Zeeman Effects in the Arc Spectrum of Ruthenium

GEORGE R. HARRISON AND J. RAND MCNALLY, JR.

George Eastman Research Laboratories of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received August 16, 1940)

Measurements on resolved Zeeman patterns of 450 lines of normal ruthenium are reported. Five exposures to each polarized component of the light from a 4-ampere arc, operated in magnetic fields of intensity between 71,000 and 92,200 gauss, resulted in 85 plates which were measured on an automatic comparator. J and g values have been determined from the various patterns. When data from the various lines arising from a given term are averaged, g values for 140 terms are obtained which appear to be correct to within ± 0.003 unit. The results obtained have been used to further the classification of Ru I, and to aid in the assignment of L and S values to highly perturbed terms. Though g values frequently depart strongly from values calculated for LS coupling, it is usually possible to assign meaningful L and Sdesignations. Asymmetrical patterns in lines arising from the terms $y^{5}D_{2^{0}}$ and $y^{5}D_{4^{0}}$ are discussed.

HE spectrum of the normal ruthenium atom (Ru I), has been partially analyzed by Sommer,¹ who classified about 1000 lines as combinations of 113 terms, of which he determined g values for 63. Meggers and Laporte² had previously arranged a number of Ru underwater-spark absorption lines in multiplets, and Paulson³ had listed constant differences in the spectrum. Between the appearance of Sommer's two papers, Meggers and Laporte⁴ classified a number of lines into 18 multiplets involving 20 terms, and published Zeeman separations for 9 lines (unresolved triplets).

The M.I.T. Wavelength Tables⁵ list 2824 strong ruthenium lines, while more than 8000 lines have been assigned definitely, and several thousand more tentatively, to the ruthenium spectrum in the card catalog compiled by the M.I.T.-W.P.A. wave-length project. McFee⁶ has extended Sommer's classification of Ru I, and the wavelength data are in excellent condition for a further extension of the classification, which is now in progress.7 Improved Zeeman determinations were found to be greatly needed to aid in the assignment of term designations, however.

The strongest field intensity previously used to study Ru I was 35,000 gauss (Sommer), and the availability of fields approaching 100,000 gauss⁸ made possible increased magnetic resolution.

In the present paper Zeeman data are given for 450 classified lines of Ru I, with g values for 140 terms which appear to have about tenfold greater internal consistency than g values previously published for Ru I. These data are of value to further the assignment of L and S values to highly-perturbed terms, to test and use the Pauli g group sum rule, and to throw further light on the perturbations existing in the normal ruthenium atom.

EXPERIMENTAL METHOD

To produce electrodes which could be burned in the horizontal arc,8 one part of ruthenium metal powder was mixed with five parts of silver powder, and compressed at 20,000 lb. per square inch to form billets of $\frac{1}{8}$ inch thickness, which were then sintered and turned to round rods. Light from the arc, taken transversely to the

TABLE I. Characteristics of grating spectrographs used.

Grat- ing	LINES PER IN.	RANGE OF SPECTRUM	Order USED	DISPER- SION	No. of plates
F	30,000	3190-4400A	1	0.8A/mm	3
	,	2200-3045	2	0.4	4
G	30.000	2085-4400	1	0.8	6
H	15.000	3335-11.400	1	1.6	10
	,	4103-5700	2	0.8	

⁸ G. R. Harrison and F. Bitter, Phys. Rev. 57, 15 (1940).

¹L. A. Sommer, Zeits. f. Physik 37, 1 (1926); Naturwiss. **13**, 840 (1925). ² W. F. Meggers and Otto Laporte, Science **61**, 635

⁽¹⁹²⁵⁾ ³ E. Paulson, Physik. Zeits. 16, 81 (1915).

⁴ W. F. Meggers and Otto Laporte, J. Wash. Acad. Sci. **16**, 143 (1926).

⁶ John Wiley and Sons, New York, 1939. ⁶ R. H. McFee, unpublished M.Sc. thesis, M.I.T. (1938).

⁷ J. R. McNally, Jr., M.I.T. thesis in preparation.

TABLE II. Some typical Zeeman patterns in the arc spectrum of ruthenium.

