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Steady-State Diffusion Under Conditions of Generalized Source
and Incident Current Distributions
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The method of Laplace transformations is extended to the more general case of neutron diffu-
sion in half-in6nite media containing source distributions, and an exact expression for the
emergent current distribution is obtained, This expression depends on the total m.f.p. , on the
ratio N of the capture to scattering m.f.p. , and on the type of source distribution. For a uniform
source distribution and with E suSciently large, the values of the normalized current as a
function of angle agree closely with those given by the Fermi law. More significant discrepancies
between the results of elementary theories and the exact theory are to be found in the ratio R
of detector activities corresponding to positions deep within the medium and at the surface.
The exact theory gives R= (%+1)&+1for uniform source distributions. A recent quotation of
8=14 for the case of thermal neutron diffusion in paraffin then implies %= 168 instead of 196
as given by the elementary theory.

INTRQDUcTIQN

HE diffusion of thermal neutrons in hydro-
genous materials lends renewed significance

to a class of problems in the theory of gases which
have not hitherto had adequate treatment, In
order to make application to the experimental
sltuRtlon of interest, one 1cqUlrcs cxRct solutions
of the Boltzmann conservation equation in
closed form subject to boundary conditions
which determine the behavior of the gas as a
whole, The point of view which one adopts for
the contemplation of the theoretical problem
is necessarily very diR'crent from that adopted
in the usual theory of gases. According to the
latter one seeks solutions of the Boltzmann
equation which describes the state of a gas
within a differential volume element subject to
arbitrarily assigned values of the gas parameters
and their derivatives within this element. Such
solUtlons Rre completely gcnerRl, and they Rre

ln pIlnclplc sufhcient to determine the steady-
state condition prevailing in the experimental
problem of neutron diffusion. But there are two
difhculties connected with such applications of
the general solutions. On the one hand these
solutions are obtained by perturbation methods
and the resulting series converges rapidly to the
exact solution only in the limiting case of small
deviations from spherical symmetry, a condition
which may not be even approximately fulfilled
when an arbitrary assignment is made on the

6

boundary conditions in the steady-state prob-
lem. On the other hand, one would require not
only the solutions of the Boltzmann equation
giving the distribution function in terms of the
gas parameters and their derivatives, but also
the solution of the steady-state kydrodynamical
equations giving the spatial dependence of the
gas parameters subject to the imposed boundary
conditions.

A more direct approach would appear to be
the search for solutions of the Boltzmann equa-
tion itself subject to the boundary conditions
imposed on the entire gas. This point of view
has been used already in the case of no external
forces to give solutions of well-known problems
in astrophysics, namely, the transmission of
radiant energy through stellar" and planetary
atmospheres. ' The treatment has not been based
explicitly on the Boltzmann equation, but this
can be done by considering radiation as a gas'
of photons.

In the problem of neutron diR'usion one is
interested in such questions as the distribution
emergent from the surfaces of a medium when
neutron currents of a particular character are
incident on the surfaces and source distributions

'E. A. Milne, "Thermodynamics of Stars, " Handbeck
der AstroPhysik, Vol. III/1 (Springer, 1930), pp. 96—183;
V. A. Kostitzen, Mem. Sc. Math. 69 (1935).

E. Hopf, ProMerls of Radiative Egm~7ibrilm, Cambridge
Tract No. 31 (1934).'L. V. King, Phil. Trans. Roy. Soc. A212, 375-433
(1913).

4 G. Ja6'e, Ann. d. Physik Pj 6, 195—252 (1930}.
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exist within the medium. The assumption of
source distributions and the property of finite
absorption probabilities possessed by neutrons
introduce new features into the physical situa-
tion insofar as particle diffusion is concerned;
and the requirement of exact solutions in closed
form demanded by the importance of the bound-

ary effect and the slow convergence of usual
series solutions introduces new features into the
mathematical treatment.

The method of attack on this problem used by
Halpern, Lueneburg and Clark' in connection
with the study of the albedo coef6cient is most
satisfactory. According to this method the in-

tegral equation associated with the Laplace
transform of the density function is studied,
Rnd solUtloIis of th, ls cquatlon sUbjcct to thc
imposed boundary conditions are obtained be-
fore attempting to 6nd the general solution of
the Boltzmann equation. It is the object of the
present paper to extend this method to the
more general case of diffusion in a half-in6nite
medium within which there exist source dis-

tributions, to establish a certain equivalence
between the problem of source distributions Rnd

that of 6nitc incident currents, to consider
questions of Uniqueness of Solutions, Rnd to
state more fully than has been done in the past
the analytieity considerations fundamental to the
rigorous and complete solution of the problem.
Numerical applications are then made to the
problem of thermal neutron diffusion in paraffin.

(l. Boltxmann equation

In the class of problems under consideration
mutual 1ntcl Retlons arc regarded Rs ncgllg1ble
and all interactions with centers of force within
the medium are regarded as occurring isotropi-
eally without the exchange of energy. Such
conditions represent a convenient mathematical
idealization satisfactorily describing many phys-
ical situations involving the scattering, absorp-
tion and penetration of particles of one kind
through a 6xed uniform distribution of particles
of another kind, and, in particular, the diffusion

of thermal neutrons in certain hydrogenous
materials. A further idealization according to

~0. Halpern, R. I.ueneburg aIId 0. Clark, Phys. Rev.
53, j,73-83 I'1938).

which all spatial variations are one dimensional
with azimuthal symmetry of all functions about
this direction may be introduced for purposes of
simpli6cation without restricting essentially the
validity of applications of the theory to many
cxpcrimental situations. IsotI opy of scRttcfing
without energy exchange has two important
consequences. The first of these is that the
absolute value of the velocity enters only para-
metrically in the equations. The second is that
the total scattering into, as well as out of, a
particular velocity class (de6ned by the differ-

ential solid angle containing the velocity vector)
is proportional to a total scattering probability.
Under these conditions the fundamental Boltz-
mann equation describing the steady-state
condition in the absence of external forces is

Bf(x, n)
vn =q(x, a) (P,+P—.)f(x, n)

Bx

where f(x, n) represents the number of particles
per unit volume per unit solid angle at the point
x having a velocity of magnitude v lying in do.

where n=cos t3 and 8 is the angle between the
velocity vector and the x-direction. Further-
more, I', and I', represent the total scattering
and capture probabilities, and q(x, n) is the
source strength representing the rate of produc-
tion of v-speed particles per unit volume per
unit solid angle.

