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Calculations based on a model which takes the structure of the metal into account indicate
that the force on an electron outside the surface of a metal is just the classical image force, but
that the van der Waals force on a neutral molecule may be smaller than that given by a semi-
classical calculation based on the method of images. An approximate value for the van der Waals
energy between two systems 4 and B is obtained by calculating the energy of B in the field
of 4, supposing that the electrons of 4 are in fixed positions. The result is then averaged over
the coordinates of the electrons of 4, giving an energy Wa. Systems 4 and B may be reversed
in the above calculation, and an energy Wpg be found. The true van der Waals energy is given
roughly by WsWg/(Wa+Wpg). This method gives a new approximate formula for the van
der Waals interaction between two molecules, which reduces to a well-known result when
further approximations are made. If system A is the molecule and system B a metallic surface,
the energy Wiy is that found by the image method. The energy W is also evaluated, and is
shown to be of the same order of magnitude as Wy for ordinary electron densities in the metal.
Thus the true energy of interaction may be considerably smaller than that given by the
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image method.

I. INTRODUCTION

HE force between an electron or ionized
molecule and a metallic surface is usually
obtained by the classical method of images. While
there can be little doubt that this procedure is
justified for a relatively slowly moving ion, there
is some question whether correct results will be
obtained for the force on an electron whose
velocity is comparable to the velocities of the
electrons in the metal. Even more doubtful is the
use of the image method for the calculation of the
van der Waals interaction between a neutral
molecule and metallic surface.

Experiments on the Schottky effect indicate
that the image law holds for electrons at dis-
tances greater than ~10~7 cm from the metallic
surface. Some years ago! the author showed that
on theoretical grounds one would expect the
image law to hold asymptotically at large dis-
tances, but it was not possible to find the distance
at which the law begins to break down. Since this
work has not been reported on in detail, the
theory is discussed below in Part II.

The first calculation of the van der Waals
interaction between a molecule and a metallic
surface, based on the method of images, was
made by Lennard-Jones,? who showed that the

1 J. Bardeen, Phys. Rev. 49, 640 (1936).

2J. E. Lennard-Jones, Trans. Faraday Soc. 28, 334

.(1932). Due to a numerical error, the value given for the
interaction energy is too large by a factor of two.

energy depends on the inverse cube of the
distance from the surface. Recently Pollard and
Margenau® have reported a calculation based on
a simplified model which indicated that the force
should be much smaller than that obtained by
Lennard-Jones. The smaller value was found to
be in better agreement with the experimental
heats of low temperature adsorption. Prosen,
Sachs and Teller* based their calculation on a
straightforward application of the second-order
perturbation theory, and found that the energy is
inversely proportional to the distance if a free
electron gas is assumed in the metal, and is
inversely proportional to the square of the
distance for a degenerate Fermi gas. In these
calculations, the interaction of the electrons in
the metal was neglected.

A new approximate method for the calculation
of dispersion forces, described below in Part III,
shows that while the energy is inversely pro-
portional to the cube of the distance, the magni-
tude may be in some cases considerably smaller
than that given by the image method. The
interaction between electrons is taken into ac-
count indirectly.

The results of the image method are obtained
if it is assumed that the wave function for the
" s W. G. Pollard and H. Margenau, Phys. Rev. 57, 557
(1940).

4E. J. R. Prosen, R. G. Sachs and E. Teller, Phys. Rev.
57, 1066 (1940).
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metal depends parametrically on the coordinates
of the external electrons. The expression for the
kinetic energy then involves differentiation of the
wave function with respect to the parameters.
The terms involving these derivatives are neg-
lected in the image treatment. It will be shown
that this neglect is justified in the calculation of
the force on an electron, but is not justified in the
calculation of the van der Waals force on a
neutral molecule.