λ	I	CLASS.	ZEEMAN PATTERN
5636.235	100	$a^5D_3 - z^5D_4^0$	(0, 0.064, 0.124, -) -, -
4547.853	20	$h^{3}P_{1} - x^{5}F_{2}^{0}$	(0, 0.374) 0.691, 1.063, —,
4517.818	60	$a^5D_2 - z^5S_2^0$	(-, 1.596) 0.432, 1.233, -
4460.035	150	$a^{5}P_{3} - z^{5}S_{2}^{0}$	(0, 0.408, 0.816) 0.807, 1.214
4449.336	125	$a^5D_3 - y^5F_{3^0}$	(-, 0.430, 0.645) 0.769, 0.987
4390.435	150R	$a^5D_3 - z^3G_{4^0}$	(0, 0.303, 0.605, 0.907) 0.206 0.508, 0.811, 1.115, 1.418, 1.720
4385.648	125	$a^5D_2 - z^3G_3^0$	(0, 0.364, 0.722) 0.144, 0.505,
4361.211	40	$a^{3}F_{4} - y^{5}F_{5}^{0}$	(0, 0.194, 0.387, 0.578, 0.773)
			,, 1.091, 1.280, 1.473, 1.665, 1.858, 2.052, 2.243,
4217.268	100	$a^{3}F_{4} - z^{7}P_{4}^{0}$	(0.374, 0.749, 1.122, 1.496) 0.841, 1.215, 1.588, 1.963, 2.335, 2.716
4206.016	100	$a^{3}F_{3} - z^{3}G_{3}^{0}$	(0.327, 0.653, 0.980) 0.208, 0.541, 0.868, 1.195, 1.521, 1.847
4127.868	25	$b^{3}P_{1} - x^{5}D_{1}^{0}$	(0,129) 1,439, 1,568.
4085.429	40	$a^5P_1 - y^5D_1^0$	(0.458) 1.522, 1.978.
4076.733	60	$a^5D_2 - z^3D_1^0$	(0, 0.715) 0.520, 1.233, 1.943.
4052.988	12	$b^{3}P_{1} - 41_{1}^{0}$	(0.129) 1.440, 1.563.
3984.858	60	$a^{3}F_{3} - z^{3}D_{2}^{0}$	(0, 0.174, 0.348) 0.850, 1.023, 1.196, 1.360, 1.541
3964.896	50	$a^5F_5 - z^7D_5^0$	(0.198, 0.393, 0.588, 0.785, 0.982) 0.611, 0.808, 1.002, 1.201, 1.396
3042 063	12	$abE_{1} = abD_{0}$	$(0 \ 1 \ 310) \ 0 \ 1 \ 326 \ 2 \ 641$
3031 750	50	$a^5P_1 - a^5P_2$	(0, 1.519)(0, 1.520, 2.041)
3925.925	60	$a^{5}F_{5} - z^{7}D_{4}^{0}$	(0, 0.228, 0.457, 0.685, 0.913)
			0.485, 0.712, 0.939, 1.168, 1.395, 1.622, 1.849, 2.075, 2.304.
3920.915	20	$a^5D_3 - z^5P_{3^0}$	(0.231, 0.457, 0.687) 0.961, 1.190, 1.417, 1.645, 1.874, 2.102
3867.839	60	$a^{3}F_{4} - z^{3}D_{3}^{0}$	(0, 0.154, 0.307, 0.458) 0.828, 0.978, 1.129, 1.282, 1.434, 1.587, 1.738.
3846.676	12	$a^5D_2 - z^5P_1^0$	(0, 1.152) 0.074, 1.233, 2.380.
3843.159	10	$a^5F_1 - z^5D_1^0$	(0.943) 0, 0.943.
3831.795	60	$a^3G_5 - b40_5^0$	(0.148, 0.288, 0.431, 0.573, 0.714) 0.476, 0.616, 0.756, 0.903, 1.048
			1.188, 1.331, 1.472, 1.615, 1.756

magnetic field, was reflected axially out of the 10,000-ampere solenoid by an aluminum firstsurface mirror, and was sent through a 50-mm diameter Rochon prism formed of two quartz prisms suitably cut, separated by a thin film of castor oil. One plane-polarized beam was then focused, by means of a 45-mm quartz-fluorite achromatic lens of 500 mm focus, on the slit of grating G (Table I). Light which did not pass through this slit was caught on a small plane mirror and returned to a concave mirror which sent it through the slit of grating F. The beam of opposite polarization was sent, by means of a single aluminized mirror, through the slit of grating H.

Exposures of from 20 to 60 minutes duration served to produce satisfactory spectrograms with all three gratings; the Rochon prism was then inverted, and the spectrum was photographed again with all three gratings. A field-free exposure was finally taken. In this way π , σ , and no-field

exposures were obtained on 23 plates, each 20 inches long, in three hours of operation of the magnet. Eastman type I-O plates were used between 4200 and 2500A, with type I plates of suitable sensitization for the shorter and longer regions.

The data reported in the various tables were obtained from four sets of exposures, as follows:

Set Number	Field				
Z-33a	92,200 gauss				
Z-33b	71,260				
Z-49	88,350				
Z-74, π on F, G; σ on H	88,040				
Z-74, σ on F, G; π on H	89,310				

The field intensities were calculated from the two silver lines 3280.683 and 3382.891A, and are believed to be correct to within ± 0.3 percent. The calcium lines 3933.666, 3968.468, and the copper lines 3247.540, 3273.962, were used as additional checks on the field intensities. The current through the solenoid was held constant to within 0.1 percent during an exposure.

All spectra were measured in both directions with an automatic comparator,⁹ provided with a new all-electric maximum-picker,¹⁰ which functioned most satisfactorily. Patterns for many lines were measured twice at each of three fields, and the final g values reduced from these data were usually found consistent to within ± 0.003 unit.

