indi-
cating a cooperative action of the molecules for both
components in this temperature region.

I. INTRODUCTION

T has been pointed out in several recent
paperst2? that the large changes, with tem-
perature, of the dielectric constant, the elastic
constant, and the piezoelectric constant di4 of a
fully plated Rochelle salt crystal are due, funda-
mentally, to the variation of the clamped dielec-
tric constant of the crystal with temperature. It
is the purpose of the present paper to show that
the large dissipation associated with the motion
of a Rochelle salt crystal is also due practically
entirely to the hysteresis and viscous resistance
associated with the elements contributing to the
clamped dielectric constant and is not associated
with the elastic motion of the lattice elements of
the crystal or with the piezoelectric constant fi4
which determines the ratio between mechanical
force applied to the crystal lattice and the
electrical polarization of the crystal.

At low frequencies the principal effect of
dissipation is to produce large hysteresis loops in
the charge-potential curve as shown by Fig. 1,
taken from a paper by Muellert When the
crystal is prevented from moving by applying an
external force to it, the magnitude of the
dielectric constant and hence the charge through
the crystal becomes less as shown by Fig. 1. This
follows from the fact that, as the motion of the
lattice is inhibited, the additive polarization

1'W. P. Mason, Phys. Rev. 55, 775 (1939).

(1;&.) N. Holden and W. P. Mason, Phys. Rev. 57, 54

3 H. Mueller, Phys. Rev. 57, 829 (1940).
4 H. Mueller, Phys. Rev. 47, 175 (1935).

produced by this motion is eliminated and hence
the charge does not rise to so high a wvalue.
Cutting down the additive polarization also cuts
down the size of the hysteresis loop.

When the impedance of a vibrating crystal is
measured near its resonant region, the effect of
the dissipation is shown by the finite value of the
resistance at the resonant frequency of the
crystal. In a former paper,! the resonant and
antiresonant frequencies of a 45° X-cut crystal
having the dimensions, length=2.014 cm; width
=0.418 cm ; thickness=0.104 cm were measured
as a function of the temperature and were
plotted on Fig. 1 of that paper. At the same time
the resistance at resonance was measured. The
complete data are given in Table L.

1I. LocaTioN oF HYSTERESIS EFFECT

The source of the large dissipation in X-cut
Rochelle salt crystals, might conceivably lie in a
mechanical hysteresis of the motion of the crystal
lattice, in a hysteresis or lag in the piezoelectric
constant, or in the clamped dielectric constant.
In order to determine which source was causing
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F1G. 1. The change of the hysteresis curve of Rochelle
salt with pressure (¢=0°). (1) free crystal, (2) pressure
1 kg/cm? on both sides, (3) pressure 7 kg/cm? on both
sides. Maximum field 2 kv/cm.
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the hysteresis effect, measurements were made of
each of the properties of the crystal separately.
To measure the mechanical properties separately
it is necessary to measure the elastic properties of
a bare crystal without plating since, as shown in
two former papers,’? in an unplated crystal the
piezoelectric properties are eliminated. The
elastic constant of a 45° X-cut crystal was
measured and shown in the data of Table I, fu,
by measuring such a crystal between widely
spaced electrodes. It was desired however, to
measure the dissipation also and this is difficult
by this method. The method used here was to
glue an approximately half-wave-length unplated
Rochelle salt crystal to a half-wave-length quartz
crystal and measure the change in resonance
frequency and measured resistance of the quartz
crystal caused by the added Rochelle salt crystal.
This method used originally by Quimby and
Balamuth® has been used widely to measure the
elastic constants and internal dissipation of many
metals. The frequency constant is measured by
the change in frequency of the quartz crystal,

TABLE 1. Resonant and antiresonant frequencies of a 45°
X-cut crystal. In this table fr is the resonant frequency and fa
the antiresonant frequency of the fully tlated crystal, fu the
frequency of the same crystal per cm without plating and Ry
the electrical resistance of the crystal at the resonant frequency.
The fifth column shows the coefficient of electromechanical
coupling as defined previously or in this paper, while the
sixth column shows the ratio q of reactance to resistance of
the motional impedance of the crystal. This is found by
taking the reactance of the coil of the equivalent circuit of
the crystal shown on Fig. 2, and dividing by the measured
resistance.

M COEFFI-
RESISTANCE  CON- CIENT
RE AT STANT OF
RESONANCE KC PER CcouP-
T°C iR fa IN OHMS cM LING k q
—12~ 72,210 96,700 -— 216,890 73.9
—10.5 77,600 98,510 — 69.1
-9 79,100 99,510 1300 216,550 67.5 16.8
-5 82,660 100,790 1800 63.5 16.5
-3 83,950 100,820 — 61.9
+ 1 84,450 100,830 2400 215,220 61.0 14.0
5 84,200 100,530 2600 61.0 13.7
9 83,750 100,250 2500 214,000 61.0 14.0
13.0 81,840 99,850 2400 63.2 13.9
15.0 80,400 99,220 2200 212,890 64.8 12.3
16.5 79,200 98,710 1800 66.0 13.7
17.5 78,410 97,700 1500 66.8 15.0
20.5 71,820 95,200 900 212,220 73.0 16.3
22.7 61,600 90,420 430 80.9 20.9
23.7 56,120 84,130 200 211,440 84.5 31.1
24.7 52,000 81,600 60 212,200 87.5 101.0
25.7 64,130 91,110 65 212,000 79.0 152.0
28.2 74,710 96,220 60 211,440 70.0 312.0
.31.0 82,550 99,000 65 61.0 550.0
34.2 86,700 100,100 70 211,000 55.0 820.0
38.0 90,200 100,610 120 49.0 845.0
40.2 91,120 100,650 250 208,780 47.0 490.0
42.0 92,630 100,750 410 44.0 389.0
47.5 94,150 100,900 2250 207,120 40.0 97.5