II. IMAGE FORCE oN AN ELECTRON

Let the coordinates of the electrons in the
metal be denoted by vyi, ¥2, -:-yn, and the
coordinates of the electron outside of the surface
by x=(x, ¥, 2). The origin of coordinates is taken
at the surface of the metal, with the z axis normal
to the surface. The wave equation is

(HM+He+ V)‘I’(X; Y1, Yo, =0 yN)

=Ext+W)¥, 1)

in which Hjs is the Hamiltonian for the metal, H,
is the Hamiltonian for the external electron, V is
the interaction potential, and Ey is the normal
energy of the metal. The explicit expression for
the interaction potential is

N
V=e2, Iyi—XI‘l—eﬁfm(y')]y’—XI“dT’- (2)

=1

The positive charges in the metal are represented
by the charge density ep,(y’). If the positive
charges were discrete, the integral would be
replaced by a sum, but in any case the calculation
can be carried through formally with the integral
form.
The wave function ¥(x; yi,

written in the approximate form

-« +yy) may be

V(X5 y1, -0 yn)=¥(X; 91, 0 yn)e(X), (3)

where (X, 1, -+ - yn) is the wave function for the
metal in which the coordinates of the external
electron enter as parameters. It is a solution of

Hu+ V)= (Ex+ox))y. (4)

The energy w(x) is the image potential —e?/4z, as
will be shown explicitly below (cf. Eq. (13)).
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The function ¢ is normalized for all values of x.

f’ : 'flf/*¢df1' -edry=1 forallx. (5)

If the function ¥ given by (3) is introduced into
(1), we find

(HeAo@)¥X; 31, -+ yv)e(x) =Wye. (6)

Now H, contains a term — (4%/2m)A which
operates on both ¢ and o,

Hyyo=yH.o— o(h*/2m)AY
— (#2/2m) grad y-grad o, (7)

so that (6) becomes

Y(H +w(x))p— o(h2/2m)AY
— (h%/2m) grad ¢ -grad o=Wey. (8)

A wave equation for ¢ may be obtained by taking
the diagonal element of (8) with respect to the
metallic wave function. Let us multiply through
by ¢* and integrate over the coordinates of the
electrons in the metal. Due to the normalization
condition, the integral

f---fx[/*grad Ydri- - -dry =0, " 9)

so that the diagonal element of the last term on
the left of (8) is zero. It is true that this term will
give a contribution to the energy in the second
order, but the magnitude of this contribution® is
smaller than that obtained from the diagonal
element of the second term. We obtain the
following equation for the motion of the external
electron :

[Hc+w<x) - (h2/2m)f .

Xfx//*Ax,’/drl- . 'dTN]cp::Wga. (10)

It will be shown that the integral gives an energy
of the order of a dispersion force, and so decreases
with the cube of the distance from the surface.

5 The magnitude of this contribution to the energy can
be estimated by a method similar to that used for the
diagonal element of the second term of (8).
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The image potential, w(x) enters just as an
ordinary potential into the equation of motion
of the electron.

By taking the Laplacian of the normalization
integral (5) we find that the integral in Eq. (10)
may be expressed in the form:

—(72/2m) f f YApdr - dry

=(h2/2m)f---flgrad Y|y e odry. (11)

To evaluate this integral, we start by taking the
gradient of Eq. (4), the equation for the wave
function of the metal, "with respect to the
coordinates of the external electron. The re-
sulting equation is:

(Hu+7V) grad ¢+ (grad V)¢
= (Ex+w(x)) grad ¢+ (grad w(x))y. (12)

This equation is of just the same form as that
obtained in the ordinary first-order perturbation
theory. It may be regarded as being obtained by
treating e- grad V as a small perturbation intro-
duced into Eq. (4). The first-order change in the
wave function is then e- grad ¢, and Eq. (12) is
the equation for grad y. In order that this
equation have a solution, it follows in the usual
way that

grad w(x) = f f V*(grad Vgdri- - -dry. (13)

A direct evaluation of this integral, making use
of the fact that a charge is induced on the surface
of the metal of such a magnitude as to make the
tangential components of the electric field vanish
on the surface, shows, as one would expect, that
w(x) is just the ordinary image potential. Some
deviation from the formula w= —e¢?/4z may be
expected when the electron is very close to the
surface, because the induced charge will not be
concentrated on a plane. The amount of the
deviation will depend on the structure of the
metal.