RESULTS

In complex spectra of metals of the type under discussion, and especially at the strong fields used, the technique of reduction is of necessity somewhat different from that used with sharp and narrow patterns of the sort obtained with gaseous discharges, for example. The patterns often overlap and show blends, so that interpretation may be difficult and some components may appear to be shifted in position. The usual criterion of precision which demands equal separations between components (for symmetrical patterns) is less likely to be fulfilled, and the correct g values can best be determined by using only the most clearly resolved components to obtain the fundamental separation

⁹ G. R. Harrison, J. Opt. Soc. Am. 25, 169 (1935); Rev. Sci. Inst. 9, 15 (1938). ¹⁰ G. R. Harrison and J. P. Molnar, J. Opt. Soc. Am.

^{30, 343 (1940).}

NIUM	SPECTRUM	

TABLE III. Classified lines and g values in the arc spectrum of ruthenium.
--

λ(A)	I	T_1	T_2	g1	g 2	λ(Α)	I	T_1	T_2	gı	g 2	λ(Α)	I	T_1	T 2	g1
3635.516	2	a^5P_1	$z^{3}P_{2}^{0}$	1.985	1.470	3401.505	30	a^3D_1	2005 Dal	0.673	0/0	3111.912	50	a^5D_2	54.0	1.232
3634.929	5Õ	a^5F_3	√5F40	1.253	1.371	3392.537	100	a^5F_5	$\sqrt{5}F_{0}$	1.404	1.478	3100.839	70	a^5F_4	2630	1.350
3631.711	2	a^3F_4	$z^5 P_{3^0}$	1.280	1.644	3391.890	50	$b^{3}P_{0}$	a6710	0/0	1.348	3091.873	50	a^5F_2	$z^5 P_1^0$	1.001
3619.202	2	a^3G_4	5140	1.030	1.195	3389.500	60	a^5F_2	$v^{5}F_{2}^{0}$	1.002	1.026	3089.801	60	a^3F_3	5140	1.19
3616.951	2	$b^{3}F_{4}$	$x^{5}D_{3}^{0}$	1.256	1.424	3388.709	80	b^3F_2	53 ₃ 0	0.764	1.136	3080.193	30	b^3F_2	b6320	0.75
3608.727	2	a^5D_2	$x^{5}D_{3}^{0}$	1.239	1.430	3385.707	50	$b^{3}P_{1}$	63 2 ⁰	1.435	1.156	3054.937	70	a^5P_2	52 ₃ 0	1.559
3605.641	2	a^5P_1	$z^{3}P_{1}^{0}$	1.979	1.308	3380.175	60	a5P 2	у ³ D 1 ⁰	1.570	0.764	3048.785	60	a^5F_3	$z^5 P_{2^0}$	1.248
3599.764	12	$a^{5}P_{3}$	$x^{5}D_{4^{0}}$	1.615	1.479	3379.605	60	$b^{3}F_{3}$	$49_{3^{0}}$	1.082	0.888	3045.710	60	$a^{3}F_{2}$	59 ₂ 0	1.083
3590.886	2	a^3D_2	e5910	1.168	0.809	3374.646	80	a^5P_2	$x^5D_{2^0}$	1.557	1.447	3042.475	70	a^5F_1	$x^5F_{2^0}$	0
3589.215	60	a^5F_1	$z^{5}G_{2}^{0}$	0	0.373	3371.860	70	a^5D_2	·y ⁵ P ₃ ⁰	1.237	1.631	3040.310	60	$a^{5}F_{4}$	$z^5 P_{3^0}$	1.347
3584.198	2	$a \circ D_1$	$y^{3}D_{2}^{0}$	1.792	1.171	3368.451	100	a5F 2	$z^{3}D_{3}^{0}$	1.003	1.131	3038.176	80	$a^{b}P_{2}$	533 ⁰	1.58
3579.768	3	$a^{5}F_{3}$	1420	1.249	1.497	3362.335	50	$a_{3}D_{3}$	$a70_{20}$	1.333	1.087	3034.060	60	$a^{5}D_{2}$	$59_{2^{0}}$	1.233
3572.015	3	aºP1	$y_{5}P_{10}$	1.084	2.321	3362.003	00	001'2	5420	0.765	0.883	3033.451	/0	a°D4	5140	1.448
3507.155	3	0°P1	592°	1.442	1.005	3359.095	/0	4º1' 3	Z°C30	1.245	0.808	3030.781	30	$a^{\circ}P_{3}$	5/2° 5 E 0	1.033
3504.502	4	$h^{3}D_{1}$	20 F 20	1.01	1.40	2241 664	20	0°P 2	0.320	1.310	1.100	3020.882	100	a°r 2	x°F 3°	1.001
3556 676	2	$a^{3}D$	#3P.0	1 680	0.011	3341.004	70	0° F 4 3 D.	57.0	1.237	1 1 70	3017.230	100	a^3F_1	55.0	1 108
3552 949	4	$a^{3}P$	A13 P.0	1.670	1 606	3333.080	60	a^3F	~5D.0	1 276	1 / 81	3012.016	60	a5D.	57.0	1 /18
3550 260	4	a5E2	27 P 10	1 253	1.658	3324 005	60	a5E.	73D 0	0	1.020	3008 250	50	a^3E_{a}	50.0	1 004
3546 082	2	a5D2	~5D.0	1 42	1 42	3317 888	50	a^5D_a	15 P .0	1 428	1 635	3006 590	70	a5 F .	25 F .0	1 001
3541.631	60	a^3F_{Λ}	$x^{5}F_{0}^{0}$	1.294	1.407	3316.386	80	$a^{3}P_{2}$	52.0	1.533	1.158	3001.642	60	a5D2	58.0	1.420
3541.045	10	a^3G_5	51 ⁴ 0	1.18	1.18	3315.228	60	a^5F_{\star}	23G40	1.340	1.111	2994.964	80	a^5F_3	x5F.0	1.24
3539.369	60	a5F 2	$2^5G_{2^0}$	1.001	0.378	3315.047	50	a^5P_2	x5D10	1.56	1.56	2988.948	250	a^5F_5	v5D40	1.39
3535.831	60	a^5D_1	$z^{3}P_{1}^{0}$	1.796	1.312	3310.957	30	a^5F_4	$z^7 P_{3^0}$	1.356	1.906	2987.705	30	a^5D_1	c5920	1.798
3532.814	60	a^1G_4	f5930	0.99	0.99	3304.507	12	$b^{3}P_{1}$	6620	1.42	1.42	2986.335	20	a^5D_2	c5920	1.23
3531.390	60	a^5D_2	$y^{3}D_{3}^{0}$	1.241	1.390	3303.995	60	$b^{3}P_{2}$	b63 20	1.317	1.028	2981.935	60	a^5F_2	x^5F_{10}	0.992
