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A Theory on Cathode Luminescence
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A tentative explanation is given of experiments concerning the dependence of the brightness
of a luminescent material on the voltage of electron bombardment. A model is assumed in which
surface effects prevail over luminescence in using radiation energy. The possibility of a quanti-
tative theoretical treatment is largely due to symmetry properties in the diffusion of scattered
electrons in a solid body.

1. INTRQDUcTIQN

B. BROWN' performed accurate meas-
~ urements of the amount of light emitted

by a luminescent material known as "artificial
willemite" (Zn2si04+about -', percent Mn02
activator) when bombarded by cathode rays of
200 to 1300 volts. ' Measurements were made
varying both voltage and current density.
Luminescent energy was emitted within a band
at about 5500A. The important feature of the
experimental result is expressed by the formula:

8'=5.10 'V'+0. 17.

lV is the luminescent energy per impinging
electron measured in electron volts, V is the
voltage of the impinging electrons. This formula
is valid for small currents and represents a very
good approximation of the experimental results
between 200 and 800 volts; above 800 volts S'
becomes slightly larger than indicated in (1).
We shall call egci ency the fraction of the
electronic energy converted into light, that is
W/V. The efficiency is small: at 200 volts its
value is 0.002; that is, one obtains an average
of 2/10 of a light quantum per electron. If the
slight correction arising from the term 0.17 is
neglected, the egciency increases proportionally
with the energy. The term 0.17 will be neglected
in the general lines of the explanation; its
meaning will appear only in the final discussion.
It is very striking to find a steady variation of
efficiency following a simple formula, since the
phenomenon itself is quite complex and since

' T. B. Brown, J. Opt. Soc, Am. 27, 186 (1937).
2An independent research by W. H. Nottingham (J.

App. Phys. 8, 762 (1937)) confirmed Brown's results and
was extended to a wider interval of voltage, in which,
however, the quantitative relations are not so impressive
as in Brown's interval.

the elementary processes involving slow elec-
trons are not known to follow any simple
quantitative law.

Further information may be obtained from
experimental results quoted by N. Riehl. ' This
information concerns production of luminescence
by n-particles in ZnS+activator Cu which takes
place with very high efficiency (order of magni-
tude 80 percent). The mechanism of the phe-
nomenon is not supposed to be very different in
the two cases studied by Brown and Riehl.
Assuming that each atom of Cu can only emit
one or two quanta under the influence of the
same n-particle, Riehl calculates the number of
Cu atoms which are needed to convert into
light the energy of a single O.-particle. From this
number he calculates, then, that an o;-particle
is able to excite Cu atoms at a distance of
4&10 ' cm from its path.

It is striking to find a large difference in the
order of magnitude of the efficiency of o.-rays
and cathode rays whose velocities are nearly the
same. (Because of general arguments of the
theory of the stopping power, the density of
production of excited atoms cannot be very
different if the velocities are nearly equal. )

2. GENERAL LINEs oF ExPLANATIQN

We shall call 6 the effective range of diffusion
of the energy transferred by charged particles to

3 N. Riehl, Ann. d. Physik 29, 636 (1937).
4 The information given by n-particle experiments

precludes any explanation of Brown's small efficiency
which would rely on the crowding of excitations along the
path and on the fact that crowding decreases with in-
creasing energy. Ultraviolet rays also produce luminescence
with very high efficiency (about 50 percent); however,
no strong argument may be derived from this since the
mechanism of luminescence may conceivably be quite
different in the case of ultraviolet rays.
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a luminescent crystal. Thus 6 is the maximum
distance at which charged particles are able to
excite luminescent atoms. It is reasonable to
assume that 6 is of the same order of magnitude
for n-particles and slow electrons and not very
far from the value 4)(10 ' cm calculated by
Riehl.

The energies of a-particles and slow electrons
having the same velocities are quite different.
Alpha-particles are not strongly scattered and
penetrate very deeply ( 3 X 10 ' cm) into a
crystal before being stopped; slow electrons are
strongly scattered and readily stopped before
penetrating deeply: One may guess that the
penetration of 200-volt electrons is about 10 '
cm. Hence the penetration of cathode rays into
the crystal is much smaller than 6, whereas it is
much larger in the case of n-particles. Therefore
the diffusion of energy takes place in the case of
a-particles far away from the surface, whereas
its very origin lies near the surface in the case
of electrons.