Grad ¢ may be expanded in terms of the proper
functions of the metal, ¢x, which satisfy the
equation

(Hu+ V)= Ewr. (14)
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By the usual methods, we find

grad ¥y =2 aw, (15)
where
ar=(grad V)o/(Eo—Es). (16)
The integral (11) is therefore equal to
(fﬁ/Zm)f' . -f!grad V|- dry
= (h2/2m) D a?
= (1*/2m) 2| (grad V)ro|*/(Eo—Er)? (17)

An estimate of the magnitude of 3 a;? may be
obtained from the sums
S1=2a2(Ey—Ey)=(Ey—Era2.a:® (18)
and
Sz=zak2(Eo—Ek)2=(Eo—Ek)zAvZak2y (19)

both of which may be computed with some
accuracy. Thus one would expect that

Za;} 2512/52,

at least as to order of magnitude.
The sum S, may be transformed to an integral,

Se=2_|(grad V)|

(20)

:f. . .f¢*(grad V)Wdry- - -dry,  (21)

which can be evaluated explicitly. The term with
k=0 has been included in the sum, but this term
is of the order 1/z* and so can be neglected in
comparison with the sum of the remaining terms,
which is of the order 1/2%. The integral depends
on the structure of the metal, It is evaluated in
part V for a model which should be approxi-
mately valid for the monovalent metals, with the
result

Se=Cet/87.2%, (22)

where C is a numerical factor of the order of
magnitude unity, 7, is the radius of a sphere
whose volume is equal to the volume occupied
per electron, and 2z is the distance from the
surface.

The sum S; is of the sort which occurs in the
second-order perturbation theory:

Si=2|(grad V)io|?/(Eo—Ex). (23)
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Let € be an arbitrarily small vector and consider
Eq. (4) with x changed to x-+e. To the order
¢!, we have

(Hy+V+e-grad V4+3(e-grad)V)y
=(Ex+oxte)y.

If we treat the terms involving e as a perturba-
tion, we have, to the order &,

(24)

w(x+e) =w(x)+f' . ~f¢*(s-grad Vydry: - -dry

1
+Ef . -fxp*{(e-grad)?V}gbdn- --dry

+Z ]’(s-grad V)k0’2/(E0—Ek).

We know that w(x-+e) is the image potential,
—e2/4(z+€.), which may be expanded in a power
series in e:

(25)

—e2/4(z+e,) = —e2/4z

+(e2/42)e, — (e2/42%)e 24+ -+, (26)

By taking e successively in the x, y, and 2
directions, and equation the powers of € on the
two sides of (25), we find

1
0=’£f . 'f\[/ (82V/6x2)z{/dn . 'dTN
+2[(9V/0x)ro|?/ (Eo— Er),

1
=Ef . fl// (02V/oy)ydry: - .d.TN
+Zl(av/a3i>k0|2/(Eo—Ek),

1
—e2/4z3=5f- . -fn,b (82V/3s2)dry- + ~dry

+Z| (a V/az)k0|2(Eo“Ek).

The sum of these three equations gives us the
value of Si:

(27)

1
Sl= —82/42;3——2"f‘ . ‘f\b*(AV)\[/dTl . 'dTN.

Since AV =0 inside the metal, the integral
vanishes, and

Sy= —e?/42%. (28)
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The approximate value for the integral (11) is
finally obtained as

(ﬁ2/2m)f---f|grad V|- dry

~(12/2m)S2/ Se= (h*/2m)(rs/2C2%). (29)

This is a correction to the kinetic energy resulting
from the relative motion of the electrons in the
metal and the external electron. It decreases with
the cube of the distance from the surface, and so
is negligible at large distances. This correction
term becomes equal to the image potential at a
distance

zo=[(#2/2m) (2r;/ Ce?) Jt = (r,/ Cao)tas, (30)

where, in the last equation @, is the atomic unit of
length (0.528 X108 cm). The density of the
conduction electrons in sodium is such that
r.=4a,, so that the distance z, is of the order a,.
Deviations from the image law due to the fact
that the induced charge is not concentrated on a
plane will occur before the correction to the
kinetic energy is important. For all practical
purposes, the latter may be neglected.

