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The integration is elementary, and gives

Sq —Ce4/—8r,D'. (80)

The approximation (44) gives finally

W W& Ws/(W&+ Ws)

Ws ———Cnge'/16r, D'. (82)

Returning to Eq. (66), we find that

Ws = —(r') „„Ce4/24y, g„D'
= —(Ce'/2r, h~) W~, (81)

where Wz is the image value as given by (58).
For the case of a general molecule, (r')A, should be
replaced by (R')A„as defined by Eq. (50). In
terms of the polarizability of the molecule, nz,
8'~ is

Ce2/2r, hg= —(e'(r') A,/12D') ~ . (83)
1+Ce'/2r, h~

W will be smaller than the image value, if h~ is

large or if r, is large.
For ordinary electron densities in the metal,

and with 6& equal to about one Rydberg unit

(13.5 ev), the factor Ce'/2r, h& is about unity, so

that S' is about one-half of the image value 1/V~. .
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The standard theoretical treatment of magnetization
at high fields leads to a formula J=J,—b/H2; experi-
mentally, a term —a/H is also found. In the standard
treatment it is assumed that the internal forces responsible
for the incompleteness of saturation are approximately
uniform over distances containing a very large number of
atoms. If these forces vary rapidly over shorter distances,
the interatomic coupling forces prevent the direction of
microscopic magnetization from varying with equal
rapidity, and the i/Hm law no longer follows. It is shown

here that for H)&4m J„point, line, and plane concentrations
of force lead to laws. of the form J=J,—a/II"/', with
n=i, 2, and 3, respectively. For II&/47' J. the law is of
the same form, but with different apparent values of J,
and a. For H—47rJ. the behavior is more complicated.
The conclusion that the observed a/H term is due to line
concentrations of force is supported by the dependence of
a on degree of plastic strain, since the mechanism of
plastic flow is believed to be a propagation of dislocation
lines through the lattice.

$1. INTRODUCTION

A T fields much larger than the coercive force,
a ferromagnetic material behaves almost

reversibly. The theoretical calculation of this
part of the magnetization curve is therefore
comparatively simple. The conventional treat-
ment leads, at suAiciently high fields, to a
formula'

J=J,-b/IP,

where IT is the magnetic field, J is the mag-
netization, J, is the "spontaneous" magnetization
predicted by the Weiss-Heisenberg theory at the
temperature in question, and b is a constant. In

' F. Bitter, Introduction to Ferromagnetism (McGraw-
Hill, 1937), p. 222.

deriving this formula it is assumed that the
material is magnetized to a value J, at each point
but that the direction of the magnetization varies
from one region to another. This is illustrated
very crudely in the upper part of Fig. 1. A soft
specimen is assumed to consist of unstrained
crystals, a hard specimen of regions each under
approximately uniform internal stress. Forces
due to crystalline anisotropy or to the distortion
of the lattice tend to pull the magnetization
vector into certain directions, represented by the
dotted arrows; these directions are related to the
principal axes of the crystal or of the system
of internal stresses. As the field is increased, it
overcomes these forces and pulls the magnetiza-
tion vector toward the field direction.
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Fxperimentally it is found that Eq. (1) does
not describe the results accurately. They can,
however, be fitted to an empirical formula'

a/H— b/H—'+eH.

The value required for b is in satisfactory agree-
ment with the theoretical value in Eq. (1). The
origin of the term in H is at least partially
understood, although the theoretical c is too
small. The present investigation was undertaken
in the hope of discovering a mechanism that
could explain the 1/H term.

The derivations of this term offered previously
have usually been based on a statistical theory of
one kind or another. ' Near saturation the sta-
tistical theory may be put into a very simple
form. Because of internal forces that interfere
with perfect saturation, the magnetization direc-
tion deviates from the field direction by a small
angle o. that varies irregularly from point to
point. This increases the energy of the specimen
in the field, —HJ, cos n for unit volume, by an
amount whose mean value per unit volume is
—HJ,[(cos cx)« —1]= ,'HJ, (0.')« -If it is .now
assumed that the internal forces are able to
increase this mean energy density by an amount
e independent of the field, then the resulting
magnetization is J=J,(cos n)« ——J,L1 —-', (~')«]
=J,(1—e/HJ, ) This is of. the required form; but
the assumption made is not easy to defend. The
complete version of the theory is equally unsatis-
factory in this respect; yet it leads to a relation
between e and the initial susceptibility which is in
fair agreement with experiment, and which has
still not been derived by any other method.