Parasitic processes, as production of heat or
emission of secondary electrons, may prevent
the diffusing energy from reaching luminescent
atoms. S"e shall assume that parasitic processes
are much stronger on the surface than in the
interior of the crystal. This explains that the
efficiency of slow electrons is very small and that
it increases with increasing energy and penetra-
tion of the electrons. Our assumption cannot
be proved, since sufficient knowledge of the
excited states of crystals is not available, but
it may be easily made plausible. As a general
rule, the coupling between electronic and nuclear
motion in solid matter is very effective in
transforming excitation energy into heat; special
symmetry and periodicity relations may reduce
the intensity of this process strongly, but
irregularities of symmetry or periodicity will
conversely destroy any metastability. The sur-
face of a crystal constitutes a very important
irregularity, not only as a discontinuity, but also
because the surface itself may not be smooth.

We shall first make the particular assumption
that energy reaching the surface by diffusion is
very likely to be lost for the luminescence
process. The actual probability of loss on the
surface will be deduced as an experimental result.

In )3 we shall consider the diEusion of energy.
Excitation energy may be transferred from an
atom to the neighboring ones in the lattice;
wandering excitations may be treated as diffusing
particles, called excitorfs. ' Excitons are scattered
(elastically or inelastically) by any irregularity
in the lattice: thermal motion, foreign atoms and
so on. The energy of the excitons is absorbed in
one or several steps. We shall assume that the
efficiency of an exciton is proportional to its
probability of diffusing to a distance 6 without
having previously reached the surface. Elemen-
tary considerations of diffusion theory show then,
that the efficiency is proportional to the distance
of the origin of the excitons from the surface and
that the proportionality coeScient is about 1/A.
Hence one obtains agreement with the experi-
mental egciency 10 ' for 200 volts, taking as
reasonable figures 6 10 4 cm and the distance
of the origin of the excitons from the surface

10 ~ cm.
One will then investigate (f4) how the

"average depth" of production of excitons
depends upon the initial energy of the electrons.
It is helpful to apply symmetry considerations
to the process of multiple scattering and diffusion
of the electrons. The "average depth" may be
expressed in terms of simpler physical quantities:
free path of scattering and stopping power of
electrons, and "effective albedo'" of the material
for impinging electrons.

Free path of scattering and stopping power
will require some particular discussion, since the
approximations generally used are rather inac-
curate within our range of energies. Knowledge
of the "effective albedo" would require a detailed
solution of the diffusion problem, but one may
show that its influence on the results is very
small. One will finally show that the average
depth of production of excitons is nearly pro-
portional to the electronic energy ($5). The final
formula may be fitted quite well to Brown's
experimental results ($6).

The properties of excitons may vary within a wide
range, since they are very sensitive to quantitative relations
of the particular crystal lattice (reference may be made
to a paper by J. Frank and E. Teller, J. Chem. Phys. 0,
861 (1938)).

Following the analogy with neutron diff'usion, we
indicate as "effective albedo" a physical quantity con-
cerning that fraction of the impinging electrons, which
emerges again from the surface after diffusion.
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3. EXCITON DIFFUSION AND SURFACE

ABSORPTION

one has:

it-x/6+C; w-xe/6+Ce. (5)

~-kx if kx« i.
Moreover, since g 1 for x 6, we have:

k 1/6, it x/6, if x«A.

(2)

(3)'

Calling m the average amount of energy radiated
as luminescent light, one has:

w = ite~xe/6

We shall now take into account two factors
neglected heretofore. First the probability of
an exciton's reaching the surface and being
reflected by it without absorption is the product
of the probability of its reaching the surface,
and the reflection coefficient r (which is still
supposed to be small). This product is nearly
equal to r, since the first factor is (1—x/d) 1
within the limits of our approximation. Second,
we have so far considered the free path of
diffusion / as infinitely small as compared with x
(according to the usual assumption of diffusion
theory). If //0, but still /«x, one has to add to
(3) a constant of the order of //A. Then, putting
Cas:

To determine the ef6ciency g of an exciton of
energy ~ produced at a small distance x from the
surface, we assume first that the exciton is lost
if it reaches the surface. We conclude from
u-particle experiments that the eSciency is
practically unity if the surface losses are avoided.
The efficiency q is then equal to the probability
p(x), that the exciton does not reach the surface
and we want to calculate this function under
the assumption: p(x) «1. A second exciton
produced at a depth 2x has the probability P(x)
of never coming within a distance x from the
surface; if, however, it does come within such a
distance —the probability for this is (1—p(x))—
it still has the same probability p(x) of escaping
as the exciton considered first. Hence we find a
total probability: p(2x) =p(x)+(1 —P(x))P(x)

2p(x), neglecting p(x)', and we deduce, that
it =p(x) is proportional to the depth:

The generalization to the actual production
of many excitons by the electrons is carried out
by introducing the amount of energy e(x)dx
lost by the electrons between the depths x and
x+dx. Hence (5) goes over to:

xe(x)dx

W= +C e(x)dx,
Jp

(6)

which is the theoretical expression to be com-
pared with (1). The physical meaning of
Jo"xe(x)d"is ev..idently: the excitation energy times
the average depth at which the excitation takes
place.

4. SYMMETRY PROPERTIES OF ELECTRON

DIFFUSION

xn(x) dx =a¹

Electrons entering a solid body undergo
multiple scattering, which goes over into diffusion
and may eventually lead to the re-emission of
the electrons. This phenomenon is rather compli-
cated by the parallel action of diffusion and
energy losses; slowing down changes the prob-
ability of scattering, as the diffusion goes on.
The following qualitative considerations of
simple diffusion phenomena will be helpful for
the calculation of Jo"xe(x)dx.

We shall consider the diffusion of particles
with unit mean lifetime produced at a rate of N
per second (their total number is then X). The
particles diffuse in a three-dimensional space
without boundaries and are produced along the
plane x=a. Call n(x)dx the number of such
particles between the planes x and x+dx; we
want to discuss the average value of the x co-
ordinate of the particles, that is, (I/N) f "xn(x)dx.
The symmetry of the system requires n(a+8)
=n(a 5), and —hence:

C=//6+r (5')

~ The formula without the condition x/A«1 is of the
type:

1 —e-x' .

We shall now distinguish as particles of
"class 1" those particles which have already
crossed the plane x=b (b &a) at least once; all
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the remaining particles shall be called of "class
2," so that: n(x) =n~(x)+n2(x). The particles of
class 1 (N~ in number) are distributed as particles
produced along the plane x = b; hence:

)I xn, (x)dx =bN, (7')

Since no particle of class 2 is found to the left of
x=6, we have:

aN= J~ xn(x)dx=)I xnan(x)dx

0 b

FIG. 1. n(x): Plot of the approximate distribution of
particles originating along the plane x=a. n1(x): Plot of
the approximate distribution of particles having already
crossed the plane x=b. n~(x): Plot of the approximate
distribution of particles which have not yet crossed the
plane x=b,

+~ xn, (x)dx =, bN+
~

xn, (x)dx. (8)

We consider now particles which are produced
at x=a and which are lost if they reach the
surface x =0. Their distribution is represented
by n(x) =n2(x), if one takes b=0; then (8)
becomes:

where 8 is the angle between the directions of
the particles at x= 6 and the x axis, and where
(Icos 8I)Ay is the average of the absolute value
of cos 0. The same method may be applied to
the case of a nonisotropic source of particles,
for instance directed towards x = ~, substituting:

a~a+X&
I
cos 8

I )A, .

xn(x)dx =aN.
0

b~b —)«Icos 8~)A„, (10)

'The mathematical treatment of the same problem is
this: Call q(x) the distribution of production of the
particles, r their mean lifetime, D the diffusion coefficient
of the particles. n( ~ ) = 0 with its derivatives is the
general boundary condition; n(0) =0 is the effect of the
absorption at x =0. Then:

d'na ———~(x)+~(x) =0
x2

Qo d'nf xn, (x)dx fx7 D —=,+g(x) dx

dn CO CO 93= Dg x —-n +7 xg(x)dx = v xg(x)dx.dx 0 o 0

The integral on the left side of (9) is independent
of the number of surviving particles fp"n(x)dx:
the more particles fiow out through the surface
x=0, the farther the survivals diff'use in the
interior towards x = ~.'