III. METHOD FOR CALCULATION VAN DER
WaaLs ENERGIES

Let us consider the interaction between two
systems, 4 and B, with Hamiltonians H4 and
Hp, together with an interaction potential
V(4, B). The wave equation is then

[(Ha+Hp+V(4, B)J¥=(EA+E2+W)¥, (31)

in which E¢4 and E,? are the energies of systems
A and B in their normal states and W is the
interaction energy. Let the proper functions and
energies of 4 and B separately be ¢;4, ¢:®, and
EjA, EkB :

Hupi*=Ereit; HporlP=EBp®.  (32)

The usual second-order perturbation treatment
gives

W=Vt
00,00 o (B — B

| Voo, 102
k40 (Eg® — ExB)
| Vio.xo| ?
750 (B — EA+EoB — EB)
k:{:O

| Vio,00]?

(33)
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in which Vo, ko is the matrix element
Vioro= f f eif*oiB*V (A, B) pot ooPdradrp. (34)

In some cases, although difficult to carry out
the rigorous treatment, it is possible to carry
through the calculation if it is assumed that in
calculating the wave function and energy of one
system, the coordinates of the other enter as
parameters. The calculation of the wvan der
Waals interaction between a molecule and a
metal by the image method is an example of this
sort.

Let us first assume that the electrons of 4 are
in fixed positions, and calculate the energy, E(4),
which is a function of the coordinates of 4, from
the equation:

[Hp+V(4, B)¥(B, 4)
=[EP+e(4) (B, 4). (35)
The second-order perturbation treatment gives

[ Vio(4) ]2

A)=Tpd)+ > ——, 36
W=Vald)F T 69

where V;o(4) is the matrix element
Vild) = [ o Vid, Byahdrs, (37

which depends on the coordinates of 4 para-
metrically. Now let ¢(4) represent a potential
acting on system A4 :

[}1A+€(A):]\I’A=(E0A+ WA)‘I’A (38)
Then, again to the second order,
| Voo, ko] 2

50 (BB — F,P)

| Vio,oo|?

WA = VOO, 00+ Z
150 (Egt— Ej4)

| Vio,ko|?

Lk (39)
i+0 (EgB — E.B)
k40
which differs from the correct interaction po-
tential, W, (Eq. 33) in the denominator of the
last term.

If, instead, we reverse the above procedure and
calculate the energy of system A4 by assuming
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that the coordinates of B enter parametrically,
we find for the interaction energy

[ Vioo|?
WB= VOO, 00+ Z
o (EA—Ep)

l Voo, kol 2
k0 (EoB — EiB)

| Vio xol?

— —. (40)
i#0 (Eo* — E;*)
k0

In the application to the calculation of the van
der Waals energy between nonpolar systems, the
matrix element Vo, is different from zero only
when both j and % are different from zero. Only
the last terms of (33), (39) and (40) are then
nonvanishing. Since Y| Vioxol|2=(V%0000 we
may express W in the form

W= (V4,0/[EA—EA"A4+EP—EBa, (41)
and also
Wa=(V)o,00/LE® - Ei® Jas,
We=(V*)o,00/[Eo* — Ei* Ju. (42)

The average energy differences are defined by
these equations. One might expect that roughly

[E — EA+Eof — B,

=[EA—EA WA+ [EL—EP . (43)
With this assumption,
W=WiWg/(Wi+Wp). (44)

While this procedure may be open to some doubt,
one can say definitely that W is numerically
smaller than either W4 or Wp, and also that if
either W4 or Wp is very much smaller than the
other, W will be close to the smallest.