In the derivation of Eq. (1) two facts have
been ignored, both of which will be taken into
account in the analysis to follow. First, if the
magnetization direction varies from point to
point, the magnetization vector will in general
have a nonvanishing divergence; that is, there

~ H. Polley, Ann. d. Physik 36, 625 (1939); A. R.
Kaufmann, Phys. Rev. 57, 1089(A) (1940).

'For a summary see W. F. Brown, Phys. Rev. 54, 279
(1938) and 55, 568 (1939).The theory has been extended
by M. Takagi, Sci. Rep. Tohoku Imp. Univ. (1] 28, 20
and 85 (1939), and R. Kimura, Proc. Phys. -Math. Soc.
Japan 22, 219 and 233 (1940). F. Bitter, Phys. Rev. 37,
91 (1931), attributed the 1/H term to temperature agita-
tion of blocks of atoms. The insensitivity of a to tempera-
ture change (Polley, reference 2) is difficult to reconcile
with this view. See also P. Weiss, Ann. de physique 12,
279 (1929), especially pp. 286—287.
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FIG. 1. Contrast between two extremes in the mode of
spatial variation of the internal forces that prevent perfect
saturation. Above, forces that behave in accordance with
the conventional theory: whether due to crystalline
anisotropy or to distortion of the lattice, they are assumed
to be approximately uniform over fairly large regions, so
that large groups of atoms behave as units. Below, force
acting on a single atom (left) or concentrated within a
small region (right): interatomic coupling forces spread
the disturbance out over a distance of order of mag-
nitude d.

will be a Poisson magnetic charge density, and
this will produce a non-uniform magnetic field.
In the theory, H is assumed uniform. Second and
more important, the internal forces, instead of
being approximately uniform over fairly large
distances, may conceivably undergo rapid vari-
ations over distances of a few lattice spacings.
Then it becomes necessary to take account of the
coupling forces between the magnetic moments
of neighboring atoms —the "exchange" forces
responsible for the spontaneous magnetization
itself. These tend to aline successive atoms with
their moments as nearly as possible parallel.
Thus suppose, as an extreme case, that a force
acts on a single atom and produces a deviation of
its magnetic moment from the field direction.
Because of the coupling forces, other atoms as
well will have their moments pulled out of the
field direction, as illustrated in the lower left
part of Fig. 1. The disturbance dies down to 1/e
of its original value in some distance d. In the
simplest cases this distance turns out to be
inversely proportional to QH; for nickel it is
about 10 '/gH cm, which at 100 oersteds is
about 500 lattice spac'ings. Stress (or other)
variations over distances much shorter than this
will be too fast for the magnetization to follow.
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Thus a lattice distortion concentrated in a small
region will produce a deviation from perfect
saturation over a much larger region, as shown
at the lower right in Fig. 1.

Js. =H

7/

/

j/

j/

$2. ILLUSTRATIVE CASE

The nature of the problem and the methods
available for solving it may be illustrated by
considering first a simple one-dimensional case,
pictured at the left in Fig. 2. The field acts along
the s axis, the deviating forces tend to rotate the
magnetization vector toward the x axis, and these
forces are supposed to vary only in the y direc-
tion. Therefore the small angle of deviation u
also varies only with y. The divergence of the
magnetization vanishes and H is uniform, so that
there are no long distance magnetic effects to
complicate the problem; but the effect of
the interatomic coupling forces must still be
considered.

In the conventional theory these coupling
forces are neglected, and the magnetization
vector at each point is assumed to be in equilib-
rium un, der the joint action of the field H and of
the deviating force. n may be found as a function
of y by minimizing the free energy W of a
portion of the specimen of unit cross section,
extending along the y axis from one bounding
surface at y& to the other bounding surface at y2.
W consists of the energy in the field,

sa

Wr/ ———
~

HJ, cos ndy
W1

p
tf2

= —,'H J.
J

n'dy+const. , (3)
V1

and the free energy W due to anisotropy,
stresses, or other internal forces. For small n, the
volume density of W, may be assumed to vary
linearly with n and may be written go+const. ,

where g is a function of y; thus

/

/
/

/
/

/
/

FrG. 2. Simple one-dimensional case illustrating the
effects of uniform and of concentrated forces. Forces f uni-
form in xz planes tend to rotate the magnetization vector
from the field direction s toward the direction x'. The forces
and the resulting deviation angle n are functions of y. In
the conventional theory the forces f are assumed to be
approximately uniform over distances containing many
atoms, and the coupling forces between adjacent atoms
are neglected. If the forces f are concentrated in small y
intervals as shown at the right, the interatomic forces
must not be neglected.