If one takes into account that the value of
the free path X of the particles is not negligible
one cannot consider the particles of class 1 as
if they were produced at x = b because they are
all directed towards x= —~ when they cross
this plane. The coherence of their directions is
lost at the end of their free path; we have then
to substitute in (7'):

We consider now the diff'usion within a body
extending from x=0 to x = ~; particles enter
the boundary surface x=0 and are lost, if they
fiow out again through it. In this case we have
to introduce the substitutions (10) and (10')
into (g) and then to put a = b = 0. Calling J the
current of particles, we have then:

JI xn(x)dx= J;„X;„&
I
cos 8;„l)A„

0

+Jo ~ho ~(Icos 8 ~ l)A ~ (11)

The average depth of the particles is thus de-
termined by the How of particles through the
boundary and by their free path, independently
of the actual details of the diffusion problem.

The problem of finding jo"xe(x)dx for electrons
scattered in a solid body is still more complex.
One may consider electrons having been slowed
down as classified according to their energy;
slowing down shifts electrons from one class to
the next one. One finds that symmetry con-
siderations still apply to each class so that a
final result analogous to (11) may be found.
Anisotropy of scattering has also to be taken
into account; this must be done here —as in
many other problems —by dividing the actual
mean free path by 1—&cos 8)A, (8 =deflection).
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We shall now go over to quantitative calcula-
tions. We introduce a system of polar coordinates
0, P, having x as polar axis, and call F(x, s, 0)
the current of electrons of residual "true" range
s ' at a depth x with direction 0, per unit residual
range, per unit solid angle. We call 8 the angle
between the directions (0, @) and (0', g'), a.(@)dQ'

the diff'erential cross section for elastic scattering
from (0, P) into (O', P') within the solid angle dQ'

and N the number of scattering atoms per cc.
F(x, s, 0) is a solution of the equation:

F~(x, s) represents the positive current of
particles with residual range s across the plane x.
Jp F(s) F~(x, s)ds is the total stream of kinetic
energy across it towards x= ~ where Z(s) is
the energy corresponding to the residual range s.
Hence the negative gradient of Jo"F.(s) F&(x, s)ds
represents the density of energy loss of the
electrons;

8FI
e(x) = — F(s) ds.

0 Bx

BF 8F r
cos 0 = NF—(x,—s, 0) o(0)dQ'

LPX BS ~ 4~

Integrating by parts, using (13), changing the
order of integrations and using the condition
F= 0 for x = ~, we obtain the final formula:

+N F(x, s, 0') o(8)dQ' (12.)"
4~ "0 4 0

(15)
Putting: rs

8(s) =
~~

ds'E(s') exp
0

cos"0 F(x, s, 0)dQ = F (x, s)
4x

(Icos 0 l)A+~ t(Icos 0, tl)A

This formula closely corresponds to (11),

and taking into account the properties of the since F2 0, s may be represented as:

spherical harmonics, one has:

8 F2 ()FI

where:

—FiN ' o(8)(1—cos 6)dQ'
~4~

BFg 1
1F

Os

8(s) replaces 'A; its dimensions are: energy loss
of electrons times depth of their penetration.
The dependence of B(s) on the elements de-
termining the penetration, scattering cross
section and stopping power dZ/ds, appears more
clearly in the asymptotic formulae:

and hence:

1/X=N J4 0.(8)(1—cos 8')dQ',

8F2(x, s')
Fg(x, s) =

I ds ——exp
oo . BX

f ds

F(') = F(x, s, 0)P)(cos 0)dQ,
4m

—= N(0.0
—O. I) = N 0(6)$1—PI(cos 8)7dQ'.

4m'

' "True" range is the range measured along the actual
path. We consider s as a suitable measurement of the
energy of the electrons.

"See for an analogous equation: W. Bothe, Zeits. f.
Physik S4, 161 (1929).

"Expansion in spherical harmonics may be considered
as a general method of attack to the integral-differential
equation (12) and transforms it into a chain of differential
equations;

l BF(' ') l+1 BF('+') BF(') 1+ F(I) ~

2l+1 Bx 2l+1 Bx Bs

h(s) E(s)X(s), if X(s)«s,
8(s) -Z(s. )s, if X(s)))s.

