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In the following paper we conclude for the relativistically invariant wave equation for free
particles: From postulate (I), according to which the energy must be positive, the necessity
of Fermi-Dirac statistics for particles with arbitrary half-integral spin; from postulate (II),
according to which observables on different space-time points with a space-like distance are
commutable, the necessity of Einstein-Bose statistics for particles with arbitrary integral spin.
It has been found useful to djvide the quantities which are irreducible against Lorentz trans-
formations into four symmetry classes which have a commutable multiplication like +1, —1,
+e, —e with c =1.

$1. UNITS AND NOTATIONS

INCE the requirements of the relativity
theory and the quantum theory are funda-

mental for every theory, it is natural to use as
units the vacuum velocity of light c, and Planck's
constant divided by 2x which we shall simply
denote by k. This convention means that all
quantities are brought to the dimension of the
power of a length by multiplication with powers
of 5 and c. The reciprocal length corresponding
to the rest mass m is denoted by a =me/k.

As time coordinate we use accordingly the
length of the light path. In specific cases, how-

ever, we do not wish to give up the use of
the imaginary time coordinate. Accordingly, a
tensor index denoted by small Latin letters i,
refers to the imaginary time coordinate and
runs from 1 to 4. A special convention for de-
noting the complex conjugate seems desirable.
Whereas for quantities with the index 0 an
asterisk signifies the complex-conjugate in the
ordinary sense (e.g. , for the current vector S; the
quantity So* is the complex conjugate of the
charge density Sp), in general LT";p. . signifies:.
the complex-conjugate of U;&... multiplied with

(—1)",where e is the number of occurrences of

the digit 4 among the i, k, (e.g. S4=iSp,
S4*——iS(&*).

Dirac's spinors u„with p = 1, , 4 have always
a Greek index running from 1 to 4, and I,*
means the complex-conjugate of I, in the ordi-
nary sense.

Wave functions, insofar as they are ordinary
vectors or tensors, are denoted in general with
capital letters, U;, U;I,.... The symmetry char-
acter of these tensors must in general be added
explicitly. As classical fields the electromagnetic
and the gravitational fields, as well as fields with
rest mass zero, take a special place, and are
therefore denoted with the usual letters
f;p = fq„, an—d g;.p = gp;, respectively.

The energy-momentum tensor T;& is so de-
fined, that the energy-density F and the mo-
mentum density G& are given in natural units by
W'= —T44 and GI, = —iT~4 with k = 1, 2, 3.

f2. IRREDUCIBLE TENSORS. DEFINITION OF SPINS

We shall use only a few general properties of
those quantities which transform according to
irreducible representations of the Lorentz group. '
The proper Lorentz group is that continuous
linear group the transformations of which leave
the form

~ This paper is part of a report which was prepared by the
author for the Solvay Congress 1939 and in which slight
improvements have since been made. In view of the
unfavorable times, the Congress did not take place, and
the publication of the reports has been postponed for an
indefinite length of time. The relation between the present
discussion of the connection between spin and statistics,
and the somewhat less general one of Belinfante, based on
the concept of charge invariance, has been cleared up b
%'. Pauli and F, J, Belinfante, Physica 7', 177 (1940).

Q ppp' ——x' —xp'
k=1

invariant and in addition to that satisfy the
condition that they have the determinant +1

y ' See B. L. v. d. Waerden, Die gruppentheoretische
Methode in der Quantentheorie (Berlin, 1932).
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and do not reverse the time. A tensor or spinor
which transforms irreducibly under this group
can be characterized by two integral positive
numbers (p, g). (The corresponding "angular
momentum quantum numbers" (j, k) are then
given by P=2j+1, q=2k+i, with integral or
half-integral j and k.)* The quantity U(j, k)
characterized by (j, k) has P q= (2j+1)(2k+1)
independent components. Hence to (0, 0) corre-
sponds the scalar, to (-'„-',) the vector, to (1, 0)
the self-dual skew-symmetrical tensor, to (1, 1)
the symmetrical tensor with vanishing spur, etc.
Dirac's spinor u, reduces to two irreducible
quantities (-„0) and (0, -', ) ea.ch of which con-
sists of two components. If U(j, k) transforms
according to the representation

(2j+1)(2k+1)

A„U„
s=l

then U*(k, j) transforms according to the com-
plex-conjugate representation h.*.Thus for k =j,
A*=A. This is true only if the components of
U(j, k) and U(k, j) are suitably ordered. For an
arbitrary choice of the components, a similarity
transformation of A and A* would have to be
added. In view of )1 we represent generally with
U* the quantity the transformation of which is
equivalent to A* if the transformation of U is
equivalent to A..