IV. VAN DER WaALS FORCES BETWEEN
NoNPOLAR MOLECULES

The application of the method described in the
preceding section to the calculation of the second-
order van der Waals interaction between two
molecules leads to a different expression from
those obtained previously, although if certain
further approximations are made, the result
reduces to a well-known form.¢

6 For a review of the theory of van der Waals forces,
see H. Margenau, Rev. Mod. Phys. 11, 1 (1939).
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Let X4=3 x4, the sum being extended over
all the x coordinates of the electrons of molecule
A, as measured from the center of gravity of the
molecule. Let X2 be defined similarly for mole-
cule B. The interaction potential may then be
expressed in the form

V(4, B)=(e*/r®) (XAXB+YAYE—2Z42Z8), (45)

where 7 is the distance between the molecules,
and the z axis lies along the line joining them.
The normal states of the molecules 4 and B may
be degenerate. If we are interested only in the

3 e R
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average value of the interaction energy, W, over
all the degenerate states, W may be expressed in
terms of the f values:

fio=3fi™
=QL+1)72m/i) 2 | Xiur,0u|2(E;— Eo), (46)

where u and u’ are the magnetic quantum num-
bers of the initial and final states, respectively,
and L is the quantum number of the angular
momentum. The expression derived by London?”
for W is

fio*fro®

W= ——

> .
2 S m?ik (EOA—E]'A) (EOB—‘EkB) (EOA—‘EjA'*'EoB—EkB)

The corresponding expression for Wy, as given
by (39) differs from the above in that the last
factor in the denominator (E¢4— E;A+ Ef — E;B)
is replaced by (Eo®—E,?). For Wp the factor
is (Ey4A—E;4). By making use of the static
polarizabilities,

ay= (e /m) 2 fio" (Eo* — E4)?,

(48)
ap=(e"h*/m)2_fr®(Eo® — EiP)?,
k
and the definition of the f values, W4 and Wpg
may be expressed in the form

Wa=—(e/r°)(Ra*)nerz,

(49
We= —(e/7%)(Rp*)nca, )

in which

(R:)w=(2L+1)"Z{(X?)ou+ (Y?)ou+(Z%)0u} . (50)

It is, of course, possible to obtain W4 and W5
without making use of the second-order pertur-
bation theory. Suppose that the electrons of 4
are in some fixed positions. They will produce a
field which will polarize molecule B. The field
produced by B will in turn react on 4. If the
corresponding interaction energy is averaged over
the positions of the electrons of 4, and also over
the degenerate states, Eq. (49) for W4 is obtained.
The approximate value obtained for W is

W~WiWs/(Wa+ W)
e? (RAZ) AV(RB2)AVaAaB

- . (51)
78 (RAZ) nep+ (RB2)AvaA

(47)

If there is but one term in (48) with an energy
difference A, we may write

(R?) =300/ 2¢? (52)

and

W~ —(3/2r% (AsApasas/(As+AB)). (53)

This formula, derived in a different way,® has
been used to get an estimate of the van der Waals
energy. The A’s are often taken equal to the
ionization potentials.

The expressions (51) and (53) give the correct
values for the interaction between two harmonic
oscillators. The van der Waals energy between
two hydrogen atoms has been computed very
exactly by means of a variational method,? with"
the result

W= —6.499(ao/7)%(e?/av), (54)

where a, is the Bohr orbit radius. This provides a
further check on the accuracy of the approximate
formula (51). For hydrogen,

(R2)Av= 3002
o= 9(103/2,

so that
W~ —6.75(ao/7)5(e?/ao),

a result which is not very far from the exact
value.

(55)

7F. London, Zeits. f. physik. Chemie B11, 222 (1930).

8 This formula was originally derived by London. Cf.
reference 6, Eq. C(10).

9 L. Pauling and G. Y. Beach, Phys. Rev. 47, 686 (1935).



IMAGE AND VAN DER WAALS FORCES

V. VAN DER WaALs FORCE BETWEEN A MOLE-
CULE AND A METALLIC SURFACE

The method of Part III may be applied to the
calculation of the van der Waals interaction
between a molecule and a metallic surface. For
simplicity we assume that there is but one
electron in the molecule which contributes to the
interaction, and that the wave function of this
electron has spherical symmetry. It will later be
easy to see how the result should be modified for
the general case.