A better approximation than (16) is:

(16)

(17)

~(x)dx = dsR(s) Fi(0, s).
0 "0

5. DISCUSSION

We have now to collect the evidence available
at present concerning the dependence of the
quantity (15) on the initial energy of the

( dX 1 dB
G(s) =Z(s)X(s) I

1 ————— + ~ ~ I. (16')
ds Z ds )

For the second integral in (6) one has, obvi-
ously:
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electrons. Equation (15) is given as a function
of the free path X(E) =li(s), of the stopping
power dE/ds (appearing as E(s)) and of F2(0, s).
The quantity F2(0, s) is an integral over 0 and
consists of the contributions of the impinging
electrons (0~& ir/2), which is known, and of the
outgoing ones (8&~ m/2). The unknown features
of the diffusion" affect only the integration for

The contribution to (15) arising from the
incoming electrons is proportional to the square
of their voltage U' if any one of the following
conditions is fulfilled:

(a) if X(s)«s and X(E) const. E, on account
of (16);

(b) if li(s)»s and dE/ds const. , on account
of (17);

(c) if both X(E) const. E and dE/ds const. ,

whatever the average of ) and s may be, since
then, putting li =uE, s =PE:

~P
8(s) = E"-= EX=

2m+ P 2n+P
Es. (19)

2n+P

"The determination of the outgoing part of F(0, s, 0)
is analogous, but more complex, to that of the "albedo"
of neutrons impinging on a paraffin block.

The contribution of incoming electrons is
sulficient to determine the dependence of (15)
on V completely;

(A) if the contribution of the outgoing elec-
trons is negligible;

(8) if the contribution of the outgoing elec-
trons is proportional to the contribution of the
incoming ones and the proportionality factor is
independent of the energy.

Fulfillment of one among the conditions (a),
(b), (c) and of (A) or (8) is sufficient to show
that (15) is proportional to V'. Proportionality
of the second term of (6), that is of (18), to V
is also a consequence of fulfillment of (A) or (8).

We shall next discuss how (A) and (8) are
connected with (a), (b) and (c). Condition (b)
leads automatically to (A), since then practically
no electron is scattered back. Condition (a)
involves an approximation opposite to that of
(b); however, (a) is consistent with (A), if the
relative energy loss along a free path is not
negligible. In this case every free path is shorter
than the former one; thus an electron is pre-

vented in most cases from reaching the surface
of the crystal soon after its first penetration
with a large residual energy. (A) is then fulfilled,
since the contribution of outgoing electrons to
(15) depends strongly upon their energy (possibly
upon its square, according to (a))." Condition
(8) is fulfilled if:

(8') 0(6), as a function of energy, is inversely
proportional to s ' and the relation between
energy and range has the form A= as' where a
and b are constants. The proof of this is obtained
through a similarity transformation of (11)
showing that, if (8') is fulfilled, a change of
initial energy affects the solution I' of the
diffusion equation only as a change of units of x
and s. Condition (c) together with the additional
assumption that the dependence of the angular
distribution of scattering on the energy may be
neglected, is sufficient to fulfill (8'), so that (8)
follows then as a consequence. The additional
condition is required, since proportionality of )
to s is less stringent than the condition 0(8)
=const. /s.

Going over to discussion of the quantitative
relations involved in (a), (b), (c), we have first
to evaluate by a wave-mechanical calculation
the effect of shielding on scattering of slow
electrons. The scattering cross section in a
central field is:

0(8) =
~ P (2l+1)P~(cos8)(e'"~ —1) ~'

32~'mB ~=o (20)

(m = electron mass, E=electron energy, 8i
=phase shifts of the wave functions determined
by field and energy).

1
0 (0) (1 —cos i1)dQ'

4
Nh'

Q f sin' (8,—8, ,). (21)
27rmB

"This picture is also supported by the experimental
evidence, that all but a small fraction of the electronic
energy is absorbed in a solid body. See the results discussed
by W. Bothe (Handbuck der Physi k, Vol. XXII/2, 1
(1933)), particularly those of B.F. J. Schonland (ibid. , p.
44); very soft re-emitted electrons are not taken into account
in these experiments. Secondary electrons emitted by the
surface are considered in our theory as "lost excitons. "

'4 This condition is fulfilled for instance (neglecting
logarithmic factors) in the case of high energy electrons,
for which Rutherford scattering is inversely proportional
to 8, while the range is directly proportional to it.
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large values of their b~, hence the first terms
sin' (8i —8i i) are of the order of 1 and the sum

converges rapidly after a certain value of /,

which is characteristic for the atomic number,
but does not depend upon the energy of the
scattered electron.