The most important operation is the reduction
of the product of two quantities

Up(jp, kg) U2(j2, km)

which, according to the well-known rule of the
composition of angular momenta, decompose into
several U(j, k) where, independently of each
other j, k run through the values

~=~~+i 2 i ~+i2 1.
Ij~ —j2l-

k=kg+k2, kg+km —1 ' ' '~ Ik~

By limiting the transformations to the sub-
group of space rotations alone, the distinction
between the two numbers j and k disappears and
U(j, k) behaves under this group just like the
product of two irreducible quantities U(j) U(k)
which in turn reduces into several irreducible

U(l) each having 2l+1 components, with

I=i+k j+k 1,—"
Under the space rotations the U(l) with

integral / transform according to single-valued
representation, whereas those with half-integral
l transform according to double-valued repre-
sentations. Thus the unreduced quantities T(j, k)
with integral (half-integral) j+k are single-
valued (double-valued).

If we now want to determine the spin value of
the particles which belong to a given fieJd it
seems at first that these are given by /=j+k.
Such a definition would, however, not corre-
spond to the physical facts, for there then exists
no relation of the spin value with the number of
independent plane waves, which are possible in
the absence of interaction) for given values of the
components k; in the phase factor exp i(kx). In
order to define the spin in an appropriate
fashion, ' we want to consider first the case in
which the rest mass m of all the particles is
different from zero. In this case we make a
transformation to the rest system of the particle,
where all the space components of k; are zero,
and the wave function depends only on the time.
In this system we reduce the field components,
which according to the field equations do not
necessarily vanish, into parts irreducible against
space rotations. To each such part, with r =2s+ i
components, belong r diAerent eigenfunctions
which under space rotations transform among
themselves and which belong to a particle with
spin s. If the field equations describe particles
with only one spin value there then exists in the
rest system only one such irreducible group of
components. From the Lorentz invariance, it
follows, for an arbitrary system of reference, that
r or Pr eigenfunctions always belong to a given
arbitrary k;. The number of quantities U(j, k)
which enter the theory is, -however, in a general
coordinate system more complicated, since these
quantities together with the vector k; have to
satisfy several conditions.

In the case of zero rest mass there is a special
degeneracy because, as has been shown by Fierz,
this case permits a ga.uge transformation of the

* In the spinor calculus this is a spinor with 2j undotted
and 2k dotted indices.

'See M. Fierz, Helv. Phys. Acta 12, 3 (1939); also
L. de Broglie, Comptes rendus 208, 1697 (1939); 209,
265 (1939).
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second kind. * If the field now describes only one
kind of particle with the rest mass zero and a
certain spin value, then there are for a given
value of k; only two states, which cannot be
transformed into each other by a gauge trans-
formation. The definition of spin may, in this
case, not be determined so far as the physical
point of view is concerned because the total
angular momentum of the field cannot be divided
up into orbital and spin angular momentum by
measurements. But it is possible to use the
following property for a definition of the spin.
If we consider, in the q number theory, states
where only one particle is present, then not all
the eigenvalues j(j+1) of the square of the
angular momentum are possible. But j begins
with a certain minimum value s and takes then
the values s, s+1, 4 This is only the case
for m =0. For photons, s = 1;j= 0 is not possible
for one single photon. ' For gravitational quanta
s = 2 and the values j=0 and j= 1 do not occur.

In an arbitrary system of reference and for
arbitrary rest masses, the quantities U all of
which transform according to double-valued
(single-valued) representations with half-integral
(integral) j+k describe only particles with half-
integral (integral) spin. A special investigation is
required only when it is necessary to decide
whether the theory describes particles with one
single spin value or with several spin values.

f3. PROOF OF THE INDEFINITE CHARACTER Ol

THE CHARGE IN CAsE QF INTEGRAL AND

OF THE ENERGY IN CASE OF

HALF-INTEGRAI. SPIN

We consider first a theory which contains only
U with integral j+k, i.e. , which describes par-
ticles with integral spins only. It is not assumed
that only particles with one single spin value
will be described, but all particles shall have
integral spin.