3528.683	60	a^5F_2	$y^{5}F_{3}^{0}$	1.002	1.204	3301.587	70	a^5F_5	z5G50	1.396	1.268	2968.954	60	$a^{3}F_{3}$	57 2 ⁰	1.21
3520.130	60	a^5D_1	$z^{3}P_{0}{}^{0}$	1.791	0/0	3297.955	50	b3F4	45 ₃ 0	1.250	0.959	2968.482	15	$a^{3}P_{2}$	a6710	1.537
3519.635	70	a^5F_4	y5F40	1.350	1.364	3294.110	60	a^5F_5	164 ⁰	1.40	1.30	2959.736	12	a5D4	55 ₃ 0	1.444
3514.488	70	a^5F_3	$z^{5}G_{3}^{0}$	1.247	0.941	3284.932	30	$a^{5}D_{3}$	$y^5 P_{2^0}$	1.40	1.69	2958.000	60	$a^{3}F_{3}$	58 ₃ 0	1.191
3501.354	30	$b^{3}P_{1}$	c5920	1.449	1.027	3274.706	60	$b^{3}F_{3}$	54_{2}^{0}	1.087	0.891	2954.486	100	$a^{5}P_{2}$	58 ₃ 0	1.558
3497.937	30	a5D1	$x^{5}D_{1}^{0}$	1.985	1.573	3273.078	60	$a^{5}P_{2}$	41 ₁ 0	1.56	1.56	2949.500	80	$a^{3}F_{4}$	514 ⁰	1.282
3495.973	00	$a^{5}P_{3}$	y3D30	1.628	1.389	3268.208	60	63P2	6620	1.32	1.42	2946.991	60	$a^{3}F_{3}$	5920	1.201
3494.251	50	$a^{\circ}D_{2}$	$x^{5}D_{2}^{0}$	1.237	1.441	3266.445	50	b^3F_3	5530	1.090	1.230	2943.921	50	$a^{\circ}D_{3}$	$c59_{2^{0}}$	1.422
3490.710	12	0°P1	a 590°	1.441	1 420	3250.331	50	a ³ D1	y ⁹ P1 ⁰	1.791	2.318	2940.358	50	$a^{\circ}D_{4}$	5030	1.451
3481.297	70	1°F 2 13E	x D 30	1.002	0.070	3234.708	.50	$a^{5}D_{2}$	y P 10	1.229	1 405	2939.944	30	4° F 1	-3 D 0	1.08
2472 221	60	a5D.	430.0	1 410	1 380	3234.342	70	a^3F	yvD 3*	1 280	1 275	2919.000	100	$a^{5}F$	2° I 1°	1 25
3456 620	60	a3D.	64.0	1 1 6 4	0.038	3243.498	60	$a^{5}D_{1}$	V3 D 30	1 702	1.605	2910.235	50	$a^{5}F_{0}$	73 P .0	1 003
3452.903	60	a^5F_2	N5 F 20	1.24	1.21	3242.165	80	a^3P_1	159.0	1.684	0/0	2887.995	30	a5F.	x5F 20	1.34
3448.953	70	$b^3 F_{2}$	a50.9	0.763	0.890	3239.605	50	a^3P_2	5620	1.541	1.285	2886.536	60	a^5F_2	$\frac{1}{2}$	1.001
3440.205	100	a^5F_4	$z^7 P_{4^0}$	1.349	1.658	3238.527	100	$a^{3}D_{2}$	$a702^{0}$	1.167	1.095	2883.595	30	a^5F_3	x5D30	1.253
3440.205	100	a^5D_4	$x^5D_{4^0}$	1.440	1.475	3232.751	50	a^3F_3	$v^5 P_2^0$	1.196	1.715	2881.276	30	a^5F_1	$x^5 D_0^0$	0
3438.368	70	a^5P_2	$z^{3}P_{2}^{0}$	1.564	1.474	3227.885	20	a^5P_3	$y^{3}P_{2}^{0}$	1.626	1.298	2874.984	80	a^5F_5	$x^{5}F_{5}^{0}$	1.40
3436.737	300R	a^5F_4	$z^{5}G_{5}^{0}$	1.34	1.26	3226.374	50	a^5F_1	$y^5D_1^0$	0	1.515	2854.074	60	a^5F_3	$z^{3}P_{2}^{0}$	1.249
3435.186	60	a^5F_1	$y^{5}F_{2}^{0}$	0	1.028	3223.274	60	a^5F_2	$y^{5}D_{2}^{0}$	0.998	1.478	2843.171	30	a^5D_1	66 ₂ 0	1.793
3433.260	60	$a^{3}P_{2}$	$y^{3}P_{2}^{0}$	1.533	1.301	3212.969	10	$b^{3}F_{4}$	$49_{3^{0}}$	1.256	0.886	2834.001	30	a^5F_3	$y^{3}D_{3}^{0}$	1.242
3432.741	70	$b^{3}F_{4}$	$a40_{4^{0}}$	1.254	1.109	3196.591	50	a^5F_1	$y^5D_0^0$	0	0/0	2818.952	50	a^5P_3	662 ⁰	1.629
3430.772	70	$a^{5}F_{2}$	$z^{3}G_{3}^{0}$	0.999	0.869	3194.738	4	a^3G_4	$a64_{5}^{0}$	1.03	1.03	2817.093	50	a^5F_2	x^5D_{10}	0.994
3429.542	60	$a^{3}P_{2}$	y5P₁0	1.534	2.314	3192.069	10	b^3F_4	5140	1.253	1.196	2722.697	40	$a^{5}D_{1}$	$w^5D_{2^0}$	1.794
3425.964	30	a^3D_2	662 ⁰	1.162	1.420	3189.976	50	$a^{5}F_{3}$	y5D30	1.251	1.498	2721.562	60	a^5D_2	$w^{5}D_{2^{0}}$	1.236
3420.078	60	$a^{3}P_{1}$	a_{531^0}	1.686	0.890	3186.044	80	$a^{5}F_{2}$	yo1)10	0.998	1.515	2719.515	100	a^5D_4	$w^{5}D_{4}^{0}$	1.46
3419.252	30	$a^{5}F_{1}$	$z' P_{2^{0}}$	1 244	2.001	3171.239	20	$a^{\mathfrak{d}}D_0$	a_{531^0}	0/0	0.886	2702.832	80	a^3F_3	$w^{b}D_{3}^{0}$	1.197
3417.353	50	d° I' 3 a3 D.	20040	1.244	1.113	3108.525	100	0°F 2	J5930	0.757	0.994	2/01.338	60	a° 1° 2	$w^{\circ}D_{1}^{\circ}$	1.08/
2411 624	80	$a^{\circ} \Gamma_0$	a3D.0	1 571	1 21 9	3159.923	70	4°F 3 53E.	52.0	1.250	1.401	2004./3/	100	0° Г 4	y 1 30	1.340
3400 277	100	a5Pa	2° F 1° A13 D 20	1.571	1 380	3130.009	60	53F	52.0	1.238	1 1 4 2	2031.841	60	a3F.	w5D.0	1.284
3405 880	50	$h^3 P_0$	f50.0	1 310	0.005	3140.973	50	a3 F a	a53.0	1 004	0.809	2031.292	00	0.1.3	W 1/20	1.21
3401 730	100	a5P1	$\sqrt{5}P_{0}^{0}$	1.984	1.712	3125.963	70	a5F.	z5P_0	1.248	1 647					
	100	4.11	V 1 2"	1.707				147 1 1 1	A*1 3*	• · · · • • • • •						