whence H J,n+g = 0, or n = g/HJ„n'—=gt/
H'J' and 4

which is of the form (1).
This treatment must now be modified by

taking account of the interatomic coupling forces.
The coupling energy of a pair of neighboring
atoms, whose magnetic moments are at an angle

p to each other, may be written ——,'I cos p, where
I is a constant whose order of magnitude may be
estimated by multiplying Boltzmann's constant
by the Curie temperature; this classical approxi-
mation has proved adequate in the treatment of
similar problems at low fields. 4 If for simplicity
the lattice is assumed to be simple cubic with
interatomic distance ao and to have a cube edge
along the y axis, then p=asdn/dy, cos &= 1 ——',p'
= 1 —sass(dn/dy)', and the effect of a varying n

is an increase of the mutual energy of suc-
cessive atoms along the y axis by an amount
', Ias'(dn/dy)'. T-he total addition to the free

energy of the portion of the specimen under
consideration is

pP2

gndy+ const. (4) pQ2

Wc = st C (dn/dy) 'dy,

If W~+ W is to be a minimum, then for bn an
arbitrary function of y where C=I/2as. To the left member of Eq. (5)

[HJ,n+g]8ndy =0, (5) 4 For an elementary treatment and for references see
W. F. Brown, J. App. Phys. 11, 160 (1940).
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must now be added a term l, the mean value of cx' is

V2

CJ (dn/dy) (den/dy)dy
Wl

7j2 V2

= C(dn/dy) bn —C
i

(d'n/dy2) bndy. (5a)
V1

(n'),„=(1/l) Jl n'dy

—Cd'n/dy'+I jJ,n+ g = 0 (8)
Av . Oi Av ~i~ j Av

t i j
= P(n,')A, +PP(n;n;)A, . (16)

dn/dy=0 at y=y& and at y=y2. (9) i i 7+i
If the F s are uncorrelated or if the mutual
distances are &&d, the second term may be neg-
lected. Then

and the boundary conditions

Equation (8) may be written

d'n/dy' pn =f—

The left member of (5) with (5a) added must When there are a number of such Plane sources

vanish for go an arbitrary function of y. This of disturbance, N per cm along the y axis, with

leads to the differential equation F-values F;, the corresponding a-va)ues ni must
be superposed. Then

with

q =HJ./C, f=g/C,

(dnldy) I-'= F (12)

for y/0, f may be set equal to zero in (10).
For an infinite specimen the solution is

This reduces to the previous result if f is
assumed to vary only slowly; for then ot also
varies only slowly, and the term d'n/dy' in. (10) is
negligible. The other extreme is the plane concen
tration of force sketched at the right in Fig. 2.
Here f vanishes everywhere except in a very thin
section parallel to the sx plane, where it attains
large values so that its integral across this y
interval is a finite quantity F. If this section is
located at y=0, integration of (10) across it
gives for the discontinuity at y = 0

X=J,I.1 —-', (n')A, ]=J,L1 —lv'(F')A/8X']. (17)

This gives an approach to saturation according
to a 1/H~ law, which has not been observed.
Other types of force concentration must therefore
be investigated; but first the simple one-
dimensional case will be used to illustrate one
further point. The explicit evaluation of o. or its
equivalent in terms of familiar functions, as in
Eq. (13), is difficult or impossible in some of the
more complicated cases. The final formula for
(n')Ay or its equivalent can be obtained in these
cases by expressing the solution as a Fourier
integral. ' Thus for a plane concentration the
right member of (10) may be written F8(y),
where 8(y) is the "delta function, " defined by
8(y) =0 for y/0 and J'5(y)dy= 1 for any interval
including y =0. The delta function may be
expressed as a Fourier integral,

where
n = —(F/2X) e

X = Qg = (HJ,/C) i.