5 L. A. Balamuth, Phys. Rev. 45, 715 (1934).
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while the internal resistance is measured by the
change in resistance of the crystal at the resonant
frequency. Then, knowing the density of the
specimen measured, all the elastic properties can
be determined. As shown by Eqs. (47) of the next
section, the impedance of such a specimen near
its half-wave-length frequency can be regarded as

— — M —— T —
Cy Ry Ly

fo i
mn'AA% 1
F16. 2. Equivalent electrical circuit of longitudinally
vibrating crystal. Co and R, are capacitance and resistance
associated with the longitudinally clamped dielectric con-
stant. Ci Ry and L; are the capacitance, resistance and
inductance associated with the motional properties of the
crystal.

equivalent to that of a series resistance, mass, and
compliance, and the internal dissipation can best
be expressed as a ratio ¢ of the reactance of one
of these elements at the resonant frequency to the
resistance at resonance. Figure 3 shows a meas-
urement of the frequency constant fy and the ¢
of an X-cut crystal with its length 45° from the
Y and Z axes, having the dimensions L=2.015
cm; W=0.4 cm; T=0.1 cm. The values of fy
agree well with those given on Table I. The ¢ of
the crystal is high outside the Curie region except
above 40°C when the crystal is approaching its
melting point. Inside the limits of the Curie
points, the ¢ is appreciably lower.

If the piezoelectric stress is proportional to the
polarization it has been shown by Mueller,® that
the elastic constant of a bare or unplated crystal

- depends somewhat on the piezoelectric constant

and the dielectric properties of the crystal. The
question arises whether the measured lowering of
the ¢ and frequency constant between the Curie
points, where the piezoelectric effect is high, can
be due to this interaction. The question is con-
sidered theoretically in the next section, and it is
there shown that the theoretical change in the
complex elastic constant is much too small to
account for the measured results. We conclude,
therefore, that between the two Curie points a
small but definite change takes place in the
elastic constants of the crystal.®

¢ This change in the complex elastic constant is probably
related to the spontaneous deformation observed by
Mueller.? This would cause a slight change in the lattice

spacings and hence a slight change in the elastic constant
between the Curie points.
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F1G. 3. Measurement of the frequency constant and the
ratio ¢ of reactance to resistance for mechanical motion
of an unplated 45° X-cut Rochelle salt crystal.

It can be shown theoretically that, if all other
sources of dissipation are small compared to the
elastic dissipation, the electrical ¢ of a crystal as
shown on Table I will be equal to the mechanical
g as measured on Fig. 3. The fact that the
electrical ¢ is much lower, shows that mechanical
hysteresis plays a negligible part in the hysteresis
loops observed for low frequency measurements,
or the low electrical ¢'s measured on Table I.

We next consider the possibility of hysteresis
effects in the piezoelectric stress-polarization
relationships. This requires measuring directly
the piezoelectric constant fi4 which relates
piezoelectric stress to the polarization in the
absence of a strain in the crystal, or the voltage
generated in the crystal by a given strain in the
absence of a charge on the surface. The latter
proportionality is the easier to measure for it can
be measured by comparing the open circuit
voltage generated by a 45° X-cut Rochelle salt

crystal with the open circuit voltage generated for -

a quartz crystal when both are subject to known
relative strains. The experimental method of
accomplishing this is shown on Fig. 4. We have a
long longitudinally vibrating quartz crystal, with
the plating divided into two parts, as shown on
Fig. 4, glued to a 45° X-cut Rochelle salt crystal
with a small amount of plating at its center. The
first pair of plates are attached to an oscillator
which drives the crystal at the frequency of its
second harmonic vibration. The length of the
Rochelle salt crystal is adjusted so that it is half a
wave-length at the second harmonic resonant
frequency of the crystal. The voltage gathering
electrodes cover only a small part of the quartz or
Rochelle salt crystals and are located at a node
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of the motion where the strain is a maximum and
is uniform for some distance on either side of the
node since it follows a cosine law. The voltages
generated by each crystal are connected alter-
nately to a very high impedance detector and
compared in magnitude. Since the glued joint
between the Rochelle salt and the quartz comes
at a loop in the motion very little strain is placed
on it and hence the displacement of the glued
quartz edge is the same as that for the glued
Rochelle salt edge. Since the length of the section
of the quartz bar used for pick-up is somewhat
longer than that of the Rochelle salt bar, it is
evident that the Rochelle salt bar will be some-
what more strained than the quartz bar. It can be
shown theoretically that the strain at the centers
of the two bars are opposite in sign and equal,
respectively, to the ratio

Yor/Vye=—Vy/Vr=—509/420=—1.212 (1)

for the quartz and Rochelle salt cuts used, where
Vq and Vg are, respectively, the velocity of
propagation in quartz and Rochelle salt and yyz
and yy, are the strains in the Rochelle salt and
quartz bars, respectively.