a³F a⁵F

TABLE III.—Continued.

 $g_1 - g_2$. To illustrate the degree of uniformity found, some typical patterns have been included in Table II. Space requirements forbid the inclusion of the detailed patterns for all of the lines listed in the main table (Table III), but the g values obtained for a given term from different lines show such good agreement that the method of reduction used appears justified. Since only classified lines are included in Table III, it is possible to compare various independent determinations of a given g value. The final averaged values for 140 terms are given in Table IV.

50 100

In Tables II and III the wave-lengths used

are taken from the M.I.T. Wavelength Tables, while the intensities are those given in the arc column of the same tables. The term designations are those of McNally,7 based on an extension of the analysis of Sommer.¹ In Table II the π components are in parenthesis, while the strongest lines of a pattern are in boldface. In Table III g_1 is the g value of the even term T_1 , while g_2 is that of the odd term T_2 .

g 2

0.892

1.508 $1.01 \\ 1.157$

810 .070

.190

1.181

.06 .161 35 52 028 1.03 0.139

1.21 1.364 1.160

1.190

015 .285

308

318 429

.40

.469

.428

.565

.480

 $1.46 \\ 1.449$

1.50

430

In Table IV the same term designations are used, while the term values are those derived by McFee⁶ from M.I.T. wave-length data. The column headed g (Theor.) contains the theoretical g values for the term designations used,