*By "gauge-transformation of the first kind" we under-
stand a transformation U~Ue' U*~U*e ' with an
arbitrary space and time function n. By "gauge-transforrna-
tion of the second kind" we understand a transformation
of the type

1 .BA
Pk~gk -i

BxJg

as for those of the electromagnetic potentials.
~ The general proof for this has been given by M. Fierz,

Helv. Phys. Acta 13, 45 (1940).
'See for instance W. Pauli in the article "Wellen-

mechanik" in the Handbuck cIer Physik, Vol. 24/2, p. 260.

We divide the quantities U into two classes:
(1) the "+1 class" with j integral, k integral;
(2) the "—1 class" with j half-integral, k half-
integral.

The notation is justified because, according to
the indicated rules about the reduction of a
product into the irreducible constituents under
the Lorentz group, the product of two quantities
of the +1 class or two quantities of the —1

class contains only quantities of the +1 class,
whereas the product of a quantity of the +1
class with a quantity of the —1 class contains
only quantities of the —1 class. It is important
that the complex conjugate U* for which j and k

are interchanged belong to the same class as U.
As can be seen easily from the multiplication rule,
tensors with even (odd) number of indices reduce
only to quantities of the +1 class (—1 class).
The propagation vector k; we consider as be-
longing to the —1 class, since it behaves after
multiplication with other quantities like a quan-
tity of the —1 class.

We consider now a homogeneous and linear
equation in the quantities U which, however,
does not necessarily have to be of the first order.
Assuming a plane wave, we may put k~ for

i8/Bx—& Solel.y on account of the invariance
against the proper Lorentz group it must be of
the typical form

P k U+ = P U-, Pk U- = P U+. (1)

This typical form shall mean that there may be
as many different terms of the same type present,
as there are quantities U+ and U . Furthermore,
among the U+ may occur the U+ as well as the
(U+)*, whereas other U may satisfy reality con-
ditions U= U*. Finally we have omitted an even

number of k factors. These may be present in

arbitrary number in the term of the sum on the
left- or right-hand side of these equations. It is
now evident that these .equations remain in-
variant under the substitution

k;—& —k, ; U+—+U+, [(U+)*~(U+)*];
((U )* —( U )'j (2)

Let us consider now tensors T of even rank
(scalars, skew-symmetrical or symmetrical ten-
sors of the 2nd rank, etc.), which are composed
quadratically or bilinearly of the U's. They are
then composed solely of quantities with even j
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and even k and thus are of the typical form

T-gU+U++QU U +-Q-U+kU , -(3)

where again a possible even number of k factors
is omitted and no distinction between U and U*
is made. Under the substitution (2) they remain
unchanged, T~T.

The situation is different for tensors of odd
rank S (vectors, etc.) which consist of quantities
with half-integral j and half-integral k. These are
of the typical form

S-Q U+k U++ Q U k U +Q U (4)

and hence change the sign under the substitution
(2), S~—S. Particularly is this the case for the
current vector s;. To the transformation k;—+—k;
belongs for arbitrary wave packets the trans-
formation x;—+ —x; and it is remarkable that
from the invariance of Eq. (1) against the
proper Lorentz group alone there follows an
invariance property for the change of sign of all
the coordinates. In particular, the indefinite
character of the current density and the total
charge for ven spin follows, since to every
solution of the field equations belongs another
solution for which the components of s~ change
their sign. The definition of a definite particle
density for even spin which transforms like the
4-component of a vector is therefore impossible.

We now proceed to a discussion of the some-
what less simple case of half-integral spins.
Here we divide the quantities U, which have
half-integral j+k, in the following fashion: (3)
the "+e class" with j integral k half-integral,
(4) the "—e cia,ss" with j half-integral k integral.

The multiplication of the classes (1), , (4),
follows from the rule e'=1 and the commuta-
bility of the multiplication. This law remains
unchanged if e is replaced by —e.

We can summarize the multiplication law
between the different classes in the following
multiplication table:

+1
—1

+E
—1

+1
We notice that these classes have the multipli-

cation law of Klein's "four-group. "
It is important that here the complex-conju-

gate quantities for which j and k are interchanged
do not belong to the same class, so that

U+', (U ')* belong to the +e class
U-', (U+')* —e class.