(13)

8(y) = (1/2n. )Jt cos pydp; (18)

The decay distance d = 1/X is of the order of
magnitude already stated and is very small
compared with the dimensions of ordinary speci-
mens or their constituent crystals. These may
therefore be considered infinite without intro-
ducing appreciable error, as may be verified by
solving the problem rigorously with proper
attention to the boundary conditions. If the
actual length of the specimen in the y direction is

and the solution of (10) for a single sinusoidal
component is easily obtained. Superposition of
the results gives

n(y) = (2n.) 'Jl tp(p) cos pydp, (19)

with
(20)

~ Cf. J. M. Burgers, Akad. v. wet. t,'Amsterdam) Proc.
42, 378 (1939).
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Although in the present case this result can be
transformed into the simpler form (13), such a
transformation is in general not possible and is
fortunately not necessary for the evaluation of
(u')'A„. For by the reciprocity property of Fourier
integrals, ' W, =~t w(x, y, z, u, p)dr (2&)

which may be supposed re-expressed in the form

w(x, y, z, u, P) by means of the relation uP+P'
+y'= i. Thus

hence

4(p)=(2~) ' " u(y) cos pydy, (21) Finally, the interatomic coupling energy is

Wc =-', C [(Vu)'+(V'P)'
00 F00 ~ 00

u'dy = (2~) l~ u(y)p(p) cos pydpdy
-x~ —x with

+ (Vy) 'jdr+ const. , (28)

=)" 4'dp (22)

and the last integral is easily evaluated. This
leads to the final result in (15) without use of (13).

W„= —
) Hp Jdr, (23)

the region of integration is the volume r of the
specimen. The second part is the mutual mag-
netic energy of the atoms; the variation of this
energy in a small change BJ is

BWM —— (V'U) BJdr, (24)

where V is the scalar potential of the field of the
specimen. In 7, V satisfies Poisson's equation

(3. GENERAL THEORY

In the general case, let the applied field Ho be
along the 2 axis, and let the direction cosines of
the magnetization J be (u, P, y). The magnetic
energy consists of two parts. The first is the
energy in the applied field,

C=I/ap.

The variation of 8"II+t/t/'M+ 8" +8'g must be
zero for arbitrary Bu and BP, with

By= —(uBu+PBP)/ y

After the variation bS'g has been freed of such
factors as VBu by an integration by parts (by use
of the divergence theorem), the coefficients of Bu

and BP may be equated to zero in r and on S.
This gives in 7-

—C[V'u —(u/y) V'y$
+J,I B U/Bx (u/y—)B U/Bz]

+HpJ, u/y+ 'Bw/Bu =0, (29)

together with a similar equation in which p and y
replace a and x; and on S,

Bu/Bn —(u/7) By/Bn
=BP/Bn (P/y) By/Bn —= 0 (30).

If u and P are now assumed to be small, and

only first-order terms are retained, these equa-
tions become

—CV"u+ J,(BU/Bx uB U/Bz—)
+Hp J,u+ga 0, (31)——

VPU=4mV J; (25) Bu/Bn = BP/Bn = 0.

outside it is harmonic and regular at infinity;
and on the boundary S, with outward normal
n(B/Bn=n V, J„=n J),

Vin= Vou~,

(BV/Bn), .+4~J.= (BV—/Bn) .... —(26)

The energy due to anisotropy and stresses is the
volumeintegralofsomefunctionwq(x, y, z, u, p, y)

R. Courant and D. Hilbert, Methoden der Mathe-
rriatischen I'hysik I, second edition (Springer, 1931), p. 68.

Here g~= (Bw/Bu) p p', it ha=s —been assumed that
B'w/Bu' and B'w/BuBp are «IZp J,. When Hp= ~,
u =P = 0, and inside a specimen in the form of an

ellipsoid V=N' J,s, where N' is the demag-
netizing factor. The ellipsoidal shape will hence-
forth be assumed; then for u and p small,
V=N'J, s+ U, where U is small. Insertion of this
expression in (31) and (25) and subtraction from

(26) of its form for Hp ut lead to the foll——owing

L. Landau and E. Lifshitz, Physik. Zeits. Sowjetunion
8, 153 (1935);W. C. Elmore, Phys. Rev. 53, 757 (1938).
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together with suitable conditions at infinity.
Here

u= UJ./C, q=HJ, /C,
f; =g;/C, h = 4xJ,'/C. (36)

Given fA and f2 as functions of (x, y, s), the
problem is to find n and P; then

J=J,L1 —A(n~)A. —A(P2)A~j (37)

The solution will now be carried out for forces
concentrated in planes, along lines, and at
isolated points.