The origin of coordinates is taken at the center
of the molecule, with the z axis perpendicular to
the metallic surface, and D is the distance from
the molecule to the surface. The coordinates of
the electrons in the metal are again denoted by
Y1, Y2+ *yn, and those of the electron in the
molecule by x=(x, v, 2). The positive charges in
the metal are represented by a charge density
p+(¥"). The interaction potential, V, is then:

X yi Xy
Veer——e [“a i (50
i Y y'3

If it is assumed that the electron in the mole-
cule is in some fixed position, the energy may be

calculated by the image method.

w(x) = —e?/4D+¢?/(x*+y* 4 (3+2D)*)}
—e2/4(z+D)
= — (x4 424222 /16D3+-0(DY). (57)

To get the van der Waals energy, we must
average over all positions of the electron. Since
(@)= )= (2)n=3%(r")n, we find*®

Wa=—e(r2)a/12D3,

The error involved in the application of the
image method may be estimated in the same way
as was done in Part II. According to Eq. (17), it is

(72/2m) % | (grad V)uo|?/(Eo— Ey)?

= (h?/2m)(S:*/S2), (59)

where the matrix element is taken with respect to
the metallic wave functions, and the sum is over
all the stationary states of the metallic electrons.
The gradient is taken with respect to the coordi-
nates of the external electron. Since grad V is the

10 Cf, reference 2.

(58)
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same for the van der Waals case as it is for the
case of a free electron external to the metal, the
error involved is the same. According to Eq. (29)
it is

(h*/2m)(r,/2CD?), (60)

which, in many cases, may be as large or larger
than the energy (58). Thus the image method
cannot be used to calculate the van der Waals
energy unless (60) is small compared with (58).
The image method gives correct results in the
limit of high electron densities in the metal
(small 7).

A more exact expression for the energy may be
obtained by use of the method of Part III. We
have already obtained W4 ; we need further the
energy Wps. The electrons in the metal are
assumed to be in some fixed positions. These
give rise to an electric field outside of the surface.
The field vanishes only when averaged over all
positions of the electrons in the metal. To obtain
Ws, we compute the energy of the molecule in
this field, and then average the result over the
metallic wave function. '

Since the interaction potential (56) is linear in
the coordinates of the electron in the molecule, it
may be expressed in the form

V=x-grad V, (61)
with grad V independent of x:
yi y
grad V=e2Z———eﬁf——p+(y’)dr’. (62)
i i y'3

The change in the energy of the molecule due to
this perturbation potential is

ey, -+ o) =2 | (x-grad V)|?/ (Ee* — E;*). (63)

The sum is over all states of the molecule.
Replacing the energy denominator by a suitable
average, we have:

n - )=~ 5| (xograd V)l*/As
=— ()p grad V)e?/Aa
= —(grad V)%(r?)a/344 (64)

with Ay=(EA— Ey*)n. The last expression re-
sults from the assumption that the wave function
for the electron in its lowest state is spherically
symmetrical. The energy ¢ may also be expressed
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in terms of the polarizability of the molecule, a4.

(65)

The van der Waals energy Wp is obtained by
averaging e(y1, - - - yv) over the wave function for
the metal.

WB:f. . flp()*e(y]v e yN)lp()dTl' . ‘dTN
= — (r)aSe/3A4,

e(y1, *++ yn) = —aa(grad V)2/2¢.

(66)
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where S, is the same integral as that discussed in
Part II.

52=f. . -fx//o*(grad V)odr1 - ~dry.  (67)

This integral may be evaluated in a straight-
forward way. Substituting the expression for
grad V from Eq. (62), we find

(Y'Y yi'y y-y’
Semet [ [ 22w [T et [ [Ty oty et e (68)
Let i Yi%y8 i yy y'3y""3
e

p(l, 2) :f' ‘ ‘f‘l’o*lﬁodTa' . 'dT.’\'

(69)

be the probability density of a given electron at y; and another given electron at y,, and let

o(1)= f o(1, 2)dr,

(70)

be the probability density for electron (1). The density of electrons is Np(1). With this notation, we

may write (68) in the form:

2=34ny1_4p(1)d‘f1—64ffm.yz{N%(l)p(Z)—N(N—l)p(_l, 2)}dridr,

Y12y

The last term vanishes because it is proportional
to the square of the field strength due to the
metal at a point outside of the surface of the
metal.