" It is shown in the next section, Eq. (26), that
the open circuit voltage developed in the Rochelle

salt bar is
Er= f1ayyy/2c4829, (2)

where fi4 is the piezoelectric constant, cs the
shear modulus, s’ the inverse of Young's
modulus along the length of the crystal, and /,
the thickness of the crystal. Similarly, the open
circuit voltage for quartz is

EQ=47rd12'y,,lg/KS22'=1.312)(105 ltyy (3)

for the quartz crystal used. This was a —18.5°
X-cut crystal” and the measured constants were

ATTEN-
UATOR

1 I

t DETEC~
TOR
@

ROCHELLE SALT
(DIMENSIONS IN CM)
F16. 4. Circuit and apparatus for measuring the
piezoelectric constant fi4 of Rochelle salt.

7This crystal is described in ‘Electrical wave filters
employing quartz crystals as elements,” W. P. Mason,
Bell Sys. Tech. J. (July, 1934) Appendix 1.
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d12’ =6.91X1078; K=4.55; s9’=1.455X10"122,
On account of the small capacitance of the quartz
element, not all of this voltage appeared across
the output for, because of the distributed
capacitance around the crystal, an attenuation of
voltage occurred. As near as could be determined
the static capacitance of the crystal was 3.25 uuf
while the distributed capacitance was 2.75 uuf,
giving a measured voltage of

E,=T711X10%1y,. (4)

On account of the large capacitance inherent in
the Rochelle salt element, about 90 uuf, this
source caused no appreciable error in the Rochelle
salt voltage. When the two voltages were com-
pared it was found that at 30°C the Rochelle salt
crystal voltage was 1.41 times as large as the
quartz voltage. This gives the value for f14 equal
to

f34= 2644522,(llq‘/lt13) X (yy,,/ny) X 1.41
X7.11X104=7.58X10* (5)

upon inserting the values of the constants meas-
ured previously! for Rochelle salt.

While on account of the difficulty of measuring
the distributed capacitance of the quartz bar, the
absolute value given by this method is not very
accurate, the relative values obtained over a wide
temperature range are very accurate since the
distributed capacitance remains constant at all
temperatures. Accordingly the value of fi5 was
measured over a wide temperature range with the
results shown on Fig. 5. It appears that the
constant fi4 is an absolute constant of the
material and does not change with temperature.

The phase angle of the constant could be
determined by measuring the relative phases of
the quartz generated voltage and the Rochelle
salt generated voltage. This, however, is a
difficult experiment to perform and has not been
attempted here. The fact that f14 has a negligible
phase angle however is shown by the measure-
ments discussed below.

Since it can be shown that there is no appreci-
able lag or hysteresis with respect to either the
elastic constant or piezoelectric constant, it
appears that all of the hysteresis and dissipation
must be associated with the clamped dielectric
constant. In order to verify this, it is desirable to
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F16. 5. Measurement of the piezoelectric constant fis over
a wide temperature range.

measure the dielectric constant and the asso-
ciated resistance of the clamped crystal. On
account of the difficulty of clamping a crystal so
that no strain occurs, this cannot be completely
accomplished. If, however, we use a long, thin,
longitudinally vibrating crystal and measure its
impedance at twice the longitudinal resonance
frequency of the plated crystal, a very similar
result will be obtained. This follows from the fact
that, at twice the natural longitudinal resonance,
half the crystal will be compressed and the other
half extended so that the charge contributed by
the piezoelectric effect will be zero for a crystal
which has a continuous plating over the whole
surface. This condition is discussed in more detail
in the next section and it is there shown that
what will be measured is essentially a resistance
R corresponding to the resistance associated with
the clamped crystal in series with a capacitance
determined by the dielectric constant K 1.¢, which
is related to the clamped dielectric constant K by
the equation

dr  Ar  f1? 1 4r
: 1 )=——0.0179, (6)
Kie K cu

’
4c 44590

introducing the measured wvalues into this
equation.

To obtain the dielectric dissipation, a crystal
having the dimensions, length=4.03 cm; width
=0.8 cm; thickness=0.2 cm was obtained, i.e.,
with all dimensions twice those of the crystal of
Table I, and the electrical impedance of ‘the
crystal was measured at the frequencies corre-
sponding to the temperatures of Table I. The
results translated into dielectric constant and
series resistance in ohms per cubic cm are shown
on Fig. 6 by the solid lines. It is evident that con-
siderable dielectric dissipation is obtained par-
ticularly between the Curie points. Above 40°C,
the dissipation again increases because of the
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F16. 6. Measurement of the longitudinally clamped
dielectric constant and associated series resistance of a 45°
X-cut crystal.

increase in leakage resistance as the crystal
approaches its melting point. This increase agrees
with the increase that can be obtained by direct
current measurements.

If all the dissipation associated with the crystal
isconcentrated in the clamped dielectric constant,
it is shown in the next section that the electrical
resistance of a vibrating crystal measured at the
resonant frequency will be

Rp=nR/8L.,, )

where R is the dielectric resistance per cubic
centimeter associated with the clamped dielectric
constant which has been measured as shown on
Fig. 6. To test this relationship, we can make use
of the measured electrical resistance Rg of Table
I. This resistance multiplied by the factor

I, 8 0.418X2.014X8
e T T 663
0.104}9.89

lz 71'2

(8)

is shown plotted by the dotted lines of Fig. 6.
The good agreement between this curve and the
solid line curve of the dielectric dissipation is a
proof that practically all the dissipation in the
crystal is located in the clamped dielectric con-
stant. All of these measurements were made for
low voltages, i.e., less than 5 volts per cm. Since
it is shown in the last section that the resistances
measured were largely due to hysteresis, the
question arises as to whether these resistances
will vary with the voltage applied. This was
tested over a 30 to 1 voltage range by measuring
the resistance Ry at resonance, and it was found
that the variation was very small indicating that
the areas of the hysteresis loops for low charge
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densities were approximately proportional to the
square of the applied charge or voltage.