$2. Integral equations in f(x, n)

Equation (1) together with certain boundary
conditions dehnes f(x, n) everywhere within a
single homogeneous isotropic medium. If there
are several media possessing different scattering
pl opertlcs, an RnalogoUs eqUatlon exists foi"

each. The properties of these equations are such
that the boundary conditions may be speci6ed
in terms of arbitrary functions of n only in a
particular way. The physical equivalent of such
a speci6cation is the arbitrary assignmcnt of
incident current distributions on the two outer-
most faces of the several media together with the
requirement of continuity in the distribution
function, but not its derivative, in passing from
one medium to the next.



PGI a slnglc hoIHogeneous isotl oplc mediuHl

lying between thc planes x=0 and x=8, Gnc

may specify consequently

f(o, ~) =fo(~)
(2R)

f(/I, n) =f.(n), a&0,

where fI/(0/) and f (n) are arbitrary functions
de6ned ln thc rcstrlcted range Gf 0. and plcce
continuously in x onto the distributions @within

the medium. Equation (I) may now be inte-
grated to give two integral equations in f(x, cx)

instead Gf a Slnglc intcgro-differential equation.
IQtroduclng thc concept Gf mean free paths
Bc6ncd by

and using the int:egrating factor e~/I /nI/, one
obtains

f(x, )=fo(~)e *'"
dx' F(x') /f(x')+,' + e(x' —x)!Ia (2b)
a 47', v

dx' F(x') q(x')
+ e(z' —g)//I (2c)

a 4Irl. I/

F(x)=2 t d f(x, )

is the total density of particles at x.
These equations have a simple physical

interpretation in terms of kinetic theory con-
cepts. Thus, for example, the 6rst part of the
integral represents the density contr lbutlon to
the distribution function at a specihed x plane
due to free Right trajectories (straight hnes for
no external forces) from a plane at x' where the
density ls F(x ). Tile contrlbutlon flolll R IRycl
Gf thickness dg 18 ITlade up Gf thc product of
four factors: (8,) the number of collisions per
second I/F(x')dx'/ln in the "ray volume element"
dx'/n; (b) the probability I/4II of scattering into
unit solid angle about 0. under isotropic condi-
tions; (c) the probability l/l. that the coHision
18 a scattering act and not Gnc Gf capture; and
(d) the probability expL —

~

(x' x)/ln—
~ ] that the

particle will travel the ray distance
~

(x' —x)/n
~

without further cGHision. The product of these
factors actually yieMs the current density per
uQlt sohd aQglc about A at x, and dlvlsion by 'v

must bc TAade to Obtain thc corresponding dis-
trlbutlon functloQ. A slmllar Interpretation ln
terms of thc con tl lbutlon duc to lncldcnt
currents and source distributions can be made
for the other terms of the equations.

$3. Integral equation in Il(x)

A general method of solving the simultaneous integral equations in f(x, n) is to solve 6rst the single
integral equation in F(x) obtained by performing the integration of Eq. (2d) on the functions f
defined by Eqs. (2b) Rlld (2c). Tllls llltcglR1 eqUatloll may be pUt lllto the fol'Ill

F(x) =g(x)+—ii dx'X(ix' —xi)F(x')„0&«x«&II, 0&«—«& I, (»)

where all distances are measured in units of the total m. f.p. /. The inhomogeneous term is a continu-
ous function for all problems of physical interest, and is given in terms of incident current distribu-
tions and lsotloplc soul ce dlstl lbutloQs by thc cquatlon

po

g(x) =2& ~t de/fo(e/)e *' + ll de/f. (o/)eI *&/ +
~

dx-'E(~x' —xt)/f(x')
0 —1 p do

The 8~metric kernel of the integral equation is the logarithmic integral f'unction. dc6ncd by

pl
E(s)=J' due '~n I, s&0. -

BCCRUSC of tile plopel ties of Z, the gcllclal 801Utloll of Eq. (3R) may be obtained 111 't11C form of Rll
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infinite series (the Neumann iteration solution)' by the method of successive approximations.
One can show that no other bounded continuous solution exists. ~ However, for half-in6nite medium
problems (a&&1, a measured in units of t) and a small capture probability (I/t. 1), which is the case
of lntclcst foI' example ln thc diAusion of thermal QeutroQs. lQ extended hydIogcQous materlRls,
convergence of the series is slow and a solution in closed form is desirable. Such a solution may be
obtained by the method of LRplRcc transformations.

II4. Integral equation in f(0, z)

The form of the emission current expression for the case of isotropic sources (g(x, n) =q(x)) and
11Rlf-lllfllll'te medium condltlons (II= io), wlllcll 18 glvc11 by Eq. (2c) wlleil x is sct equal to zero,
suggests the use of the Laplace transformation of the density function. The following Laplace trans-
formation is obtained by analytic continuation of (2c) into the complex plane

F(x') q(x')—sf{0 s)= ' dx's"" +
0 4xl, v

R(s) &0.

The integral defines a regular function for R(s) &0 as long as F(x) and g(x) are absolutely integrable
over any finite interval and the above integral exists. If, furthermore, F(x) and g(x) are continuous,
the transformation (4a) has a unique inversion of the form'

F(x) q(x) 1 I"~+'" o"
-+ =hm ' dt f(0, ——1/lt), tl&0, 0&x& ~.