In order to simplify the above, we may express
p(1, 2) in the form

p(1,2)=(N/(N—1))p(1)p(2)(1—g(1,2)). (72)

If there were no interaction between the electrons
o(1, 2) would be equal to the product p(1)p(2).
Due to their mutual repulsion,.the electrons will
tend to have a more or less uniform space charge.
Thus if an electron is known to be at y;, the
probability that another electron is close to y; is
small. There is a hole in the charge distribution
about a given electron which is of just sufficient
size to accommodate one electron. This hole is
represented by the function g(1, 2), which be-
comes small when the distance 1y;—y.1 is large.

2

+e4{ [ ;%(Np(l)—m(l))dn (1)

It is probable that g(1, 2) drops off exponentially
with the distance. The field produced by a given
electron is shielded by the neighboring electrons
in such a way that at large distances the field has
an exponential decrease. The factor (N/(N—1))
indicates that the probability of finding the
second electron at a large distance from the first
is slightly greater than would be expected from
the separate probability densities. If the proba-
bility of finding the second electron at close
distances from the first is less than normal, the
probability of finding it at large distances is
greater than normal.

If it is assumed that the electrons obey Fermi-
Dirac statistics, but are otherwise free, it is
found that p(1, 2) is of the form (72). The func-
tion g(1, 2) for this case has been evaluated by
Wigner and Seitz.!! At large distances of sepa-

1t E, Wigner and F. Seitz, Phys. Rev. 46, 509 (1934).
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F16. 1. Plot of the “hole” in the charge distribution

" about a given electron. (a) The exchange hole for electrons

of parallel spin. (b) Assumed curve, taking into account

the mutual repulsion of the electrons (after Slater, Rev.
Mod. Phys. 6, 209 (1934)).

ration it decreases inversely with the fourth
power of the distance between the electrons. For
the reasons given in the preceding paragraph, it
is probable that if the Coulomb repulsion be-
tween the electrons had been taken into account,
it would be found that the decrease is actually
exponential.
If we substitute (72) into (70), we find that

N f (g1, 2dm=1 (73)

for all y;.
After some simplification, the following ex-
pression is obtained for S,:

s f ()
¥ y?

Xp(1)p(2)g(1, 2)dridrs.

The equivalence of (74) and (71) follows from
(73) and the fact that g(1,2) is a symmetric
function of its variables.

The integral (74) will now be evaluated for a
model which should be approximately valid for
the monovalent metals. It is assumed that the
density of electrons is uniform, and that g(1, 2)
depends only on the distance 1y;—y.1. Since g(1,
2) is large only when 1y;—y,1 is small (of the
order of atomic dimensions) we may write

(74)

Yo yitn
RS ETE U IR

Jobn ‘i_3(n‘Y1)

¥ ¥

}, (75)
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in which n=y,—y;. Thus, to the order 72,

yi ¥ye

n® ?

) — (33 s (76)

The average value of 3(n-y1)? over all directions
of the vector n is #?y;%. By inserting the above
values into Eq. (74) we find
n?
So= 64N2p2f —Gg(n)dndf,,. (77)
Let!? .

Np [ rgta)dr,=Cr2, (78)
in which 7, is the radius of a sphere whose
volume is equal to the volume occupied per
electron (Np=3/4nr:®) and C is a dimensionless
constant of the order of magnitude unity.

In order to evaluate the integral (78), it is
necessary to make some assumption about the
function g(n), as no exact calculation of g(y)
which takes into account the mutual repulsion of
the electrons has been given. For the case of free
electrons obeying Fermi-Dirac statistics,

g(n)=(9/2)(sin £—£ cos £)?/£°, (79)

where
£=97/4)(n/rs) =1.929/7s.