II1. THEORETICAL FORMULATION OF THE EQUA-
TIONS OF MoOTION TAKING ACCOUNT
OF DISSIPATION

Equations for piezoelectric crystals have been
obtained by assuming that the piezoelectric
stress is proportional to the potential gradient
(Voigt), internal electric field (Mueller, 1935),
charge density on the electrodes (Mason), or
polarization (Mueller, 1940). When one meas-
ures the elastic, electric, and piezoelectric con-
stants of a Rochelle salt crystal over a wide
temperature range, he finds that all of the elastic,
piezoelectric and dielectric constants vary widely
with temperature, plating condition, etc., on the
basis of the first two theories. Under the last two
theories, the elastic and piezoelectric constants
are entirely normal and vary little with tempera-
ture, while the clamped dielectric constant has a
temperature variation entirely consistent with
the cooperative phenomenon existing among the
molecules of the crystal. For this reason the latter
two theories are to be preferred.

Because of the high dielectric constant in
Rochelle salt, these two theories give results
identical within less than one percent.® If, how-
ever, we regard the piezoelectric effect as an
internal phenomenon, as is usually done, the
polarization formulation is theoretically correct
and will be followed here. If the force is propor-
tional to the polarization, Mueller has shown that
to the elastic constant 1/c44 one has to add a small
quantity f142/4rcs? which is usually less than 0.3

8 H. Mueller (reference 3 footnote 21) has objected to
the theoretical results given in reference 1. In this
he appears to be incorrect, for substantially the same
results are obtained with the equations of reference 1.
With the set of data given in Table II of reference 3, and
a value of ¢c4u=11.6X101 the value of f14=7.2X10% From
the same data and the theoretical formulation given in
reference 1, the result is fi4=7.2X10% A comparison of the
dis constant as defined by Voigt for the two methods is
shown below.

1°C di14 (MUELLER) d1s (MASON)
24.7 67.7 X106 67.4 X107¢
25.7 37.2 37.4

28.2 20.6 20.6

31.0 12.8 12.8

34.2 9.1 9.2

38.0 6.65 6.57

40.2 5.88 6.05

42.0 5.07 5.00

47.5 4.0 3.92
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percent of 1/cqs. The effect on the dissipation is
more marked as is shown in this section. The
measurements of the complex elastic constant
given in Fig. 3 show that between the Curie
points the dissipation of the unplated crystal is
considerably higher than outside this range. To
see if the polarization theory can account for this
effect without assuming a change in the elastic
constants, the formulation of the polarization
theory taking account of dissipation is given in
this section.

The free energy per cubic centimeter ® of the
crystal can be written for Rochelle salt in the
form

& =1 (10,2 + ooy 2+ C332. 2+ Caay.2 + o522 ooty %)
+(C10%2yy+C13%25,+Cayy52)
+ (f14y.P oAt faszePy+ fasy Ps)
+3(aP2 %P +x3P.2),  (9)

where P, P,, P, are the components of the
polarization, x,, -+, ¥, are the strains in the

crystal, ¢y are the elastic constants of the.

crystal, fi, are the piezoelectric constants of the
crystal, and x; are the reciprocals of the electric
susceptibilities of the clamped crystal, i.e., free
from strain.

By differentiation with respect to the strains
we obtain the stresses (—X,=0d%/dx,) while the
field strength (potential gradients) are given by
E,=0%/9P,. This will furnish nine equations,
three each of the following type

"‘Xx=611xz+6123’y+61322,
- Yz=C44yz+f14Pz,
-Ez=f14yz+X1Pz-

It was shown in the previous section that
practically all the dissipation associated with the
motion of a Rochelle salt crystal was associated
with dissipation of the clamped dielectric con-
stant. If all this dissipation is of the viscosity
type, i.e., determined by the rate of change of
polarization, the resulting equation can be de-
termined from a dissipation function of the type

F=%(vapz2+R7}2Py2+Rv3Pzz). (11)

Then from Lagrange’s generalized equations, the
last of Egs. (10) becomes

(10)
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E;=f14yz+X1Px+R'”1P:c
=f14y=+(x;+ijvx)Pz

for simple harmonic motion.

A dissipation function of the type shown by
Eq. (11) cannot represent a hysteresis effect, for
at a slow rate of change of polarization, the effect
of the resistance Ry disappears. In fact a
hysteresis effect is strictly a nonlinear effect and
cannot be represented by any linear dissipation
function. By analogy with the same effect oc-
curring in iron core coils, however, a hysteresis
effect can be represented as far as bridge, current,
or other measurements which average the result
of a complete cycle, by a resistance which varies
inversely as the frequency. The energy loss per
cycle is the area of the charge-potential loops of
the type shown on Fig. 1, while the power loss is
this area multiplied by the frequency or

Pp=area-f=Af.

(12)

(13)

The power loss in a resistance Ry required to
represent this loss is

PL = R}[sz.
Af  Af
"TP2 4rfP2 ArtfE,?

(14)
Hence

(15)

where «; is the susceptibility of the condenser.
If we introduce this value into Eq. (12) we
have

Ea:=f14yz+[X1+jw(RII+Rv)l]Pz=fl4yz
+ (x1+ joR1) Po= fiey.+x1.P,

where R; represents the combined effect of the
hysteresis and viscosity resistances and xi. de-
notes the complex quantity (xi1+jwR1).