Figure 2 represents the values of:

2[+ t sin' (6i —8i i)]z +[+»in' (&i —&l—1)]s.
L l

+4[+ t sin' (bi —8i i)]o

I I I I 1

IQQ 200 300 40Q 5QQ 600 700 800
Volts

Fr@. 2. The effective average cross section for elastic
scattering of electrons: o-=J4 0.(8)(1—cos 8)dQ is given
by the square of the wave-length of electrons times
Z&l sin' (8&—8& 1) divided by m-. (From calculations based
on Thomas-Fermi model. )

Constant 8i's (and therefore constant X/E) are
the consequence of a potential field 1/r' for all

distances from the nucleus. The b~ for a Thomas-
Fermi field have been calculated by Henneberg. "
For high energy electrons all 6&'s are very small

and decrease with increasing energy; therefore
the terms sin' (5i —bi i) also decrease with in-

creasing energy. One finds ) to be proportional
to E'. At E=O all 6~'s are multiples of m. and X

tends to a finite value. In the intermediate
region (which is the interesting one)

P t sin' (ti~ —8, ,)

—that is E/X—goes through a /tat maximum.
Inasmuch as this function may be considered as
a constant in the neighborhood of its maximum,
one finds the relation X const. E." Because of
the characteristic features of a Thomas-Fermi
field, only the waves corresponding to the low

values of l ' are strongly distorted, giving rise to

"W. Henneberg, Zeits. f. Physik 83, 553 (1933).
'6 The Thomas-Fermi potential field is: Ze'/r y(r/p)

=Ze /r .rq (r/p); the function xq (x) has a very Hat
maximum and varies slightly if one changes the distance
from the nucleus within a factor 10. Further evidence on
the inverse linear dependence of scattering from the energy
is obtained by plotting Lenard's experimental data of
apparent absorption coefficients, as given by W. Hothe
(IIgndbuch der Physik, Vol. XXII/2 (1933), p. 41).

'~ These values correspond essentially to the possible
values of l for atomic electrons (see for instance: E. I'ermi,
Zeits. f. Physik 48, 73 (1928)).

and of its single terms as functions of the
energy, deduced from Henneberg's results by
graphical methods. Some approximations in
these or analogous calculations could hardly be
avoided. The result is fairly constant, since it
varies only by 28 percent within the range of
X=200 to 800 volts; as a consequence, X in-

creases in this interval by a factor 5.6 as
compared to 4 in the case of a 1/r' field and 16
in the case of a 1/r field. Variations of E/li are
chiefly due to the large amount of oxygen
contained in the material, since the typical 1/r'
region corresponds for oxygen to energies lower
than 200 volts. Henneberg's calculation neglects
the effects of electronic exchange and of polar-
ization of the internal electronic shells. Polariza-
tion is not expected to inHuence our result;
electronic exchange might be effective in im-

proving the constancy of li//E appreciably.
Both effects are difficult to take into account
quantitatively.

Through discussion of the stopping power as
a function of energy, we wish to justify two
fundamental qualitative assumptions and two
subsidiary ones: (1) the range s is definitely
larger than X (this is also known from experi-
ments) and hence (a) is nearly fulfilled; (2) the
relative energy loss along a free path [ (li/E)
&&(dE/ds)] is of the order of —,', hence (A) may
be fulfilled together with (a); (3) the stopping
power is fairly constant over our range of
energies, therefore (c) as well as (a) is nearly
fulfilled; (4) the ratio of the free path to the
"true" range and the relative energy loss along
a free path are fairly constant over a wide
range of energies, thus also (8) is not very far
from being fulfilled and one feels—though
indirectly —encouraged to use formula (19).
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One can hardly evaluate the stopping power
in our range of energies, since every theory
assumes that the particIe to be stopped is much
faster than atomic electrons, while this condition
is not fulfilled in our case. Considering, however,
that we need only qualitative results, we shall
tentatively use Bloch's formula" in the form:

ds

h'Ep E
= 0.385K——log —;I E X'p

(22)
6.04 I 2q '

Eo=
~

—
(

Z 13.54-11.2Z volts.
2~ Ee)

3.0 .