(a) Plane concentrations of force: f1, f2 constant in ylanes
Case I. Planes parallel to the field direction. —Take the

zx plane as the constancy plane; then 8/Ox=8/Bz=0,
Eqs. (33)-(35) become

d n/dy —qn =f1,
d'P/dy' —du/dy —qP =f2,

d'u/dg =hdp/dy,

(38)

(39)
(40)

set of equations, determining the functions n, p,
and U and valid to the first order in these
quantities:

In ~,

—CPn+ J,B U/Bx+H J,n+g& = 0,
—CV"p+ J,BU/By+HJ, p+g2=0,

V2U=4x J,(Bn/Bx+BP/By). (32)

Outside ~, V'U= 0. At infinity, U is regular. On S,

Ba./Bn=Bp/Bn=0, U;, = U, „g,
—(BU/Bu);„+4mj, (n.,n+ n„p) = —(B U/Bn), Ug

Here H=HO 1PJ, i—s (except for terms of order
n') the actual field, corrected for the demag-
netizing effect; (n„n„, n, ) are the direction
cosines of the outward normal n. It may be shown
by standard methods that the solution of these
equations is unique and that, in particular, for
g&=g2 ——0 everywhere the solution is a=p=0,
U= 0.

As before, the specimen will be assumed
infinite in calculating the effect of a single
concentration of force; the order of magnitude of
the resulting decay distances will justify this
simplification. Then Eqs. (32) may be replaced by

V'a Bu/B—x gn =—fg, (33)

V'P Bu/By g-P =f„- (34)

V'u h(Bn/=Bx+BP/By), (35)

(V2 —P)V.v =0,
(V' —)P)V y v =0.

(45}

(46)

Thus the magnetic charge density —V J falls to 1/e of
its original value in a distance 1/k determined by the
induction B; the equivalent current density V)& J- has a
decay distance 1/P determined by the field H.

The solution of Eqs. (33)—(35) and (44), derivation of
which must be omitted but which may be verified by
direct substitution, is

where

u= u1+u2,
v = —(1/g}V'u1+ (1/h) Vu2+V)(A,

u1= —(k/27rk'r)(F~ cos 8+F2 sin 8),
u2 ——[hX1(kr)/2m. k j(F1cos 8+F2 sin 8),
A, = [&1(Xr)/2~F7(F1 sin 8—F2 cos 8),
A, =A„=O.

(47)

(48)

a is determined by f1, and P independently by f2. Eq. (38)
has been solved in $2. Integration of (40) gives du/dy
= hp+const. , and for finiteness of u at infinity the constant
must vanish; thus (39) becomes identical in form with
(38) except that g is replaced by q+h, and in the final
result X = gg must be replaced by

k = (n+h)» = [(H+4xJ,)J,/C j». (41)

Combining the two results gives, for an incoherent dis-
tribution of such plane sources with density N per cm
along y,

J/ J = 1 —(N/8) [(Fp)Ay/PP+ (F2 )Ay/k j. (42)

This contains a term in 1/H» and another term in
1/(H+47f J,)&. The quantity H+4m. J, may be identified
with the induction B=H+4~ J, since the difference
between J and J,, is of no significance in a term that is
itself of o'rder cP.

Case Z. Planes perpendicular to tke field direction. —In
this case z replaces y as independent variable, and n and
p are each determined by an equation of the form (38);
the result is (42) with k replaced by X.

Case 3. Planes with normal at an angle 81 to the field
direction. —Let the normal lie in the yz plane: then 81——x/2
is Case 1, and 81=0 is Case 2. If s is distance measured
along the normal, then 8/Ox=0, 8/By=sin 81d/ds, 8/Bz
=cos 81d/ds. The substitutions u =u'/sin 81, h = Ig '/sin' 81

reduce the equations to the form already solved in Case 1.
The result is the same as (42) except that k is replaced by

k'= (pp cos 8y+k~ sin 81)». (43)

(b) Line concentrations of force: f1,f2 constant along lines
Case 1.Lines parallel to the field direction. —The equations

to be solved are Eqs. (33)—(35) with 8/Bz=0. For a single
line source, f;=0 except at, say, x=y=0, while J'f;dS,
(dS, dxdy) has a finite value F; for any region including
the origin. Integration of (33) and (34) over such a region
leads to conditions of the form

(8n/Br)rd8~F1 as ' r~0; (44)

in addition u, rn, and rp must be finite at the origin.
Here r and 8 are polar coordinates in the xy plane.