In measuring the constants of a crystal with a
field applied along the X axis by dynamic means,
a longitudinal vibration of a long thin crystal
with its length 45° from the YV and Z axis is
usually employed. The equations of use for an
X-cut crystal are

(16)

— Xz=cuxs+ci2yy+cisz.,
— Y, =croxsFCoayy+C232s,
—Z . =C13% 2+ CagyytCa32s,
—Y.=cuy.+ f14P.,

E.= (xa+joR1)Po+f1ey.

(17)
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By solving this set of linear equations we can also
express the equations in the form
—x,=suX+s12V,+s513Z.,
—yy=S12X o+ 520 Y +5232Z.,
—2,=S13X o+ 523V +5532,
—y.=suY.+duk,,
P,=duY.+xE,,

(18)

where s1;=A11/A; s;3=Ag/A, etc., where A is the
determinant

€11 Ci12 (13
A=|c1s ca2 Casf, (19)
€13 C23 Cs3

and Ay is the determinant obtained from this by
suppressing the first row and first column.
Similarly

duu=f14/D; su=(x1+jwRy)/D;
D=C44(X1+ij1) —f142-

The s11, S12, S13, Sag, Ses, S33 constants are the
compliances of the crystal which can be measured
by mechanical means when the crystal is plated
or unplated. The compliance s44is the compliance
of the crystal when E,=0 or when the crystal is
plated and short circuited. Similarly dy4 is the
ratio of the strain to the applied field when ¥,=0
or the crystal is free to move, and «; is the
susceptibility of the crystal when Y,=0 or the
crystal is free to move. We note that the three
constants s4, dys, and «; involve a resistive
component and, hence, will show hysteresis
effects when measured statically. Since ¢y, fis,
and x:1 do not involve the state of elastic defor-
mation, and only one of them shows hysteresis
effects, we regard these as the true constants
of the crystal and shall use them in further
calculations. .

We note first that if the crystal is free to
vibrate, which happens when ¥,=0, that’

S
V= ——1L"¢

Ca4

K1=614/D,

where (20)

and hence
E.=[x1—f1¢/cu+ jwR,]P,, (21)

x1—f1/csa=xr, where xr is the inverse of the
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susceptibility of a free crystal. Hence, we see that
if all the dissipation is concentrated in the,
clamped dielectric constant, one should measure
the same resistance R; whether the crystal is
prevented from moving or not.

In calculating the motion of the rotated crystal,
it is desirable to obtain the constants of the
rotated crystal. This can be done by means of the
transformations given in reference 1 appendix I.
For the crystal cut perpendicular to the X axis
and rotated so that its length, designated the ¥’
axis is 45° from the ¥ and Z axes, the equations
become

—Xo=cux:+3(cr2tc13)yy +3(c12+c13)z.’
+i(cis—c)ys,
=Y,/ =3(croatcia)xa+1(cantcast2c05+4cas)y,
+2(coetcazt+2co3—4car)s,
+i(cas—cee)y.'+ fruPo,
=2 =}(cstas)xa+i(crtcsst+203—4cas) v,
+1(coatcast2c23+4can)z,’
+ilcss—ca)y.'— fuuPu,
= Y/ =3(cis—cre)wati(cas—can)y)
+i(css—can)z. +3(cootcan—2c22)y.,
E.=(xi+joR) P+ fusly, —2.).

(22)

Solving these equations by letting X,=Z2,’
=Y./=0 we find

4
R
! ! 1/644+522+533+2323
fuPzI' 4 ]
2¢44 |-1/644+322+533+2323 y (2;)
. fu2 Soa+S33+ 2593 -
Ez=Pz[xl+JwR———( )
Ca4 1/644+822+533+2323
+f143’y’r 4 ]
2¢44 |-1/C44+522+833+2523
We designate
S1a? Sao+S33+ 2523
xl———( )=XLc, (24)
cas \1/csat520+ 533+ 25023
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indicating that it is the inverse of the suscepti-
bility measured when the crystal is longitudinally
clamped, i.e., prevented from moving along the
length but not along the width or thickness. This
is a measurable quantity as shown in section II.
We have, also, that

1(1/caa+S22+ 533+ 2523) =22, (25)

the true elastic compliance along the direction of
the length of the crystal.
With these values, Egs. (23) become

!
'—Yy’=2f—+ fMPx 5
Sas’ 244820’
) Srayy
E,=P.xro+joR]+———  (26)
C44522

To these we add another equation relating the
charge on the surface per unit area of the crystal
to the voltage and polarization, namely,

We have also from Newton’s laws of motion for
the bar
pd*t/ot= —aY,/dy, (28)
where £ is the displacement of any point from its
equilibrium position.
For a plated crystal the field E, is constant
along the length of the crystal, so that differ-
entiating Eq. (26), we have

1 3y,

f14(0P/3y)

!
2¢44522
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and
P,

J1a Iy
2¢44529' (x Lo+ jwR) 9y .

Eliminating dP./dy we have
ay,, 1 3y,[

6y _522, 6}1'.

(29)
dy

i)
46442822'\XL0+ij

1 9y,
=—(1-%), (30)
822, 6y

where k the electromechanical coupling is com-
plex because of the resistance associated with the
inverse susceptibility xrc.

Since y,=09£/dy we have, finally,

9t 1 9%
—=— — (1= 1. (31)
dt? Szz’ 6y2
For simple harmonic motion, this reduces to
(1—£?) 9%
0=wt— " —, (32)
Pszz' 6y'~’
This complex equation is satisfied by
¢=K,cosh (4+jB)y+Kssinh (A4jB)y, (33)
provided that
w24 (A +7B)2(1—k?) /pss’ =0. (34)

Introducing the value of (1—£%2%) from (30) and
noting that
XLc—f142/46442322'=X1—f142/644=X1«', (35)

we have, solving Eq. (34) for 4 and B

XLc

4 =w(P322')’}l
2(xr*+w?R?)