4m', v '~"" 2~~ ~ ], ,], lt

It ls now evident that thc problcIIl CRQ be solved ln closed foal lf R closed RQRlytlc expression fol

f{0,s) with R(s) &0 can be found. The integral equation which f(0, s) must satisfy in the general
case of isotropic sources and axially symmetric incident currents on the face of the half-in6nite
Dledlum can bc obtalne«I I R manner RQRlogous to thRt fol the case of lncldcQt cuI'rent «ilstrlbutlons
alone. Onc obtains

nf(o n)
p(s, o)f(0, s) —I(s) =o ' dn —, R(s) &0 and sA( —1, 0), (4c)

P(s, o) =1+os)I dn/(n —s), o =I/21„

n s(n)
I(s) =o ~l dn —,~ dxs*«*if(x)/Iis, R(s) &0.

I
{4e)

known, i.e. , in the right half-plane. For, as-
suming f(0, n), —1 n=0, piecew—ise continuous,
tile right-hand side of (4c) or

$5. Regularity conditions

Tile llltcgfal cquRtloil (4C) Rnd its RllRly tie nf(0, n)
=oM s

contlnuRtloQ hRvc thc particular slgnl6cancc of
giving the analytic behavior off(0, s) everywhere
in the complex s plane where it is not already represents a regular function of s off the path

' E. Khittaker and G. Watson, Modern Analysis I'Cam-
bridge University Press, 3rd edition, 1920), $ 11,4. The
logarithmic inhnity at the zero argument of the kernel
function causes no difFiculty since —,'J'pdx'Z(~x' —x~)—1,e~ ~, and therefore the convergence of the iterative series
may be demonstrated easily for either 1/3, &1 or u & ~.The

limit case of 7//, =1, u= ~ has been settled by E. Hopf,
reference 2, Theo. VII, pp. 38-40.

& Cf. ahead in (8 and references 20, 21.
8 G. Doetsch, Theorize end Anmawdlmg dot I.cp/ace Trces-

formaÃon I,'Springer, 1937), pp. 40-3.
9 Reference 8, p. 105, Theo. 2.



of integration. " Hence, the behavior of p(s, 0)
and of the given in homogeneous term I(s)
(assumed capable of a,nalytic continuation into
the right half-plane) will impose certain analy-
ticity requirements on f(0, s) in order that the
left-hand side, known regular for R(s) (0 and
sW( —1,0) by the validity of Eq. (4c), continue
to be regular for R(s) )0 by the unique analytic
continuation called for by cV(s). More important,
it will appear that satisfaction by a function of
these regularity conditions is not only necessary
but sugcisnt that this function be a solution of
the integral Eq. (4c). Briefiy, the sufficiency
establishment may be carried out along the
following lines, " with the essential regularity
conditions appearing in the process.

The regularity and erst order vanishing at
infinity of 3I(s) gives zero as the value of the
contour integral'2

chy's theorems:

1 p(s, 0)fi(0, s) I{s—)
ds =p(s, 0)fi(0, s)

2' 'b s —s

1 p(s, o)fi(0, s) I(s)—
I(s—) + ds, (Sd)

2Kb I & s —3

where I.' is an ordinary contour enclosing only
the line segment (—1,0) which it touches at the
origin while otherwise remaining in the left
half-plane (the integration sense is the same as
on I). Now if

fi(0, s) and I(s) are taken regular in the
left half-plane and continuous into the
origin from R(s) (0 approaches, (B)

the introduction of p's definition (4d) into the
I.' integral gives

1 a M(s)
ds =0,

S—8

I. Containing line
(—1, 0) and point (Sb)
s~(—1, 0),

1 ( I' dn ) fi(0, s)
ds~ 1+~s

2m' L, ~ E ~ i a —s) s —s

where I, is a closed ordinary" contour which may
touch the line (—1,0) at the origin. "From Eq.
(4c) and its analytic continuation one may
restate (Sb) as

1 p(s, 0')f(0, s) —I(s)
cB =0

2Kb S —3

with the ordinary contour I. arbitrary except
for the restrictions mentioned in connection with
(Sb). Therefore, by taking the point s to be any-
where in the complex plane except the interval

(—1,0), one sees from Eq. (Sc) that a proposed
solution fi(0, s) must be such that the expression

p(s, 0)fi(0, s) —I(s) is made regular for
any sW( —1,0) and is continuous into
the origin for all approaches not includ-
ing the negative axis.

Under such conditions one may write by Cau-

'0 E.J.Townsend, Fundions of u Consp/ex VariaMe (Holt,
1915},p. 80, Theo. III.

"This treatment was suggested by the related one of
rderence 5 for the special case of incident currents of
8-function type.

~~ Reference 10, p. 273, Theo. X.
"Reference 10, p. 47.
'4 Reference 10, p. 71, Theo. II; only continuity with

the surrounding regular va,'lues is required on the integra-
tion path for the validity of Cauchy's theorem.

a sfi(0, s) p' dn
ds

2X'I I, S—8 ~ y A —S

cxfi(0, n)= —0 ~ da, (Se)
0.—S

where the last expression follows formally by
interchanging the order of integration and
applying the residue rule, and can be justified
in detail for the ordinary contours employed
here by usual limit arguments. Finally, the
left-hand side of Eq. (Sd) will have zero as its
value if

srp(s, o)fi(0, s) —I(s)j is made regular
at the in6nite point. (c)

Thus the regularity conditions (A, 8, C) insure
through Eqs. (Sd, e) tha. t fi(0, s) actually is a
solution of the integral equation (4c).