For f; =0, the two-dimensional vector v =ai+ pj is
easily show'n to satisfy the equations
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V cL 'g(x =f1)
V'P —Bu/By —qP =f2,

V2u =hBP/By,
(50)

with V2= B'/By'+B2/Bz2. The cx and p equations separate.
For a concentrated source e is given by

and

cx = —(F /2m. )E'o() r),

S', (n')A =fn'dS =FP/4~X'

(51)

(52)

The value of (p')Av may be found by the Fourier integral
method. In this case

oo 'oo

f2 = F25(y) 5(z) = (F2/4vf2) cos py cos qzdpdq, (53)

and the solution for f2=(F2/4~2} cos pycos qz may be
found without difhculty. Superposition of the results gives

p(y, z) =(1/2w)f f V (p, g) cospycos Vzdpdq, (54)

where

(p q) = (F2/2x') (p2+q2)/[(p2+q2)2+ ()2p2+k2q2) j (55)

and

S,(p')» ffpd=ydz ffV'd=pdg = F22/4s), k; (56)

the last integral is easily evaluated by transforming to
polar coordinates in the pq plane.

Combining the 0. and p contributions gives

J/ Js ——1 —(N/8') [(F1')Av/X +(F2') Av/Xk j, (57)

with a term in 1/H and a term in 1/g(HB). The second
term is equal to the first for H»4m J, and small for
H«4' J,.

Case 3. Lines at an angle 82 to the,&eld direction. —This
case is still more complicated than the last; the Fourier
integral method leads to the result

J N(k" —k COS 82) (F1 )Av (F2 )Av—=1- v+ ", (»)J, 8~X' sin 82 k" k

where

The evaluation of the integral Sz(a +p )Av= J'v dS, may
be carried out by making use of the properties of the
modified Bessel functions X„. The result for an incoherent
aggregate of line sources, N of them per cm2 of the xy
plane, is

J/ J,= 1 —(Ã/1. 6z) [(F1 )Av+ (F2 )Av](1/& +1/k ) (49)

This contains a term in 1/H and an equal term in 1/B.
For H»4m J„both terms vary essentially as 1/H. For
H«47f J, the term in 1/B is practically constant, and the
curve again follows a 1/H law, but with a coefFicient only
half as great and with a slightly smaller apparent saturation
value.

Case Z. Lines perpendicular to the ff,eld direction. —Take
the x axis as the direction of the lines. Then

written in the form

Z(z) = (I/2~}f s'»dp. (6O)

(c) Point concentrations of force

Here F; is a volume integra1 over a region containing
the point source. The general equations (33)—(35) must
be used. For H»47f J„u may be neglected, and

cx/FI =P/F2= —e ""/4mr, (61)

Summary of theoretical conclusions

At fields high enough to justify the neglect
of magnetic intera, ctions (H»4z J,), point, line,
and plane concentrations of force lead to laws of
the form J/J, =1 rz/H"Iz, wi—th n=1, 2, 3, re-
spectively; to these may be added the result of
the conventional theory, n=4 for forces uniform
throughout an extended volume. At much lower
fields the power of H is the same as at high fields,
but in most cases its coe%cient is smaller and a
constant term must be added. In the range
H—4m J, there occurs a transition from one
behavior to the other.

When two or more of these types of force
distribution are present and there is no corre-
lati'on between them, their contributions to J,—J
may be added, for the cross-product term in Eq.
(16) is negligible.

The solution for arbitrary one-, two-, or three-dimen-
sional functions f; may be expressed formally as an integral
of the plane, line, or point solution over the sources, but
in most cases the resulting expressions will be too compli-
cated to be of much value.

where r is the distance from the source to the point at
which n and p are being evaluated. At lower fields tlie
curl of v about the field direction has a decay distance
1/P, but the equations determining u and V' v contain
both decay distances. The Fourier integral method leads
to the following result for an incoherent aggregate of point
sources of number N per cm'.