— (xrxreFo?R) +[(xrc?+w?R?) (xr2+w?R2) ) xre\ [ wR
-

(xrxret+w?R)+ [ (xrc?+w?R?) (xri+w?R?)

xr / L2x1c\ xr

1 )(]3’6)

B=closn )’{ 2(xr2+w?R?)

Y .
] =w(psas’) (xre/xr)t

The approximate forms given are good provided wR/xz¢ and wR/xr <1 which is usually the case.
We solve for the constants K; and K of (33) in terms of the conditions existing when y=0. Then

when y=0, sinh (4+4;B)y=0 and

K,=¢.

Similarly,

0¢/9y =y, =K1(A+jB) sinh (4+jB)y+K:(4+jB) cosh (A+jB)y.

(37)

(38)
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Hence
I 1

K,

TA+jB (A+iB)(1—#Y
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[0+

JukE, ] ,
S22,
2¢44892' (x Lo+ jwR)

(39)

introducing the results of (26). Hence, using these values of K; and K, in Egs. (33) and (38) and using

the velocity

E=jot (40)
in the equations we have the two relations
fmt h (A4 iB)] ( Sa2’ )%[Y 1 fuE. ] inh (A+B)]
= &1 COS 7 gy — ¥1 - sin J y
T\ —k?) l 2¢44522' (X Lo+ jwR) ’ (1)
JuE.; SuE, .
[Yy—l- : ]=[Yy1+ - cosh (4+43jB)l,
2¢44892" (X Lo+ jwR) 2¢4S99" (X Lo+ jwR)

To these equations we can add a third
E, 1 1
47 47 xrct+joR

frayy/

2644522,(XLC+]“*’R).

(42)

Integrating this with respect to v noting that
v,/ =0%/9y, we have

1 1
QOZExlylu'[_'l_*‘]
4 xrct+jwR
fl4(€2— El)lw
264452QI(XLC’+].°-’R)'

(43)

where (, is the total charge on the surface of
width I,. The current will be the time rate of
change of the charge so that for the whole crystal
we have

X 1 1 lwly
z=ij(—~+———~7— Y
4r  xpc+jwR/ 1

Sfr(éa— €)1,
2¢43509 (X Lo+ jwR)

(44)

where Eisnow the applied voltage since E.= E/I,.
Equations (41) and (44) can be used to obtain the
electrical impedance of a crystal for any me-
chanical terminating conditions.

To obtain the impedance of a fully plated

—£1(p(1 —%%)/5'22)} sinh (4 + jB)1,.

crystal of length I, vibrating freely we set
Y,=Yy,=0 in Eq. (41) and solve for £ and £,
obtaining

SfuE, tanh (44jB)l,/2
2cu5 (x 2ot joR) (1 —k2) /s22)}

b= == (45)

Inserting these in (44) and collecting terms we
have

E { jwlwly[ dr
1 |

. = T .
1 47rlt XLC-I-]wR

k? h (4+3B)l, -1
(SR
1—-k% (A+jB)l,/2

This impedance is equivalent to a capacitance
Co=1.l,/4rl, representing the capacitance be-
tween the plates if the crystal were absent, in
parallel with a capacitance and resistance in
series having an impedance equal to

(e/buly) [R—’jXLC/“’]

and these in parallel with a third impedance

(47)

1—k?
k2

,h[uw+wm( )m+ﬁ€

Jwbuby

Ly
Xcoth (4 +jB)E]. (48)

We are interested in the value of this impedance
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near the resonant frequency which occurs when
Bl,/2=m/2. Introducing the approximation for-
mulae for 4 and B given by (36) this impedance
becomes

by [t - J XLeXF \ T Af
ey o
Ll,L 8 w\xre—xr/ 4 fr
where Af is the difference in frequency between
the actual frequency fand the resonant frequency
fr- Near the resonant frequency, this impedance

is the same as that for a coil and condenser in
series with a resistance which has the impedance.

Rp+(j/wCr)[2Af/fr]. (50)
Comparing (49) and (50) we have
l; 7!'2
Rp=——R;
L, 8
2f142ul,/1
Cr= Sibelo /1 P (51)
72¢44%520 X Lc? (1 — f14®/4caa?s22'x LC)
PXL02(6442522'2)lzly/lw
E= .

2f14®

At the resonant frequency, Rg is the value of this
arm and since this resistance is very small com-
pared to the shunting impedances of the other
two arms, the impedance measured at the
resonant frequency will be the resistance Rp.

If, now, we measure the electrical impedance of
the crystal at twice the resonant frequency f, the
impedance of (48) becomes very large and can be
neglected compared to the other two arms.
Furthermore due to the high dielectric constant
of Rochelle salt, the impedance of C, is large
compared to the second arm, and hence if we
measure the impedance of the crystal at this
frequency as was done on Fig. 6, we obtain the
impedance

(lt/lwlu) (R _jXLC/w) .