$6. Analyticity properties

In order to use the regularity conditions in
constructing a solution, the analytical nature
and continuation of the inhomogeneous term
I(z) must be given over the entire complex
plane. For zero incident currents, inspection of a
table of Laplace transformations shows that
the simplest form for I(s) is obtained by special-
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Izing the source cInlss1on fRtc to be a constant
or an exponentially decaying function, namely:

g(x) =gs- *, g=const. & 0, m& 0, x~&0, (6a)

when, with R(s) &0,

g/vni
dxe*"*g(x)/ss= — . (6b)

1/ml —s

From the integrated form it. is appaIent that
such a source term has a unique analytic con-
tinuation over the entire complex s plane with
a simple pole on the positive real axis at 1/sil.

Tile fiiiictioil p(s, 0') must l36 examined ilow 111

detail. From its definition given by (4d), it may
be exprcsscB as

s—i principal value of ln,
p(S, 0) =1+OS ln (6c)

s+1 branch cut (—1, 1).

Tile definition (4d) Sllows 'tlia't p is R regula1'

function, sW( —1,1), with the limit value 1—20

at infinity; also, that p(s, o) =p( —s, 0). Equa-
tion (6c) shows that p has the limit value 1 at

the orlgln) has blRnch points 'w'hlch are logarlth"
ITllc slngularltles Rt 8= &j.~ and has )ust t%'o

simple zeros" at s= ~so where so is the positive
real root of the condition for which P vanishes:

s+1 t 1 1
1=os' ln -=20'I 1+ + +' ' '

si —1 h 3soP Sso

0 &0 & -', . (6d)

In order that p(s, a)fi(0, s) be regular on (0,1),
in particular single-valued, Rs required by the
regularity condition (A), one is forced to con-
clude that p can be expressed as a product of two
functions one of which is regular for s on the
strip (0,1) so that the other function may be
taken as a recipmcal factor in fi and hence disap-
pear in the product p(s, a)fi(0, s). At the same
time, condition (8) makes the reciprocal factor
in fi have no zero in the left half-plane. This
regularity and nonzero value required of one
factor for R(s) &0 is met by the following product
decomposition of p through the aid of Cauchy's
integral formula on ln p:

—2' In p(it, ~) d&

ln p(s, o) = — —, is inside co—ntour N'+N"
2iri & +~- t —is t {—is)—

==In pi(s, 0}+In pg(s, 0},

(6e)

where the closed contour X'+X"of integration encloses no singularities of In fp(it, o)1/(t —is) Rnd

is considered to be composed of two parts X' and X" uniting only at the origin (positive-real side)
and + Go with, say, N being the part that starts from the origin and passes to the infinite point
beneath the point —is in the complex t-plane, and where the N portion of the integral is to be as-
sociated w1'tll 111 pi(s, 0), thc E 'witll lil pi(s, 0'). By tRkiilg R(s) &0, 'the X pRtll may l36 deformed
continuously to coincide with the positive-real axis giving for ln pi'.

—s t." ln P(it, 0) m. 3Ã
ln p, (s, 0) =

~~ dh, —&arg s&—(R(s) &0), 0»&0 &»-', ."
s'+t' 2 2

Vhth R(s}&0, analogously

s t" Inp(if, o) 1 t" Inp(isu, a)
ln pi(s~ ir) = d) =In pi( s o) —

I dQ
s'+3' 1+@'

—&Rrg «—, o««»&l (6g)
2 2

The last integral form in (6g) is uniformly convergent, O~s~ ~, for 0 &-, by the dominance in ab-
solute value of —ln (1—20)Jg"du/(1+1, ') n. = —In (1—20) i, so that s =0 and s= ~ may be inserted
inside the integral sign" to evaluate In Pi(0, &r) =0 and ln pi(~, o) = In {1—2a)'. The uniform con-

'~Cf. E. T. Copson, Theory of Factions of e Conspkeg VoriuMe (Oxford University Press, f935), p. 119, for the
"principle of the argument" by which it can be shown that no other zeros of p exist.

'~ This is essentially the same result for p14's, a.) as obtained in reference 5 where, however, the validity f'or a = —, was
not demonstrated.

~~ E, Wilson, Advanced Colcllls I',Ginn, j.912), p. 369.
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tinuity continues to exist for 0 =-', and s finite, R(s) &0, since the integrand vanishes sufficiently
strongly at infinity. In fact, the integral represents an analytic function in s whose derivatives of all
orders may be formed by differentiation under the integral sign, "R(s) & 0. This last property is useful
in establishing the rate of p& s decrease along the positive real-axis evident in Eq. (6g), in particular,
that p2 has a vertical tangent of logarithmic order at the origin. By the definitions of p&(s, o) and

p2(s, o.) through the N' and N" contour integrals of (6e) and all analytical continuations possible by
continuous deformations of the paths of integration N' a.nd N", it follows that p~ and pm are regular
functions of s over the whole plane except that p~ contains p's branch cut singularities (0,1) and p's
zero in the right half-plane while pg shows these same properties of p in the left half-plane (p~(s, r)

p2( s +) and pl(s~ &)p2(s, 0) =p(s, 0)).

II7. Solution for exponentially-distributed, sources

The complete satisfaction of the regularity conditions is now readily verified for the inhomogeneous
term (6b) by the following function:

(7a)

which therefore constitutes the solution of the integral equation (4c) for exponentially-distributed
sources. When s is negative-real, Eq. (7a) gives a positive definite function, as is, indeed, necessary
for physical meaning. When 0 =-,'and m = 0, one can show that ql+3s/vp&(s, -', ) satisfies the regularity
conditions because p~(s, —,) behaves like 1/+3s around the infinite point;" however, this is a non-
physical solution, being negative when s is in (—1,0) with g &0, and is a consequence of the fact that
the homogeneous integral equation arising from (4c) has solutions when 0 =-, . The latter are found
from the corresponding regularity conditions obtained by setting I(s) =0 in statements (A, C).
A one-signed solution for 0. =-', is evidently:

fq(0, s) = C/p~(s, —',), C= const. (7b)

)8. Uniqueness considerations

The uniqueness of the solution (7a) and the
significance of (7b) must now be determined. A
related point is the verification that these solu-
tions of the complex-variable integral are ac-
tually the ones coming from the Boltzmann
equation with given boundary conditions, or
from the integral equations (2b and c) for the
half-infinite medium case. These questions can
be answered through the uniqueness of the
Laplace transformation and its inversion, and
the uniqueness of the solutions for the number
density integral equa, tion (3a). The existence of
a solution for the number density equation has
already been indicated. Its uniqueness among
continuous bounded solutions when either l/l, (1
or a& 00 follows out of the zero solution of the
corresponding homogeneous integral equation

'8 Reference 15, pp. 110-1, the simultaneous integrand
continuity in z and n is assured by that of the product zu
and by the regularity of ln p(ized) here.