We shall therefore cite the complex-conjugate
quantities explicitly. (One could even choose the
U+' suitably so that all quantities of the —e

class are of the form (U+')*.)
Instead of (1) we obtain now as typical form

PkU+ yak(U «)"=/-U «yP(U+-)*
ZkU '+2k(U+')*=ZU"'+Z(U ')* (g3

since a factor k or —i8/Bx always changes the
expression from one of the classes + e or —e into
the other. As above, an even number of k factors
have been omitted.

Now we consider instead of (2) the substitution

U ~ iU+ (U )*~i-(U- )*;
(U+«)8~ i(U+«)8 . U—«~ iU—«

This is in accord with the algebraic requirement
of the passing over to the complex conjugate, as
well as with the requirement that quantities of
the same class as U+', (U ')* transform in the
same way. Furthermore, it does not interfere
with possible reality conditions of the type
U+'=(U ')* or U—'=(U+')". Equations (5) re-
main unchanged under the substitution (6).

We consider again tensors of even rank
(scalars, tensors of 2nd rank, etc.), which are
composed bilinearly or quadratically of the U
and their complex-conjugate. For reasons similar
to the above they must be of the form

2'~P U+«U+«yP Lr «U «yP U+«k U—«—yP—U'+'(U —«)*/AU «(U+«)*/P(U ')*k U —«—
+Z(U+')*kU'+Z(U ')*k(U')'+Z(U ')'(U ')*+K(U')*(U')* (&)

Furthermore, the tensors of odd rank (vectors, etc )must be. of the form

S~P U+'kU+'yP U 'kU —'/AU+'Lr 'y—P U+'k(U —'—)*/AU —'k(U+')*/AU —«(U—«)*

/AU+«(U+«)*yg(U —')*k(U—«)*yP(U+')*k(U+«)*4-P(U —«)*(U+«)* (8)
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The result of the substitution (6) is now the

opposite of the result of the substitut~on (g): the

tensors of coen rank change their sign, the tensors

of odd rank remain unchanged:

T~—T S~+S. (9)

(4. QUANTIZATION OF THE FIELDS IN THE AB-

SENCE OF INTERACTIONS. CONNECTION

BETwEEN SPIN AND STATIsTIcs

The impossibility of defining in a physically
satisfactory way the particle density in the case
of integral spin and the energy density in the
case of half-integral spins in the c-number theory

* But we exclude operations like (k'+~') &, which operate
at finite distances in the coordinate space.' M. Fierz, Helv. Phys. Acta 12, 3 (1939).

In case of half-integral spin, therefore, a
positive definite energy density, as well as a
positive definite total energy, is impossible. The
latter follows from the fact, that, under the above
substitution, the energy density in every space-
time point changes its sign as a result of which
the total energy changes also its sign.

It may be emphasized that it was not only
unnecessary to assume that the wave equation
is of the first order, *but also that the question is
left open whether the theory is also invariant
with respect to space refiections (x'= —x, xp' ——xp).
This scheme covers therefore also Dirac's two
component wave equations. (with rest mass zero).

These considerations do not prove that for
integral spins there always exists a definite
energy density and for half-integral spins a
definite charge density. In fact, it has been shown

by Fierz' that this is not the case for spin &1
for the densities. There exists, however (in the
c number theory), a definite total charge for half-

integral spins and a definite total energy for the
integral spins. The spin -value —, is discriminated
through the possibility of a definite charge
density, and the spin values 0 and 1 are dis-
criminated through the possibility of defining a
definite energy density. Nevertheless, the present
theory permits arbitrary values of the spin
quantum numbers of elementary particles as well

as arbitrary values of the rest mass, the electric
charge, and the magnetic moments of the
particles.

U'"' —x'U'"'=0

where

4 Q2

=—E
k=1 ggA,

a2

BXp

and x is the rest mass of the particles in units h/c.
An important tool for the second quantization

is the invariant D function, which satisfies the
wave equation (9) and is given in a periodicity
volume V of the eigenfunctions by

1 sin kpx'p

D(x, xp) =—Q exp [i(kx)]
U kp

(10)

or in the limit U~ao

1 sin kpxp
D(x, xp) = —

~

d'k exp t-i(kx)g—. (11)
(2m-)'~ kp

~ The author therefore considers as not conclusive the
original argument of Dirac, according to which the field
equation must be of the first order.