3401.739

TERM	Term Value	g (Theor.)	g (MEAS.)	No. Meas.	No. Lines	Term	TERM VALUE	g (Theor.)	g (Meas.)	No. Meas.	No. Lines	Term	Term Value	$^{g}_{(\mathrm{THEOR.})}$	g (Meas.)	No. Meas.	No. Lines
Even Terms																	
$a^{5}F_{6}$ $a^{5}F_{4}$ $a^{5}F_{3}$ $a^{5}F_{2}$ $a^{5}F_{1}$ $a^{3}F_{4}$ $a^{5}P_{2}$ $a^{3}F_{3}$ $a^{5}D_{3}$ $a^{5}D_{2}$ $a^{5}D_{1}$	0 1190.67 2091.52 2713.22 3105.46 6545.05 7483.14 8043.77 8084.13 8575.45 8770.98 9057.64 9073.06	$\begin{array}{c} 1.400\\ 1.350\\ 1.250\\ 1.000\\ 0\\ 1.250\\ 1.500\\ 1.833\\ 1.083\\ 1.500\\ 1.667\\ 1.500\\ 1.500 \end{array}$	$\begin{array}{c} 1.397\\ 1.349\\ 1.249\\ 1.000\\ 0\\ 1.284\\ 1.447\\ 1.563\\ 1.196\\ 1.420\\ 1.624\\ 1.232\\ 1.795 \end{array}$	12 21 32 38 31 20 21 32 35 30 29 42 21	6 12 17 17 18 13 12 16 20 17 16 21 14	$b^{3}F_{4}$ $a^{3}F_{2}$ $a^{5}D_{0}$ $a^{5}P_{1}$ $a^{3}P_{2}$ $b^{3}F_{3}$ $b^{3}F_{2}$ $a^{3}F_{2}$ $a^{3}P_{1}$ $a^{3}G_{5}$ $a^{3}G_{4}$ $b^{3}G_{3}$	9120.69 9183.69 9492.35 9620.33 10,623.49 10,654.52 11,447.23 11,752.74 11,752.74 11,752.74 11,752.71 12,207.10 12,816.69 13,645.73 13,699.11	$\begin{array}{c} 1.250\\ 0.667\\ 0/0\\ 2.500\\ 1.500\\ 1.083\\ 0.667\\ 0/0\\ 1.500\\ 1.200\\ 1.050\\ 1.500\\ 0.750\\ \end{array}$	$\begin{array}{c} 1.255\\ 1.089\\ 0/0\\ 1.985\\ 1.534\\ 1.086\\ 0.764\\ 0/0\\ 1.684\\ 1.190\\ 1.033\\ 1.315\\ 0.757\end{array}$	15 31 7 21 24 10 13 8 8 7 11 31 23	$ \begin{array}{c} 11\\ 17\\ 5\\ 10\\ 14\\ 6\\ 7\\ 6\\ 4\\ 6\\ 15\\ 9\end{array} $	$b^{3}P_{1}$ $a^{3}G_{4}$ $b^{3}D_{2}$ $a^{3}D_{2}$ $a^{3}H_{6}$ $a^{3}D_{3}$ $a^{3}H_{5}$ $a^{3}D_{1}$ $b^{3}D_{2}$ $a^{3}H_{4}$ $a^{1}P_{1}$ $a^{1}O_{2}$	$\begin{array}{c} 13,981.80\\ 14,700.34\\ 14,827.53\\ 15,050.17\\ 16,550.17\\ 16,190.63\\ 16,240.02\\ 16,712.59\\ 17,046.01\\ 17,096.83\\ 20,242.05\\ 20,933.76 \end{array}$	1.500 1.000 0/0 1.167 1.333 1.033 0.500 1.167 0.800 1.000	$\begin{array}{c} 1.441\\ 0.992\\ 0/0\\ 1.162\\ 1.164\\ 1.333\\ 1.041\\ 0.676\\ 1.175\\ 0.834\\ 0.927\\ 1.343\\ \end{array}$	26 18 10 13 1 7 1 12 10 6 3 2	12 8 5 9 1 4 1 6 5 3 2 1
Odd Terms																	
$\begin{array}{c} z^{7}D_{2}^{9}\\ z^{7}D_{4}^{9}\\ z^{7}D_{5}^{9}\\ z^{5}D_{4}^{9}\\ z^{5}D_$	$\begin{array}{c} 25,214.32\\ 25,464.54\\ 26,035.63\\ 26,312.86\\ 27,506.63\\ 28,405.60\\ 28,495.26\\ 28,890.60\\ 29,118.48\\ 29,427.44\\ 29,467.93\\ 29,594.63\\ 29,594.63\\ 29,594.63\\ 29,594.63\\ 29,594.63\\ 30,279.74\\ 30,348.49\\ 30,250.42\\ 30,279.74\\ 30,348.49\\ 30,250.42\\ 30,279.74\\ 30,348.49\\ 31,044.36\\ 31,1852.94\\ 31,345.86\\ 31,384.77\\ 31,852.94\\ 31,345.86\\ 32,343.20\\ 33,172.07\\ 33,443.070\\ 33,430.70\\ 33,443.070\\ 33,443.070\\ 33,443.070\\ 33,443.070\\ 33,443.070\\ 33,443.070\\ 33,443.070\\ 33,443.070\\ 33,443.070\\ 33,443.070\\ 33,4430.70\\ 33,443.070\\ 33,4430.70\\ 33,4430.70\\ 33,4430.70\\ 33,446.86\\ 33,580.19\\ \end{array}$	$\begin{array}{c} 1.600\\ 1.650\\ 1.750\\ 1.500\\ 1.500\\ 1.500\\ 1.200\\ 1.200\\ 1.200\\ 1.200\\ 1.000\\ 1.500\\ 0.500\\ 