~ Reference 5, Eqs. (34), (55) and (58).

arising from (3a) for g(x) —=0."The same unique-
ness exists in the limit case, too, unless un-

bounded solutions at infinity are allowed. Then
a one-signed solution exists which is unique
except for a multiplicative constant and which
represents the limit solution of a problem (free
of sources) in which the medium slab thickness
becomes indefinitely large while the sole incident
current at the far face becomes likewise in-

definitely large. These last two statements are
inferred from the work of E. Hopf" on the
equivalent problem (pure scattering, half-in-

finite medium) in astrophysical radiation theory.
Such number density uniqueness means that
there is essentially only one associated f(0, s)
coming from the integral equations in f and
therefore satisfying the relations (4a, b). The
question is then whether the solutions (7a, b) are

"Cf. K. Schwarzschild, Berlin Sitz. , 1914, Part 2,
pp. 1191—2, who gives a simple method applicable here."E.Hopf, Zeits. f. Physik 40, 374 (1927-8); 49, 155
(1928); also, reference 2, p. 37 (Lemma 2).
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capable of representation in the form (4a), i.e. ,

that the F(x) function they define by (4b) is
inversely related to them by (4a). This repre-
sentation is indeed possible for functions of the
type called for by the regularity conditions and
the inhomogeneous terms involved. " Hence
the uniqueness of the solutions of the complex-
variable integral equation (4c) which are regular
in the left half-plane with a finite limit value at
the origin and positive-realness on the negative-
real axis is just that of the corresponding number
density solutions obtained from the integral.
Eq. (3a). Furthermore, these f(0, s) functions
necessarily satisfy the Boltzmann equation and
boundary conditions since they have the required
representation character. The significance and
essential uniqueness of the solution (7b) is
evident from the corresponding one-signed num-
ber density solution for o.=-,', a= ~ and its
''nterpretation as the limit of a finite medium
problem (by which the arbitrary constant C
can be considered determined). When s lies in
the interval (—1,0), a suitable transformation of
form displays the equivalence of the solution
(7b) and that obtained by E. Hopf for starlight
emission" by means of somewhat diferent
analytical arguments.

Then

fo(n) =f6(n no), f=—const. ) 0,

0(0.&~ 1, 0(A'p=const. &&1.

nfo(n) fo'no
I(s) = o dn

~ p A S clap

(9a)

(9b)

'~ Reference 8, p. 126—8, Theo. 2—3.
"Reference 2, pp. 31, 77, 105.

$9. Incident current equivalence

For the case of no interior sources within the
medium but with incident currents on the finite
face, considered in detail by Halpern, Lueneburg
and Clark, ' the same form of inhomogeneous
term as (6b) arises when the incident distribu-
tion (axially-symmetric) is restricted to a single
d irection, i.e. ,

for which the solution can be obtained from Eq.
(7a) by the parameter association:

1/ml= no and g= foe/l. (9c)

The restriction of np~1 is interesting as it is
one evidence of the lack of complete equivalence
of an incident current "beam" to an exponen-
tially-decaying interior source distribution of
arbitrary decay constant m. A beam of particles
incident on a half-infinite medium decays in

primary strength as e "" where r=x/no is
the "ray" distance into the medium from the
finite face and l is the total m. f.p. in the medium.
Likewise, the number of particles left behind in

any element dr is proportional to e " o. Because
of the isotropic no-energy-exchange character
of the scattering assumed here, this decay of the
direct beam as it enters the medium acts like a
source distribution of exponentially decaying
form e "' with m~1/l (m=1/lno, no~1) For.
such a type of source distribution the equivalence
is complete insofar as the emission current from
the medium and the interior distribution f(x, n)
with 0.&np. The form and limitations of the
equivalence are evidently determined by the
type of medium scattering-capture character.

)10. Analytic continuation for general distribu-
tions

The solution (7a) for f(0, s) is an analytic
function in 1/ml (considered as a complex
variable) when 1/ml is excluded from the point
s, the points of the line (—1,0), and the zero of p
in the left half-plane. As far as the emission
distribution (4a) or the inversion of the Laplace
transformation in (4b) is concerned, it is only
necessary to have R(z) (0 in f(0, s). Hence, the
analyticity in 1/ml in (7a) exists for the whole
right half-plane including the imaginary axis
(but only continuity at the origin); and there-
fore, a unique analytic continuation of the solu-
tion from positive-real 1/ml values to those with
pure imaginary ones can be made. Since the
complex-variable integral equation (4c) is linear,

TABLE I. Numerical values for ln 1/p2(z, N) =ln 1/p1( —z, N).

150

1/8

0;2629

1/4

0.4358
0.4004

1/2

0.6980
0.6297

3/4

0.901
0.7998

7/8

0.9887
0.8715

98/100

1.0558 1.0674
0.9395 1n (151)s
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there exists a superposition principle of indi-
vidual solutions corresponding to particular
inhomogeneous terms, which superposition is
unique provided the homogeneous integral
equation has no solutions —as certainly is the
case for o. (-,'or bounded solutions. Thus, by
adding solutions corresponding to m = in and
m = in —(n =positive integer), the solution
corresponding to a cosine source distribution
will be obtained; and analogously, for sine
distributions. Therefore, the solution for any
source distribution representable by a finite
Fourier series can be written down in principle.
Superposition of the incident current solutions
then takes care of the more general case.