In the first section, a measurement was made
of the elastic constants of a 45° X-cut crystal
without plating. In order to determine what
constants of the crystal will be measured for this
case we can start with Egs. (26) and (27) and
impose the condition that Q, the charge on the

(47)
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surface, equal zero, or E./4r= — P,. Introducing
this relation in (26) and eliminating P, we have

, ¥,/ E.fia

Bl1+

8744520’
or eliminating E, we have

’
- Yy'=3’1[1

I3
S22

’
S22

(52)

XLc+ij1] f14y@/
4

!
244522

Jf14® ]
46442322/(47F+XLc+ij)

1k, (53)

S22

where kg is the coupling coefficient for the bare or
unplated crystals. sq2'/(1—kp?) is the complex
compliance constant for the bare crystal which is
somewhat different from the natural mechanical
constant. Differentiating (53) with respect to y
and substituting in (28) we can obtain the
equations of motion for the bare crystal in the
manner employed above. We find

£= é1 cosh (AB+]BB)Z”

Y'( Sao’
"\ p(t—Fs?

Y,= Yy cosh (Az+jBs)l,

1

), sinh (45 +7Bx)l,,
(54)

fe(1—k")\? .

—-51( ,——) sinh (Ap+jBs)l,, (54)
Sa

where *

(AB+j.BB) =[

1

—w2p822l ]2
1— f1?/4cas®s20’ (dn+x Lo+ jwR)

(At xie\?
= w(psse’)} 4———)

T+ XF

[ WR(f142/4c44%s22")
2(4r+xr)(dr+xL0c)

+j]. (55)

The method of measuring the impedance of the
unplated bar employed in the second section in
effect measures the impedance of a half-wave-
length bar free to move on the far end. From (54)
and (55) the impedance at the driven end near the
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F1G. 7. Measurements of the clamped dielectric constant
and associated series resistance of a 45° X-cut Rochelle
salt crystal for three frequency ranges. Solid lines are
measurements at 80 kc, dotted lines at 160 kc and dot-dash
lines at 1000 cycles.

half-wave-length frequency is

p(1—kp?)\?
Ru+jXu= (—)

. (P(l_kB
S0’

2)\} :
) (tanh 4 gl,+ j tan Bgl,)
Af

wR f142
( ) w i[ ( _+ :I« (56)
S99 3272 4C442522’ fR

This corresponds to a series resistance, mass, and
compliance having the values

wR f4
we=(i ) LGen)
522 12871" C442322

2595"1 pl / ,l
1r2lwl, : 2

tanh (A B +j.BB)ly

(87)

M=

The dissipation of the bar is usually defined by
taking the ratio of the reactance of one of these
elements to the resistance at the resonant
frequency or

2rfrLa 327caa®sy’
Ry SrRf14?

drtxr\* 1
(Y
dr+xre/ 2l,(psae’)?

In this equation, R must be expressed in c.g.s.
electrostatic units rather than the practical units
used on Fig. 6. This requires dividing the ohmic
resistance by 9X 10

q:

and

(58)
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To see if this change in mechanical constants
inherent in the polarization theory can account
for the difference in the measured constants in
the Curie region noted on Fig. 3, we see from (58)
that the frequency constant for the bare crystal
should be

dr+xr\? 1 Sia?
sz "——) fﬂlifM l——(—— (59)
dn+xLc 81 \dcyq2s0s’
All of the constants entering (59) depend very
little on the temperature and show no appreciable

change between the Curie points. From the
values of the constants determined in a former

paper,}
Fu=T.8X10%; cu=12.52X10%;
522’ =3.16X 10712,
fr=far(1—0.00126).

we have
(60)

That is, the resonant frequency fr should be
under the natural mechanical resonant frequency
far by about 0.1 percent, and this value should be
independent of the temperature. Hence the
lowering in frequency between the Curie points
must be due to an elastic change in the crystal.
The same result is obtained for the ratio ¢ of the
reactance to resistance of the unplated crystal.
At the temperature +5°C of the highest value
of R, the g of the crystal if all of the dissipation
were due to the dielectric loss would. be

327X (12.52X 1019)2X 3.16 X 10-12
85,000 16,000 X (7.8 X 104)2/9 X 101

=5.45X10% (61)
A\
(Co—Cw) R
[ ——— ] —0
Coo
I
LA

Fic. 8. Equivalent circuit for application of Debye’s
dielectric theory.

—w: VV—
(co—cm) RH=55 Ry
Co
Il
I

F1G. 9. Generalization of Debye's theory to include
hysteresis resistance in one of the components.



HYSTERESIS

This is considerably higher than the ¢ measured
at any temperature, and hence the ¢ measured
must have been due to the elastic properties of
the crystal.

IV. SEPARATION OF DIELECTRIC AND Loss CoM-
PONENTS IN THE CLAMPED
DieLECTRIC CONSTANT

At very low frequencies,’ all measurements

made indicate that the clamped dielectric con-

stant rises to a high uniform value between the
two Curie points and falls off outside this region.
At higher frequencies, the clamped dielectric
constant rises to a maximum at the two Curie
points and falls off between them as shown by the
solid line of Fig. 7. This was obtained from the
data of Fig. 6 by using the Eq. (24).

dr  4x fxﬁ( S2atS33+ 2593 )
K Kic c¢u 1/644+522+533+2833

4r

+0.0179, (62)

LC

inserting the measured values for these constants
which are all nearly independent of the tempera-
ture. Following Debye’s theory® of dielectric
losses and dielectric constants, this divergence
with frequency indicates that we are dealing with
two or more dielectric sources in parallel.
Debye’s theory considers the case of one
dielectric source considered dissipationless, in
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parallel with another source which has in effect a
series resistance of the viscous type as shown on
Fig. 8. Combining these two sources, they have
an impedance variation given by the equation