0.500\\ \end{array}$	$\begin{array}{c} 1.592\\ 1.625\\ 1.737\\ 1.425\\ 1.324\\ 1.324\\ 1.324\\ 1.324\\ 1.324\\ 1.324\\ 1.323\\ 1.164\\ 1.474\\ 0.0567\\ 1.656\\ 1.474\\ 0.375\\ 1.203\\ 1.497\\ 1.656\\ 1.263\\ 1.276\\ 0.375\\ 1.204\\ 2.034\\ 1.111\\ 1.895\\ 0.868\\ 1.032\\ 2.059\\ 1.133\\ 1.026\\ 1.492\\ 1.496\\ 1.492\\ 1.522\\ 1$	$\begin{array}{c} 2\\ 4\\ 4\\ 2\\ 7\\ 11\\ 5\\ 8\\ 8\\ 6\\ 3\\ 4\\ 4\\ 5\\ 5\\ 9\\ 8\\ 8\\ 12\\ 10\\ 8\\ 12\\ 10\\ 8\\ 12\\ 16\\ 10\\ 3\\ 19 \end{array}$	1 1 1 5 8 3 5 2 3 3 2 2 2 4 2 1 1 1 4 3 2 5 2 6 6 5 1 8 8 5 8 7 6 2 7	$y^5 D_2^9$ $z^5 P_4^9$ $y^5 D_1^0$ $y^5 D_1^0$ $z^5 P_4^0$ $z^5 P_4^0$ z^5	33,728.67 34,072.44 34,091.16 34,379.78 34,772.64 35,046.74 35,046.74 35,046.74 35,064.57 35,906.889 36,542.67 36,542.67 36,542.67 36,542.67 36,542.67 37,346.86 37,346.86 37,346.86 37,346.86 37,367.03 37,473.00 38,200.61 38,200.61 38,200.61 38,229.16 38,229.16 38,279.16 38,587.23 38,700.422 39,008.722 39,273.33 39,450.67 39,453.85 39,450.67 39,742.19 9,773.54 39,894.61	1.500 1.667 1.500 0/0 1.400 1.333 2.500 1.250 0.000 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.833 1.833 1.833 1.833 1.830 1.500 2.500 0/0	$\begin{array}{c} 1.477\\ 1.646\\ 1.522\\ 0/0\\ 1.402\\ 1.808\\ 2.385\\ 1.364\\ 1.276\\ 1.069\\ 0.1451\\ 1.481\\ 1.473\\ 1.469\\ 1.379\\ 0/0\\ 0.756\\ 1.442\\ 0.756\\ 1.442\\ 0.756\\ 1.442\\ 0.756\\ 1.648\\ 1.566\\ 1.631\\ 1.713\\ 1.15\\ 0.895\\ 0.968\\ 1.142\\ 1.299\\ 2.315\\ 0/0 \end{array}$	$\begin{array}{c} 16\\ 11\\ 10\\ 8\\ 3\\ 13\\ 10\\ 4\\ 7\\ 8\\ 6\\ 3\\ 19\\ 9\\ 9\\ 3\\ 9\\ 9\\ 3\\ 4\\ 7\\ 7\\ 6\\ 6\\ 7\\ 7\\ 6\\ 1\end{array}$	86642753445274864154243153254443431	$y^3P_1^0$ $y^3P_1^0$ 49_3^0 50_2^0 51_4^0 52_3^0 $53_3^1^0$ 55_5^0 55_5^0 55_5^0 55_2^0 55_2^0 659_2^0 459_2^0 459_2^0 459_2^0 459_2^0 459_2^0 459_2^0 459_2^0 63_2^0 64_3^0 664_3^0 664_3^0 666_2^0 $w^5D_4^0$ 667_1^0 $w^5D_2^0$ $a70_2^0$ $w^5D_2^0$ $w^5D_1^0$	$\begin{array}{c} 39,916.71\\ 40,235.39\\ 40,276.54\\ 40,433.18\\ 40,433.18\\ 40,433.18\\ 41,016.66\\ 41,182.69\\ 41,260.11\\ 41,482.69\\ 41,260.11\\ 41,482.69\\ 41,577.82\\ 41,756.21\\ 41,576.21\\ 41,880.86\\ 42,007.24\\ 42,346.79\\ 42,415.85\\ 42,534.04\\ 42,621.04\\ 42,894.54\\ 42,621.04\\ 42,894.54\\ 42,621.04\\ 42,894.54\\ 42,621.04\\ 42,894.54\\ 42,621.04\\ 42,983.22\\ 43,509.17\\ 43,841.57\\ 43,841.57\\ 43,841.57\\ 43,903.74\\ 43,9$	1.500 	$\begin{array}{c} 1.606\\ 0.890\\ 1.035\\ 0.889\\ 1.196\\ 1.159\\ 1.137\\ 0.887\\ 0.887\\ 1.235\\ 1.235\\ 1.235\\ 1.235\\ 1.235\\ 1.235\\ 1.013\\ 1.013\\ 1.007\\ 1.247\\ 0.965\\ 1.025\\ 0.00\\ 0.810\\ 0.995\\ 1.158\\ 0.800\\ 0.995\\ 1.158\\ 0.800\\ 1.025\\ 0.934\\ 1.350\\ 1.422\\ 1.473\\ 1.450\\ 1.449\\ 1.089\\ 0.00\\ 1.439\end{array}$	$\begin{array}{c} 7 \\ 7 \\ 0 \\ 3 \\ 6 \\ 6 \\ 12 \\ 8 \\ 7 \\ 15 \\ 8 \\ 6 \\ 1 \\ 4 \\ 3 \\ 8 \\ 1 \\ 2 \\ 7 \\ 5 \\ 3 \\ 8 \\ 2 \\ 1 \\ 4 \\ 6 \\ 2 \\ 7 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ \end{array}$	442 445 46 7541 33411 63352123141111311