2.8

2.6

2.4

2.2

~2.0
N
aol

I.S

l.6

l.4

1.2

III. APPLIcATIoNs To THERMAL

NEUTRON DIFFUSION

)11. Emission from paraffin

Thermal neutrons from natural radioactive
sources are normally obtained from the Fermi
standard paraffin cylinder. '4 A Rn-Be capsule
inside the cylinder gives off high speed neutrons
which are quickly degraded by collisions with
the many protons in the paraffin molecule into
the thermal energy region. Once the neutron's
energy is below the lowest vibrational level of
the C —H bond (0.1 ev"), collision effects are
with the CH2 group as a whole insofar as
conservation laws are concerned. Lower en-
ergies make still more of the paraffin molecule

( C92H4g) the effective mass group with which
the neutrons interact. Because of the short
range of interaction, only the s type of scattering
is of importance for slow neutrons. The mutual

'4 E. Amaldi and E. Fermi, Phys. Rev. 50, 901 (1936).
~~ H. A. Bethe, Rev. Mod. Phys. 9, 126 (1937).

l.0
~Z=Cos e

I. O 0;8 0;6 0;4 0;2 00
O' I'0' 2'0' 5'0' 40' O'0' 6'0' l'0' 8'0' 90'

e, Angle referred to outward normal

FIG. 1. Emergent number distribution-in-angle for
uniform sources.

interactions of the neutrons can be neglected
for the low concentrations available in the
laboratory; and the diffraction effects from the
space lattice appear to be small. Hence one is
led to consider the scattering of thermal neu-
trons in paraffin to be approximately of the
type considered in the preceding theory for
which exact solutions are now available when
the mean free paths and source distribution
are given. The experimental m. f.p. for thermal
neutrons in paraffin is 0.3 cm, with scattering
occurring about 150 times as often as complete
capture. In first approximation it is usual to
assume that the production of thermal neutrons
is uniform over the hydrogenous material in the
final steady state.

TABLE II. Normalized current density emission values.

8 or cos 1a

00
10'
20'
30'
40'
50'
60'
70'
80'
900

aps(1, 150)
p2(a, 150)

1.
0.978
0.911
0.805
0.671
0.522
0.367
0.219
0.0925
0

apl(1, ~)
p2(a. ~)

1 ~

0.976
0.905
0.794
0.656
0.501
0.345
0.202
0.0832
0

a+ +3a2
1++3
i.
0.976
0.904
0.793
0.653
0.498
0.342
0.200
0.0827
0

a+3a2/2
1 +3/2

1.
0.976
0.906
0.797
0.659
0.506
0.350
0.207
0.0876
0

ap2(1, 150) j 0.209 i
0.896Ps(a, 150) i 1+aJ

1.
0.977
0.907
0.798
0.661
0.509
0.353
0.207
0.0847
0
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Cos ~ = e, Angle referred to outward normal

FIG. 2. Normalized emission current distribution-in-angle
for thermal neutrons in paraffin.

Concerning the nature of the thermal neutron
emission from the para%. n block, Fermi pro-
posed the current density distribution (per unit
zonal angle) cos 8(1++3cos 8), where 8 is the
zonal angle referred to the outward normal of the
emitting face. Fermi" and Bethe" in deriving
this relation neglect the small capture effects,
introduce the classical diffusion coe%cient,
assume isotropic scattering, and consider no
distributed interior sources in the block (idealized

into a half-infinite medium) but merely assume
the number density to vary linearly near the
boundary. These many assumptions are not
completely compatible. Therefore, it is of in-
terest to obtain the emergent number distribu-
tion-in-angle on the basis of the present theory
which incorporates source and capture effects
directly, makes no use of a diffusion coefficient,
and has an exact solution.

The emission distribution is given by Eq. (7a)
when s lies in the interval ( —1,0) or s= —cos 8.
Only the case of a uniform source distribution
(m =0) will be considered in detail. Since
Pi(s, 0), or P2( —s, 0), appears to constitute a
new transcendental function, numerical evalua-
tion of the definite integral definition was
necessary to obtain the results given in Table I
for various values of the ratio N of capture to
scattering mean free path, or the inverse ratio
of the cross sections cr„o, , i.e. ,

N= f,/l, =a, /0, = 20/(1 —20). (10)

The notation p2(s, N) has been introduced for

P2(s, 0), where 0 and N are related as in (10).
To eff'ect the evaluation, the infinite integral of
Eq. (6g) was transformed to the following proper
one by introducing the new variable arctan
(1/su) and then integrating partially the frac-
tional part of the resulting integrand:

Pg(s, N) —1 t
" cot 8+N8

ln = ! d0 arctan (s tan 8), R(s) (0.
(1+s)l m ~0 N+1 —N8 cot 8

The curves of 1/p2(s, N) as a function of s
and of 0 are shown in Fig. 1.

These curves can be interpreted as being pro-
portional to the emission distribution from the
half-infinite medium. The pure scattering case of
¹

~ has meaning only in a limiting sense,
since the factor of proportionality 1/p2(~, N)
=(N+1) ** becomes infinite, unless the interpre-
tation is made on the basis of the homogeneous
equation solution (7b) due to an "infinitely-
strong" current incident on the "infinitely-far
off" face. The exact solutions have a marked
dependence on N; and the Fermi relation

2~ E. Fermi, Ricerca Scient. 7, 13 (1936).
"Reference 25, pp. 132—3.