-7 1-Cy/Cy) Jor(1—Cu/C
| /o)]’ )
wal_ 14+ w?r? 14+ w272
where 7 the relaxation time is given by
1=R(Co— Cw)Cw/ Co. (64)

At low frequencies the impedance will be that of
the sum of the two capacitances whereas at high
frequencies it will approach that of the capaci-
tance C,. When the product of wr is unity, the
effective capacitance will be the mean of the two
capacitances and the resistance will be a maxi-
mum and equal to

RZ_Z(E"_E';)
20) Con
This theory cannot be applied directly to
Rochelle salt since most of the resistance associ-
ated with the dielectric constant is of the
hysteresis type ‘which, according to Eq. (15),
varies inversely as the frequency. The case of
interest here is that shown on Fig. 9, where we
have a capacitance (Co—C,) in series with a
hysteresis resistance (H/w) and a viscosity
resistance Ry, all shunted by a second capacitance

Cw. For this case the impedance measured as a
function of frequency will be

(65)

P -7 [1 1—- Cw/co)[1+j(}IT/Rv+wT)(1+H2(Co—C@)zcooz/(;oz)]jl (66)
T wCa (14 20Hr? /Ry +w?r2) (14+H2(Co— C)?Cn?/Ce2)
where 7 the relaxation time is now defined as
Co? ¥
=
C?(Co—Cy)?
In case Ry=0, the equation becomes
—7J H2(CoCou)(1=Co/Co)*+j(1 —Cou/Co)H
Z=—1+4 ] (68)
wCy 14+H?(1—Cy/Co)2Cs?

9 This is shown for example by the static measurement of Sawyer and Tower (Phys. Rev. 35, 269 (1930)) and Brad-
ford (B.S. Thesis, M. 1. T., 1934) on the dielectric constant in the center of the hysteresis loop for a free crystal. Both
measurements show a dielectric constant nearly independent of temperature between the Curie points. If this is in-
terpreted according to (21) this indicates a constant clamped dielectric constant between the two Curie points.

1 See P, Debye, Polar Molecules (Chemical Catalogue Co., New York, 1929); and E. J. Murphy and S. O. Morgan,
““The dielectric properties of insulating materials,” Bell Sys. Tech. J. 17, 640 (1938).
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and the capacitance remains constant while the
effective resistance decreases inversely as the
frequency.

In order to see if such a combination will
account for the change in the dielectric constant
noted, the clamped dielectric constant was de-
termined at several frequency ranges. Figure 7
shows the clamped dielectric constant and the
associated series resistance for the frequencies
shown on Table I. The dielectric constant and
series resistance was measured at twice this
frequency by-using the crystal whose dimensions
are given on Table I and measuring the longi-
tudinally clamped dielectric constant at twice the
frequencies of Table I. The result is plotted on
Fig. 7 by the dotted lines. As can be seen the
dielectric constant is somewhat smaller and the
resistance is about half as large. Another meas-
urement at 1000 cycles was obtained by using the
measurement of Dr. G. T. Kohman on the
dielectric constant and associated dielectric losses
for a Rochelle salt crystal free to vibrate. The
clamped dielectric constant was obtained from
the equation

4r 4r 47

—=—- f14?/c4s=—-+0.0485,

K KF KF
introducing the measured values for fi4 and ca.
The resistance measured was unchanged since
from Eq. (21) the same resistance should be
measured for a free or clamped crystal.

Above the Curie point the coincidence of all
the measurements of the dielectric constants
indicate that the viscous resistances are negli-
gible. Up to 40°C most of the dissipation is due
to a hysteresis type resistance as shown by the
fact that the measured resistance varies nearly
inversely as the frequency. Above 40° the effect
of an ohmic shunt resistance is felt due to the
leakage properties of the crystal near the melting
point. At the Curie point the viscous resistance is
still small and the clamped dielectric constant
attains nearly its full value. When the tempera-
ture is between the Curie points the effect of the

(21)
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viscous resistance on one of the components
becomes larger and as a result the dielectric
constant approaches that of one component only.
At 4°C, this value is nearly reached as is shown
by the fact that the dielectric constants measured
at 1000 cycles, 84,000 cycles and 168,000 cycles
are very nearly the same. The resistance associ-
ated with this component is nearly all hysteresis,
as is shown by the fact that the series resistance
is nearly inversely proportional to the frequency.
While the data are not sufficient to give an
accurate evaluation of the dielectric constants
and associated resistances it indicates that we are
dealing with two dielectric components which are
nearly constant with temperature between the
two Curie points. The one having little viscous
resistance associated with it has a dielectric
constant of about 100, while the other has a
dielectric constant of 140. The relaxation time of
the second component is quite large except near
the Curie points since the dielectric constant of
the first component is nearly attained at 1000
cycles.

Since viscous resistance is usually associated
with a rotation of molecules, it seems likely that
the second dielectric component is due to the
dipoles of the Rochelle salt. The first component
which has little viscous resistance is probably due
to the displacements of the ions in the lattice.
Since at optical frequencies the dielectric constant
is in the order of 2.5 there must be some viscous
resistance associated with the ion displacements,
and another component having a much lower
dielectric constant. This component, however,
will not be measured for any radiofrequencies,!
and very high frequency measurements will, in
all probability, measure only the dielectric con-
stant due to the ion displacements. Both com-
ponents are increased between the Curie points
and both components have hysteresis effects,
indicating a cooperative action of the molecules.

11'W, Bantle and G. Busch, Helv. Phys. Acta 10, 262
(1937) find that up to frequencies of 7.5X 108 cycles the
dielectric constant does not get below 100.