TABLE IV. Term values and theoretical and measured g values in the arc spectrum of ruthenium.

while that headed g (Meas.) contains the final g values obtained by averaging a number of independent determinations, the number of which is given in the next column. The final column gives the number of spectrum lines (each measured several times) whose patterns were reduced to give the final average.

An example of the use of Zeeman effect data in determining L and S values is given by the terms $9057.64-a^5D_2$ and $9183.69-a^3F_2$. The designations of these two terms were originally interchanged, but a consideration of the g values of each leads to the adopted notation. The theoretical LS g value for a^5D_2 is 1.500, while that for a^3F_2 is 0.667. Mutual perturbation between two such terms would be expected to bring their g values closer together, and we find, in fact, 1.232 and 1.089. If the original term designations had been kept the two g values would have crossed. Intensity considerations make either designation possible for either term, and each term does, of course contain much of both designations.

Similar considerations have led to interchange of the designations of the terms a^5D_1 and a^5P_1 , where a theoretical g value of 1.500 has been

FIG. 1. Asymmetrical Zeeman patterns at 88,350 gauss produced by magnetic perturbations between terms $y^5D_3^0$ and $y^5D_4^0$ of Ru I. To the left, line 3100.839, to the right 3099.283A. The π components are above and the σ components below, while the center strip shows the two lines without magnetic resolution.

raised by perturbation to 1.795, while one of 2.500 has been reduced to 1.985.

Asymmetrical Patterns

Several dozen patterns are found to be asymmetrical to a degree which renders uncertain calculation of meaningful g values. Some of these occur in lines which originate in the terms $y^5D_4^0$ and $y^5D_3^0$, which lie only 16.16 cm⁻¹ apart. Though these terms have different J values they both have the calculated LS g value 1.500, and when the asymmetries are averaged the measured g values are 1.492 and 1.496, respectively. Two lines, which show the asymmetries arising from the mutual perturbations between these magnetic sub-terms, 3100.839 and 3099.283A, are reproduced in Fig. 1.

The displacements from the zero position of the magnetic sub-levels of these two terms by a field of 88,700 gauss were determined by averaging measurements on six pairs of lines at several close-lying fields (Z-49, Z-74). The results are as follows, all positions being given in cm⁻¹:

m	-4	∓ 3	∓ 2	∓ 1	0	± 1	± 2	± 3	+4
y5D40	-24.54,	-18.14,	-11.86,	-5.65,	+0.53,	+6.69,	+12.70,	+18.68,	+24.59
Δ	-6	5.40 - 6	5.28	6.21 -	6.18 -6	.16 -6.	01 - 5	.98 — 5	5.91
$y^{5}D_{3}^{0}$		+18.19,	+11.86,	+5.59,	-0.59,	-6.72,	-12.78,	-18.74	
Δ		+0	5.33 +	6.27 +	6.18 +6	6.13 +6	.06 +5	.96.	

The pattern for the two terms taken together is seen to remain essentially symmetrical, while the various magnetic sub-levels having identical mvalues repel one another.

A great many partially-resolved patterns which are found on the plates can be reduced to give further data, but as methods for dealing with this material are now being improved, their discussion will be postponed. The application of the g group Sum Rule to the data, the detailed consideration of asymmetrical patterns, and the interpretation of the magnetic perturbations observed, will be postponed until the spectrum is more fully classified.

We are grateful to the M.I.T.-W.P.A. Wavelength Project for valuable data and assistance, and to the Rumford Committee of the American Academy of Arts and Sciences for a grant to assist in the purchase of pure chemicals.

FIG. 1. Asymmetrical Zeeman patterns at 88,350 gauss produced by magnetic perturbations between terms $y^5D_3^{,0}$ and $y^5D_4^{,0}$ of Ru I. To the left, line 3100.839, to the right 3099.283A. The π components are above and the σ components below, while the center strip shows the two lines without magnetic resolution.