1++(3)s is but a rough approximation to the
case N= 150, having a slope more nearly corre-
sponding to N = . If the distributions had
been reduced to the same value at normal emis-
sion, s = 1, then the Fermi relation and the
N = ~ case would agree for not too large angles—
which is not surprising considering the homoge-
neous equation interpretation of the N= ~ case
and the generally-corresponding character of the
assumptions underlying the Fermi relation.

Passing to the quantity which can be ob-
served directly in experiments, namely, the
current density distribution normalized with
respect to the normal emission value, one ob-
tains the curves of Fig. 2 together with the
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experimental observations of Livingston and
Hoffmann" on thermal neutron emission from
the standard paragon cylinder. Any value of N
from infinity down to 150 in the exact solution
appears compatible with the experimental re-
sults. The simple cosine law corresponding to
pure capture is definitely outside of the experi-
mental data, as also is the cosine-squared law
drawn in for comparison. To the scale used, the
Fermi law and the N= ao case are indistinguish-
able, while the discrepancy with the N = 150 case
has been reduced over that present in the
number distribution-in-angle because of the
normalization process and the addition of the
cos 0 factor. It may be noted that the relation
cos 8(1+~3 cos 8)/(1+2) gives a curve intermedi-
ate between N= ~ and N= 150 with, therefore,
a better approximation to the exact solution for
N= 150 than the Fermi law." However, the
differences for N greater than 150 are hardly
large enough to be emphasized in comparison
with the indicated statistical uncertainty of the
experimental observations. The numerical data
are summarized in Table II (the last column will
be referred to in the next section).

$12. Ratio of capture to scattering mean free
path

The comparison with experiments just made
indicates that the lower limit to be expected for
N is approximately 150. However, it is to be
observed that the deduction is based on the
hypothesis of a uniform production of thermal
neutrons, whereas it is probably more reasonable
to expect the production rate to fall off near the

28 J. G. HoQ'man and M. S. Livingston, Phys. Rev. 53,
1020L (1938).

"The current law cos 8L1+ (3/2) cos Oj can be obtained
by a modified treatment based on the assumptions under-
lying the Fermi law.

emitting face. To obtain some idea of the effect
of such a falling-off, the solution for a source
distribution like 1 —e "', m= 1/I, was obtained
by superposition (the smallest m value possible
with the extent of the calculations given in
Table I was used). The resulting current distri-
bution lies roughly halfway between the N=150
and the N= ~ uniform source cases, as shown

by the last column of Table II. Thus N can
possibly take smaller values than 150. The
source distribution or the emission current must
be known more precisely to fix N in this way.

Another method for the determination of N
appears in the cross section expression. Com-
bining two different experimental values for the
scattering cross section" " with the capture
cross section measured for water" (a direct
measurement for paraffin is not known), one
obtains for N the two values, 169&8 percent
and 195~8 percent, indicating that N actually
lies between 150 and 200.

The Fermi "albedo" formula" gives an ex-
pression for evaluating N as

N=R', (12a)

where R is the ratio of the activity of a thin
detector placed deep in the interior of the

paragon to that at the surface of the paraffin.
The exact solution for uniform sources furnishes
a somewhat modified formula:

N= R' —2R. (12b)

If one uses a recent quotation'4 of R = 14 he

J. G. Hoffman and M. S. Livingston, Phys. Rev. 53,
929A (1938).

~I H. Carroll and J. R. Dunning, Phys. Rev. 54, 541L
(1938);H. B. Hanstein, Phys. Rev. 5'7, 1045L (1940).

"A. H. Specs, W. F. Colby and S. Goudsmit, Phys.
Rev. 53, 326A (1938).

» Reference 24, p. 910, Eqs. (10) and (11).
34 J. H. Manley, H. H. Goldsmith and J. Schwinger,

Phys. Rev. 55, 44 (1939).

TABLE III. T'ransrnission ratios for absorption coePcient measgrernents.

0
0.2
0.4
0.6
0.8
1.0
1.4
2.0

EQ. (14) WITH
ExAcT SQLUTIQN

N =150

1.
0.620
0.435
0.316
0.234
0.175
0.101
0.046

Kt(Kg) +(3/2) Ks(Kx)

1+3/4

1.
0.629
0.443
0.322
0.238
0.179
0.103
0.047

K&(K~) +~3K&(K~)

1+~3/2

1.
0.634
0.448
0.326
0.242
0.181
0.105
0.048

EQ. (14) WITH
ExAcT SQLUTIQN

N=~

1.
0.634
0.447
0.325
0.241
0.181
0.105
0.048
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obtains %=168, The expression (12b) involves
the usual assumption that a thin detector's
activity is proportional to the number density
at its location and that N is constant over the
thermal speed band. The expression comes from

F(") f(0 —")—ql/R= =(%+1)'*+1, (12c)
F'(0) f(0, 0) qt/—v

where the second equality comes from the
Laplace transformation (4a), and the third,
from the use of the solution (7a) for the f's
with m=0. 35

$13. Thermal neutron absorption coefficients

With the character of the thermal neutron
emission from the standard paraffin block known,
the experiments with plane parallel layers of
absorbers and detectors exposed to the emission
can be interpreted. Scatterers, however, may
introduce complications due to the disturbances
of the boundary condition by the back scattering.
A class of experiments for which the emergent
number density distribution (and not current
density) enters more directly into the interpre-
tation of the results is represented by absorption
coefficient measurements for different materials
with thermal neutrons. Varying thicknesses of
the absorber material are placed between the

paragon face and the detector; and the resulting
reduction in the activity of the latter depends
essentially upon the particle numbers allotted

by the paraffin block to the different oblique
directions through the absorber, as the following

analysis shows:
Let X and x denote the absorption coefficient

and thickness of the pure absorber, and k and t
the same quantities for the detector. Then the
number absorbed per second per unit area by