J N 1 1 . h&
1 [(F1 )Av+(F22)Av) +—Sin ' —. (62)J, 32~ X h~ k

The quantity in braces reduces to 2/X for H»4m. J, and
to 1/A+const. for H«47f J„and thus gives a 1/H' law of
approach to saturation in either case.

k"= () 2 sin2 82+k' cos 82) &. (59) $4. INTERPRETATION OF EXPERIMENTS
This reduces to (49) for 82=0 and to (57) for 82=7f/2.
The lines are perpendicular to the' y axis. In this case
and in the next, the delta-function is most conveniently

Gray, Mathews, and MacRobert, Treatise on Bessel
Functions (Macmillan, 1922), Chapters 3 and 6.

The actual occurrence of a 1/H term suggests
the presence of line concentrations of force. The
precision of any data at present available is
probably not sufficient to determine with cer-
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tainty whether 1/HI and 1/HI terms are also
present.

The explanation of the 1/H term as due to line
concentrations is borne out by Kaufmann's
measurements on nickel subjected to various
degrees of plastic twist. ' He finds that the
coefficient a in Eq. (2) increases with the plastic
twist. Plastic flow is now explained as a propa-
gation of "dislocation lines" through the lattice;
(a) and (b) in Fig. 3 represent a cross section of
such a dislocation line in two successive stages of
the propagation. "According to Taylor's theory

' A. R. Kaufmann, reference 2. The writer is indebted to
Dr. Kaufmann for providing him with the data analyzed
here."G.I. Taylor, Proc. Roy. Soc, A145, 362 (1934);J. M.
Burgers, Proc. Phys. Soc. 52, 23 (1940).

PLASTIC TWIST IN DEGREES

FIG. 3. Test of the hypothesis that the 1/H term in the
magnetization curve is due to dislocation lines. Data
plotted were taken by A. R. Kaufmann on a 42" length
of annealed nickel wire $" in diameter. Top curve, test of
Taylor's theory of hardening, according to which the plastic
strain and the square of the stress producing it are pro-
portional to the density 1V of dislocation lines and therefore
to each other. Lower curves, test of present theory of
approach to saturation, according to which the coefficient
a of the 1/H term should be proportional to N and there-
fore to the plastic strain. The circles represent values
with the torque still acting, the crosses after its release.
Two successive stages in the propagation of a dislocation
line through the lattice are shown schematically in (a)
and (b), which represent cross sections perpendicular to
the line. The atoms are represented by circles and the
"dislocation" is indicated by an asterisk. The shearing
stress acts as shown by the arrows; the lines joining the
atoms are intended merely as an aid to the eye.

of hardening, the application of a shearing stress
greater than the initial yield value produces new
dislocations, each of which is propagated a cer-
tain distance and then stopped by a flaw; this
continues until the stopped dislocations have
become so numerous that their stress field, which
opposes the applied stress, becomes large enough
to counteract it completely and thus to create a
stable condition with a new yield value. The
plastic shear y is proportional to the number iV of
dislocations per cm' that have been produced,
propagated, and stopped, and N is proportional
to the square of the applied shearing stress. To
what extent Kaufmann's specimen follows this
law is shown by the upper graph in Fig. 3; from
the slope of the curve and from other data on the
specimen it follows that X/y=1. 4X10" dislo-
cations per cm' per unit of plastic shear. The
data used so far are purely mechanical. But if the
dislocation lines are identical with the line
concentrations of. force responsible for the term

a/H in th—e magnetization curve, then a should

be proportional to N and therefore to the plastic
shear. The lower curves in Fig. 3 show that this is

at least approximately true. From the slope and
from magnetic data, the order of magnitude of
E(Fr2)Ay/y is found to be 2X10"c.g.s. units per
unit of plastic shear. Combining the mechanical
and magnetic results gives for the root mean
square value of CF&, 2X10 ' erg/cm. This is

equal to J'grdS, and may be set equal to g,ao' in

order of magnitude, whence g~—SX10' erg/cm'.
But g&=&w/Bo. —w; the figure SX10' erg/cm'
therefore gives the order of magnitude of the
free energy density associated with the forces
that oppose saturation. It is interesting to com-

pare it with the volume densities of anisotropy
energy, Xq =5 g 10; dipole energy, 3 KJ 5

&10'; magnetostrictive energy for a strain —1,
X F.=SX10';and exchange energy, I/ao' —10"."
The last alone is of a comparable order of
magnitude. Is it the breaking up of exchange
forces at a dislocation that causes the deviation
from saturation?

"Z& =anisotropy constant, 'A„= saturation magneto-
striction, E=Young's modulus; values of these and the
other quantities may be found in the books listed in the
bibliography of reference 4.