2.5-

2.0-

I.O-

0.5- Si

I I I I

300 600 900 1200 I500
Volts

This formula relies on Thomas-Fermi model and
might be not too inaccurate for slow electrons,
since it has been applied successfully to u-

particles having a velocity equal to that of
900-volt electrons. Comparison with experiments
is difficult in this region; experiments on ionizing
action in gases are available" and show a more
irregular dependence on energy than (22) does.

The zero point of (22) at E=Es is obviously
incorrect but a rapid improvement in accuracy
may be expected for increasing energy. For
E/Es)) 1 the variation of the log factor is

negligible and one has the well-known result
s const. E'. A maximum occurs at E=Epe 30Z
volts, which is very flat. Hence dE/ds is nearly
constant over a wide region (point (3) above).
This last fact is also due to the different position
of the maxima for different elements. Figure 3
represents the stopping power of Zn2Si04 and
of its single components. The result is certainly
very inaccurate below 600 volts since Ep is

336 volts for Zn; the stopping power should

O. IO-

HJW

(js
dE

I.O

- 0.5

,0.0200 400 800 800 1000 l200
Volts

Fro. 4. Correspondence between the "true" residual
range of electrons and their energy and between "effective"
free path and energy. The ratio (X/B)/(ds/dE) roughly
represents the fraction of electronic energy lost along a
free path.

probably be larger in this region than is indicated
in the figure.

The quantities X/E and ds/dE, which are
directly comparable, and, if constant, should be
equal to the parameters n and P of (19), are
plotted in absolute units in Fig. 4. Points (1),
(2), and (4) are verified by inspection of this
figure. The asymptotic behavior of both X/E and
ds/dE for large energies (1/r field) is proportional
to the energy and their ratio is then 4ZA„/(Z')A„
= 1/5.3; this result gives further evidence for (4).

Figure 4 shows that X/E may be fairly well
represented by a straight line between 200 and
800 volts; then:

5 5X10 M(1+7.3X10 'E)E cm, (23)FrG. 3. Stopping power of willemite, calculated from
Bloch's formula, assuming density 4. The contributions
of the single elements are also indicated.

(19)h(s) E(s)h(s).
2n+P

where E is expressed in volts.
"F.Bloch, Zeits f. Physik 8.1, 363 (1933). It mi8ht be The results (1), (2), (3), (4), indicated above

questionable, which way one should take into account the
effects arising from the largest energy transfers to atomic allow us to use any one of the formulae:
electrons. Formula (22) contains elements from Bloch's
formula and from a formula by H. A. Bethe (IIandbuch der ( dX 1 dE
Pkysik, Vol. XXIV/1(1933), p. 521 (56.10)).This is because h(s) ~E(s)$(s)

~
1 ———— + . (, (16')

the characteristic of Bloch's formula concerns large values ds E ds )
of the impact parameter, while the factor (e/2)& concerns
close impacts. Anyway, a change of this factor would

i3probably not affect the results too much.' See for instance: R. B. Brode, Rev. Mod. Phys. 5,
257 (1933).
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Remembering our former results it is easily
seen that the factors multiplying EX in both
formulae are equivalent and that their value is
approximately 0.75. Putting then (16') or (19)
into (15), we have:

t xe(x)dx 5.5 X 10—"y,
kp

X(1+7 3X10 4U) U' volts cm. (24)

y~ includes: the correction 0.75, as mentioned
above, a factor (1, if the incidence is not
normal, and the possible contribution (factor)1) of outgoing electrons to (15); y1 is expected
to be of the order of -,'. We call y2 the fraction
of incoming energy absorbed within the crystal,
i.e., not taken away by re-emitted electrons;
y2 is constant if (A) or (B) is fulfilled and has
to be very near to 1. Then (6) becomes:

y1/6 5.5X10 "(1+7.3X10 'U) V'

+y1 C V. (25)

6. CONCLUSION

The results of the quantitative discussion
seem to justify the following picture of the
luminescent phenomenon. The average penetra-
tion of slow electrons in a crystal is essentially
given by their eff'ective free path of scattering X

(defined in formula (13)). Because of character-
istics of the atomic field as represented by the
Thomas-Fermi model, ) is nearly proportional
to the energy of slow electrons. A better approxi-
mation is given in Fig. 4 and formula (23).