35 In connection with the albedo it should be mentioned
that the approximation 0.= -', used by Halpern, Lueneburg
and Clark in their numerical formula for albedo with
incident currents on a half-infinite medium is quite serious
if N is actually of the order of 150. This is easily seen
in the case of a normally-incident current when the
numerical factor 2.91(N= ~ ) in Eq. (66a) should be
changed to approximately 2.56(N=150), and the corre-
sponding N value inferred from Amaldi's and Fermi's
measurements lowered from 261 to approximately 203—
the exact value requiring further calculations of the
p2(i, N) function. The case of uniform incident currents
has been discussed explicitly by W. de Groot and K. F.
Niessen, Physica 7, 199 (1940).

the detector in the v-speed class will be:

. I

a(v, Xx) =Jt dnvaf(0, a)e-x*t (1 —e-'" )
0

1

='vkt
~l daf(0, a)e x*t (13a)

0

where v~f(0, a) represents the emission current
density (o;=direction cosine referred to outward
normal from the paraffin block), e x*' repre-
sents the fraction emerging from the absorber
plate, and 1 —e "" represents the chance of
capture by the detector plate, all edge effects
due to finite area of extent being neglected. The
last integral in (13a), valid for an infinitely-thin
detector, is just the number density F(x) of
v-speed neutrons at the location of the detector.
From this one sees that proportionality between
absorption rate and number density will always
exist for a very thin detector producing no ap-
preciable disturbance at the place of insertion.
The activity of the detector for a given speed
class should bear a definite relation to the ab-
sorption rate, and in the final steady state should
be proportional to it; i.e. ,

A(v, Zx) = C(v)n(v, Xx) = C(v)vktF(x), (13b)

where C(v) is a proportionality coefficient.
The transmission ratios become

A(v, Xx)/A(v, 0)

1 1

='

J deaf(0, n)e 'r*t~ Jl deaf(0, n.), (14)
0 0

giving the reduction in detector activity due to
the interposition of an absorber of thickness x
in terms of its absorption coefficient X and the
source's characteristic number density distribu-
tion f(0, n) Amald. i and Fermi" have given
plots of Eq. (14) for the cases: (a) f constant,
giving the first associated logarithmic integral
Xi(Xx),'r and (b) the Fermi rela, tion 1++3n,
giving [Ei(Xx)++3%2(Ex)]/(1+g3/2) .

For the exact solution obtained in this paper

36 Reference 24, p. 902, Fig. 2,
'7 The associated logarithmic integrals are defined as:

X„(s)= j01dne 'I+a" ~, n=0, 1, 2, ~ with the logarithmic
integral being the zeroth member. V. A. Kostitzen,
Institut des Math. de Moscous (1926), p. 15, gives a
tabulation of the first five associated logarithmic integrals.
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in the case of %=150 and uniform sources, the
second column of Table III gives the results of
an approximate calculation for the transmis-
sion ratios. The calculation has been made by
averaging an upper and lower linear approxi-
mation to the curve shown in Fig. 1 (s-scale) for
N = 150. It is evident from Table III that

f=1+(-',) 0 is again a better approximation to
the %=150 case than the Fermi relation, and
that the X= 00 case follows closely the Fermi-
Amaldi transmission ratios. Further possible
applications of the exact solutions, such as in
nuclear level widths, '4 will not be considered at
this time.
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The Kelvin method for the determination of contact potentials is adapted for measurements
between filaments in vacuum. Measurements between a heated and a cool tungsten filament
indicate an increase in the work function of tungsten, with temperature, of 6.3X10 volt per
degree centigrade. This effect is distinguished from changes in work function arising from vari-
ations, with temperature, in contaminating layers on the tungsten, which tend to obscure the
true temperature coefficient even under the best vacuum conditions. The observed true temper-
ature coefficient appears to be comparatively independent of the existing degree of surface
contamination. This suggests that the temperature effect must reside primarily in the thermo-
dynamic potential of the electrons inside the metal and not in the potential barrier at the
surface. The coeKcient obtained resolves the discrepancy between the experimental value of A

in the Richardson equation and the theoretical factor of 120 without the introduction of a
reflection coefficient.

N increase in the electronic work function of
~

~

tungsten, with temperature, of approxi-
mately 6X10 ' volt per degree centigrade was
estimated by Waterman and Potter' in 1936 from
data they obtained from measurements of contact
potentials employing the Kelvin method. This
positive temperature coefficient of the work func-
tion was in definite disagreement with a negative
coefficient of approximately 4X10 ' volt per
degree reported for pure tungsten, earlier in the
same year by D. B. Langmuir. ' His calculations
were made from shifts of thermionic curves
attributed to changes in contact potential be-

* Part of a dissertation presented to the Faculty of the
Graduate School at Yale University in candidacy for the
degree of Doctor of Philosophy.**Now at South Dakota State School of Mines, Rapid
City, South Dakota.

' A. T. Waterman and J. G. Potter, Phys. Rev. 51, A63
(1937).

~ D. B. Langmuir, Phys. Rev. 49, 428 (1936).

tween a collector and an emitter. Although
Langmuir expressed the opinion that the nega-
tive coefficient might be an effect resulting from
imperfect vacuum conditions, this coeKcient did

agree well with some deductions of Nottingham. '
As pointed out by Becker and Brattain, ' if the

work function, w, is of the form, w=wo+nT,
0. being the temperature coefficient and T the
absolute temperature in 'K, then when m appears
in the exponent of the Richardson equation, the
effect of the second term in m is to multiply the
theoretical thermionic current by the factor,
e '~, where k is Boltzmann's constant. After the
value of 6)(10 ' volt per degree had been re-

ported for 0. in the case of tungsten, ' it was
noticed that this value made the factor, e—~~,

'W. B. Nottingham, Phys. Rev. 49, 78 (1936).
4 J. A. Becker and W. H. Brattain, Phys. Rev. 45, 694

(1934).