7 On account of the existence of such conditions the
canonical formalism is not applicable for spin &1 and
therefore the discussion about the connection between
spin and statistics by J. S. de Wet, Phys. Rev. 5'7, 646
(1940), which is based on that formalism is not general
enough.

The consistent development of this method leads to
the "many-time formalism" of Dirac, which has been
given by P. A. M. Dirac, Quantum Mechanics (Oxford,
second edition, 1935).

is an indication that a satisfactory interpretation
of the theory within the limits of the one-body
problem is not possible. * In fact, all relativisti--
cally invariant theories lead to particles, which
in external fields can be emitted and absorbed in

pairs of opposite charge for electrical particles
and singly for neutral particles. The fields must,
therefore, undergo a second quantization. For
this we do not wish to apply here the canonical
formalism, in which time is unnecessarily sharply
distinguished from space, and which is only
suitable if there are no supplementary conditions
between the canonical variables. ~ Instead, we
shall apply here a generalization of this method
which was applied for the first time by Jordan
and Pauli to the electromagnetic field. This
method is especially convenient in the absence
of interaction, where all fields U&"' satisfy the
wave equation of the second order
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By ko we understand the positive root

kp=+(k'+«')'*. (12)

The D function is uniquely determined by the
conditions:

D e'D—=0; D(x, 0) =0;

$ BD) = b(x) (»)
E Bxp) p=0

For ~=0 we have simply

D(x, xp) = {8(r—xp) —b(r+xp) I /4~r. (14)

This expression also determines the singularity
of D(x, xp) on the light cone for «QO. But in
the latter case D is no longer different from zero
in the inner part of the cone. One finds for this
region'

with

1 a
D(x, xp) = — F(r, xp)—

47fr Br

The jump from + to —of the function F on
the light cone corresponds to the 8 singularity of
D on this cone. For the following it will be of
decisive importance that D vanish in the exterior
of the cone (i.e., for r) xp) r)—

The form of the factor d'k/kp is determined by
the fact that d'k/kp is invariant on the hyper-
boloid (k) of the four-dimensional momentum
space (k, kp). It is for this reason that, apart
from D, there exists just one more function
which is invariant and which satisfies the wave
equation (9), namely,

1 f cos kpxo
Di(x, xp) = d'k exp [i(kx)] . (16)

(2m)' & kp

For f~:=0 one finds

1 1
Di(x, xp) =

2X F Xo
(17)

'See P. A. M. Dirac, Proc. Camb. Phil. Soc. 30, 150
(1934).

Jp[«(xp' r')t] for xp)—r
F(r, xp)= 0 for r&xp& r(15)—

.—Jp[&(xp' —r')l] for —r)xp.

In general it follows

1 1 8
Di(x, xp) =—— F—i(r, xp)

4m. r Br

Np[e(xp' —r') '*]

Fl(r, xp) = ( —imp'" [iK(r' —xp') 1]
Xp[1~(xp' —r') ']

for xo)r
for r)xo) —r
for —r &xo.

*For the canonical quantization formalism this postulate
is satisfied implicitly. But this postulate is much more
general than the canonical formalism.' See W. Pauli, Ann. de 1'Inst. H. Poincare 0, 137 (1936),
esp. f3.

Here No stands for Neumann's function and
Ho&" for the first Hankel cylinder function. The
strongest singularity of D, on the surface of the
light cone is in general determined by (17).

We shall, however, expressively postulate in
the following that all pkysica/ quantities at finite
distances exterior to the tigkt cone (for ~xp xp(

~

x' —x"
~ ) are commutable *It follo. ws from this

that the bracket expressions of all quantities
which satisfy the force-free wave equation (9)
can be expressed by the function D and (a finite
number) of derivatives of it without using the
function DI. This is also true for brackets with
the + sign, since otherwise it would follow that
gauge invariant quantities, which are constructed
bilinearly from the U'"), as for example the
charge density, are noncommutable in two points
with a space-like distance. "

The justification for our postulate lies in the
fact that measurements at two space points with
a space-like distance can never disturb each
other, since no signals can be transmitted with
velocities greater than that of light. Theories
which would make use of the D~ function in
their quantization would be very much different
from the known theories in their consequences.