A plot of this function is given in Fig. 1. If the
expression (79) is inserted into (78), it is found
that the integral diverges. The true function will
decrease much more rapidly for large 5 in such a
way as to insure convergence. A possible function
is shown schematically in Fig. 1. This function
decreases so rapidly that the contribution to the
integral for values of  greater than ~2.5 7, is
negligible. A numerical evaluation of the integral
using this function gives C=2.6. Actually, the
shape of the curve will depend on the density of
electrons and thus on 7, so that C will depend on
s, for ordinary electron densities, the order of
magnitude of C will probably not be far from the
value given above.

Making use of (78), we find that (77) reduces

to:
® ®© Tldfldzl
b [ [
b Vo (ni+=2?)3
12 In order that this integral converge, it is necessary

that g(n) decrease more rapidly than the inverse fourth
power of n when 7 is large.

dr, 3C
Se=Ce!Npr? | —=——-
¢ 4w,
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The integration is elementary, and gives

Se=Ce*/8r,D3. (80)
Returning to Eq. (66), we find that
WB = — (72)AvCe4/24rsAAD3
=—(Ce?/2r AA)Wa, (81)

where W, is the image value as given by (58).
For the case of a general molecule, (#?) should be
replaced by (R?)s as defined by Eq. (50). In
terms of the polarizability of the molecule, a4,
WB is

Wp= —Cae/16r,D>. (82)

WILLIAM FULLER BROWN,

JR.

The approximation (44) gives finally

W~WiWg/(Wa+Wp)
Ce?/2r,A4

— —(2(™)n/12D% — L
(") 12D7) 14Ce/27 A4

(83)

W will be smaller than the image value if A4 is
large or if 7, is large.

For ordinary electron densities in the metal,
and with A4 equal to about one Rydberg unit
(13.5 ev), the factor Ce?/2r,A4 is about unity, so
that W is about one-half of the image value Wjy. .
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The standard theoretical treatment of magnetization
at high fields leads to a formula J=J,—b/H?; experi-
mentally, a term —a/H is also found. In the standard
treatment it is assumed that the internal forces responsible
for the incompleteness of saturation are approximately
uniform over distances containing a very large number of
atoms. If these forces vary rapidly over shorter distances,
the interatomic coupling forces prevent the direction of
microscopic magnetization from varying with equal
rapidity, and the 1/H? law no longer follows. It is shown

§1. INTRODUCTION

T fields much larger than the coercive force,

a ferromagnetic material behaves almost
reversibly. The theoretical calculation of this
part of the magnetization curve is therefore
comparatively simple. The conventional treat-
ment leads, at sufficiently high fields, to a
formula!

J=J.—b/H?, 1

where H is the magnetic field, J is the mag-
netization, J,is the ‘‘spontaneous’’ magnetization
predicted by the Weiss-Heisenberg theory at the
temperature in question, and b is a constant. In

LF. Bitter, Introduction to Ferromagnetism (McGraw-
Hill, 1937), p. 222.

here that for H>>4rJ,, point, line, and plane concentrations
of force lead to laws. of the form J=J,—a/H"?, with
n=1, 2, and 3, respectively. For HK4rJ, the law is of
the same form, but with different apparent values of J,
and a. For H=4rJ, the behavior is more complicated.
The conclusion that the observed a/H term is due to line
concentrations of force is supported by the dependence of
a on degree of plastic strain, since the mechanism of
plastic flow is believed to be a propagation of dislocation
lines through the lattice.

deriving this formula it is assumed that the
material is magnetized to a value J, at each point
but that the direction of the magnetization varies
from one region to another. This is illustrated
very crudely in the upper part of Fig. 1. A soft
specimen is assumed to consist of unstrained
crystals, a hard specimen of regions each under
approximately uniform internal stress. Forces
due to crystalline anisotropy or to the distortion
of the lattice tend to pull the magnetization
vector into certain directions, represented by the
dotted arrows; these directions are related to the
principal axes of the crystal or of the system
of internal stresses. As the field is increased, it
overcomes these forces and pulls the magnetiza-
tion vector toward the field direction.