Slow electrons undergo multiple scattering
and diff'usion within the crystal, but it is not
necessary to calculate this process in detail.
One may calculate directly Jo"xe(x)dx, which is
the product of the energy lost by the electrons
within the crystal and the average depth of
energy loss. A careful discussion is necessary to
show, that JD"xe(x)dx may be considered as
proportional to the voltage of the electrons and
to their penetration ). The efficiency of pro-
duction of luminescence is proportional to the
average depth of production of excitons (i.e. , of
energy loss by electrons) as stated in )2. Thus
one finds finally, that the efficiency may be
considered as a linear function of the penetration
) of the electrons. Formula (25) is then obtained,

1.0 &in

0.8
+ EX PERIMENTAL POINTS
————CURVE (I)

CURVE (26)
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I
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200 600 800
Volts

1000 1200 1400

FrG. 5. Luminescent energy emitted by willemite when
bombarded by cathode rays, as a function of electron
energy, expressed both as brightness and as energy output.
The theoretical curve (26) agrees with the experimental
points still better than the empirical interpolation (1).
Two parameters have been adjusted to fit the points at
200 volts and 800 volts.

71/6 5.5X10 "V' 5X10 'V'

1.1y~10 ' 0.7X10 'cm.

This comparison corresponds to a rough theory
aiming to show that the efficiency is proportional
to the energy of impinging electrons. The
agreement is improved, if one tries to compare
the complete expressions (25) and (1) by
suitable determination of the unknown constants
hand C:

a U'+7. 3X10 4aV'+bU —+5X10 'V'+0. 17.

Numerical evaluation shows that these two
analytical expressions may be made nearly
coincident over a wide range of values of V by

which gives the amount of luminescent energy,
that is, the efficiency times the incident energy.

p& and y2 may be considered constant and
slightly smaller than 1.6 is the range of diffusion
of excitation energy within the crystal. C is a
physical constant defined by formula (5') and
still to be determined. The third term of (25)
corresponds to the constant term in the linear
representation of the efficiency as a function of
the penetration of the electrons (see formula (5)).

Comparison of (25) with (1), neglect of the
second and third term of (25) and the second
term of (1), gives:
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suitable choice of a and b. If we take, for instance:

a =ay/& 5.5 X 10 io = 2.28 X 10

t = C»=0.133,
(26)

in order to fit the points at 200 and 800 volts
exactly, that is:

&6X10 4 cm, C 014, (26')

"No important deviation of ) from (23) is likely to
take place above 800 volts, since the slope of X/B already
corresponds to its asymptotic value given by the theory
of Rutherford scattering.

then the discrepancy between (25) and (1) never
becomes larger than 0.03 volt in absolute
value, or 5 percent in relative value, between
200 and 800 volts (Fig. 5). This agreement is as
good as one could expect. Above 800 volts (25)
correctly represents the faster increase of S"
(see f1). Equation (25) is certainly not very
reliable below 200 volts, but it is important
that the theory indicates TV= 0 for V= 0 since
the extrapolation of (1) to U=O is obviously
incorrect.

The interpretation of the experimental results
now becomes slightly different from the simple
one outlined in )2. The theory does not consider
that the experimental points of the plot W(U')
lie on a straight line as represented by (1).
Instead it yields an S-shaped curve which fits
the experimental points as well as a straight line
between 200 and 800 volts and still better than
a straight line above this interval. "The result

is essentially due to the approximate constancy
of X/E, but the apparent linear dependence of
W' on U' is due to the opposite action of two
different factors. The slight increasing trend of
X/E tends to bend the curve W(U') upwards,
whereas the constant term C in the efficiency
tends to bend it downwards. The accuracy of
the agreement with the experimental results
appears not to be due to accidental relations
among the numerical constants, since it is only
slightly affected by rather large changes of the
numerical values (26').

From the formulae (5'), (26'):

C= l/6+r 0.14

we may obtain further information. The free
path of diffusion of excitons E should not be
larger than ), according to the assumptions of
our theory; now, since X/A«0. 14, one concludes,
that:

f/A«C 0.14.

Hence we obtain an evaluation of the probability
that an exciton impinging on the surface is not

absorbed by it:
r- C-O. &4.
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who suggested this work to me and supported
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