At once we are able to draw further conclusions
about the number of derivatives of D function
which can occur in the bracket expressions, if we
take into account the invariance of the theories
under the transformation s of the restricted
Lorentz group and if we use the results of the
preceding section on the class division of the
tensors. We assume the quantities U&") to be
ordered in such a way that each field component
is composed only of quantities of the same class.
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We consider especially the bracket expression of
a field component .

U'"' with its own complex

conjugate

[U&"&(x', x&&'), U*&"&(x",xo")].

We distinguish now the two cases of half-in-

tegral and integral spin. In the former case this
expression transforms according to (8) under

Lorentz transformations as a tensor of odd rank.
In the second case, however, it transforms as a
tensor of even rank. Hence we have for half-

integral spin

[U'"'(x', xo'), U~&"&(x", x,")]
= odd number of derivatives of the function

D(x' —x", xp' —xp") (19a)

and similarly for integral spin

[U&"&(x', x&&'), U*&'(x", x&&")]

=even number of derivatives of the function
D(x' —x", xo' —xo ). (19b)

This must be understood in such a way that on

the right-hand side there may occur a compli-

cated sum of expressions of the type indicated.
We consider now the following expression, which

is symmetrical in the two points

X—= [U&"&(x', xo'), U*&"&(x",xo")]
+[U'"'(x", xo"), U*&"'(x', x,') j. (20)

Since the D function is even in the space coordi-

nates odd in the time coordinate, which can be
seen at once from Eqs. (11) or (15), it follows

from the symmetry of X that X=even number

of space-like times odd numbers of time-like

derivatives of D(x' —x, xp xp '). This is fully

consistent with the postulate (19a) for half-

integral spin, but in contradiction with (19b) for

integral spin unless X vanishes. We have there-
fore the result for integral spin

[U&"&(x', xo'), U*&"&(x",xo")]
+[U&"& (x", x&&"), U*& "& (x', x&&') j= 0. (21)

So far we have not distinguished between the
two cases of Bose statistics and the exclusion

principle. In the former case, one has the ordi-

nary bracket with the —sign, in the latter case,

according to Jordan and Wigner, the bracket

[A, 8]~=AB+BA

with the + sign. By inserting the brackets with the

+ signinto (ZO) we have an algebraic contradiction,
since the left-hand side is essentially positive for
x'=x" and cannot vanish unless both U'"~ and
U*("' vanish. *

Hence we come to the result: For integral spin
the &tuarttieation according to the exclusion principle
is not possible. For this result it is essential, that

the use of the D& function in pface of the D function
be, for general reasons, discarded.

On the other hand, it is formally possible to
quantize the theory for half-integral spins accord-
ing to Einstein-Bose-statistics, but according to

the general result of the precedirtg section the energy

of the system mould not be positive Sin.ce for
physical reasons it is necessary to postulate this,
we must apply the exclusion principle in con-
nection with Dirac's hole theory.

For the positive proof that a theory with a
positive total energy is possible by quantization
according to Bose-statistics (exclusion principle)
for integral (half-integral) spins, we must refer
to the already mentioned paper by Fierz. In
another paper by Fierz and Pauli" the case of an

external electromagnetic field and also the con-
nection between the special case of spin 2 and
the gravitational theory of Einstein has been
discussed.

In conclusion we wish to state, that according
to our opinion the connection between spin and
statistics is one of the most important applica-
tions of the special relativity theory.

* This contradiction may be seen also by resolving U(")
into eigenvibrations according to
U*(")(x,xo) = V & 5 {U *(k) e p $i {—(kx)+koxo}]

+U (k) exp (i {(kx)—kpxp}]}
U(")(x, xp) = V & Zh{ U (k) exp {z{(kx)—koxo}]

+ U *(k) exp Lz {—(kx) +kpÃp }]}.
The equation (21) leads then, among others, to the relation

LU *(k), U (k)]+LU (k), U *(k)]=0,
a relation, which is not possible for brackets with the +
sign unless U~(k) and U~~(k) vanish.

11 M. Fierz and W. Pauli, Proc. Roy. Soc. A1'T3, 211
(1939).


