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The theory of resonances in the one-body problem model
is systematized. Energy shifts in the apparent position of
levels are found. The apparent position of levels in scatter-
ing and in y-ray emission is expected to be the same to
within ~F2/8 in the usual notation if the only repulsive
barrier is the centrifugal one. In the absence of strong
repulsive barriers there may be additional shifts of the
order F. Interference between levels is shown to occur for
the scattering cross section in the numerator and the de-
nominator of a fraction in accordance with Eqs. (3.3),
(3.6). The artificiality of usual formulas with interference
for cross sections is discussed in this connection. The
construction of Green's function for two-dimensional
separable problems is described. The construction works
also for some many-dimensional problems. The reduction
of the number of essential dimensions is outlined by a
reformulation of the problem in one less dimension. Ap-
plications are made to the solution of scattering problems
which represent schematically idealized nuclear problems.
The single particle potential barriers enter the solutions
through the regular and irregular solutions f, g of the
radial equation. It is seen from the solutions that the

yield may depend on the f and g for various excited states
of the residual nucleus. A simplification occurs if the inter-
action is highly repulsive and is localized in the two-
dimensional space of the distances of the particles from
the center. In this case the regular functions f for the
incident and final state enter linearly in the wave function
as in Eq. (15.5). If the interaction region is made large and
if the incident state happens to be especially important
in the expansion of Green's function then the factor g of
the incident wave occurs in the formula for the cross
section as in Eq. (16.4). A resonance model is worked out
by assuming the interaction to be highly attractive within
a circle and repulsive in a ring surrounding the circle in the
two-dimensional diagram. The damping constants in the
resultant formula contain f' as in Eq. (18.8). Here also
the single dependence on f' is a consequence of having
localized the interaction to a narrowly defined radius for
the incident particle. In the general case each damping
constant involves the g of different states. The examples
show that quantitative applications with simplified forms
of damping constants and with interference types of dis-
persion formulas have only a limited validity.

INTRoDUcTIoN

"ANY nuclear reactions show excitation
curves with pronounced peaks which sug-

gest that there is a resonance of the nuclear
system to certain energies. The older discussions
of such resonances have been concerned mainly
with "one-body" models in which the actual
system was schematically represented as a
system consisting of the incident particle moving
in the field of the bombarded nucleus. The large
number of resonances discovered in the bombard-
ment of nuclei by slow neutrons as well as other
reactions have shown the inapplicability of the
"one-body" picture in the majority of cases and
it has become clear that many nuclear particles
are usually involved in a resonance state.

The general physical aspects of the problem
are clear and well known. ' ' The bombarded
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nucleus together with the incident particle can
form a state which has an appreciable stability
and a relatively long mean life. The width of
the state is connected with the mean life by the
indeterminacy relation so that a long life corre-
sponds to a sharp level. The compound state is
formed with a maximum intensity when the
incident particle has a suitable energy and with
smaller intensity when the energy of the bom-
barding particle is varied through the resonance
width. The compound state disintegrates in
several energetically possible ways producing
either scattered incident particles or disintegra-
tion fragments.

This picture is good enough for a qualitative
understanding of some reactions. It is not entirely
satisfactory for quantitative applications. The
compound state used in the above description is
not defined by the description itself and it is
understood in different ways by different physi-
cists. Some think of it in strict analogy to pre-
wave-mechanical pictures as being like an ex-
cited state of the electronic system of an atom
which can emit photons of several different
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wave-lengths by making optical transitions. This
picture is correct except for its pre-wave-
mechanical features. Without wave mechanics
one can describe qualitatively the decay of the
atomic level by introducing Einstein's emission
probabilities and saying that the atomic system
jumps to one or another of the lower levels with
the simultaneous emission of a photon. So far
the picture is correct. It is then said that the
level width is increased because it is not a real
stationary level and that the emitted lines will be
fuzzy. For a justification of the latter view an
appeal is made to the indeterminacy principle.
At this point there is a bad mix-up, the word
"level" being used in two different ways. In the
first part of the picture it was used in the sense
of an atomic level, the atomic system being
pictured as an idealized mechanical unit with its
interaction with radiation neglected. This kind
of "level" is a clear concept as long as it lies in
the discrete part of the spectrum, as it is sup-
posed to lie. It is not diffuse but absolutely
sharp. When, toward the end of the explanation,
one speaks of the "level" as diffuse, it is the
level of the compound system consisting of
atom+radiation field that one is thinking about.
This kind of level is not well defined in the above
explanation.

The actual situation in the optical case has
been cleared up by Weisskopf and Wigner. '
They showed by a perturbation calculation that
if an atom is put into an excited state j, so that
it is definitely in that excited state at the time
t=0, then at later times there is (a) an expo-
nentially decaying probability of the atom being
in the excited state j, (b) a growing probability
of lower atomic states i, k, l and of photons with
corresponding energies. The energies of the
photons emitted in the ji jump are approxi-
mately equal to the energydifference E;—E;=E;;
between the upper and lower atomic states. The
band of photons emitted in such a jump is found
to have an intensity distribution of the resonance
type

const.

(&—& )'+(f"'+f'a+&i)'

'V. Weisskopf and E. Wigner, Zeits. f. Physik 63, 54
(1930); P. A. M. Dirac, Zeits. f. Physik 44, 594 (1927);
V. Weisskopf, Ann. d. Physik 9, 23 (1931).

with a peak at the emission center E:,;. The
half-width of the line 2(I';+I'~+I'~) was shown

by them to be the sum of half-widths due to
separate emissions ji, jk, j/ with emission proba-
bilities 4n. I'~/h, 4~I'&/h, 4~I'~/h. They have also
explained that for the compound system atom
+radiation the energy of the initial state (no
photons, atom in state j) is not sharp but has a
width connected with

by the indeterminacy relation. In their theory
the "compound state" is the state of the system

atom+radiation field

in which there are no photons and the atom is in
the state j.This compound state does not have a
definite energy. The energies of the compound
system out of which the state is composed have
a probability distribution of the form (1).

In the optical problem the optical transition
probabilities are small and it is natural as well
as useful to define the compound state in the
above manner in most cases. But even here this
definition is not the most natural under all
circumstances. If a group of atomic levels Eb E2,
etc. have energy differences ~Z~~~, ~E~~~, etc.
smaller than the energy widths I'&, F2, etc. the
compound state obtained by exciting the atom
to a single level, say E2, and having no photons
at t=0 does not correspond to a simple physical
condition. The photons emitted from E2 are re-
absorbed so that the atom is partly in E2 and
partly also in other states E&, E3 ~ . It is here
also possible to define' the compound state in a
sensible manner, at least approximately. This
corresponds to an initial state of the atom with
a wave function which is a proper linear com-
bination of the wave functions P~, P2, $8 corre-
sponding to E~, E~, E3 . If, at t = 0 the atom is
put into such a state, represented by c~P&+c~gm+, and if initially there are no photons, then
at later times the probability of the atomic
state c~P~+c2$2+ ' decreases exponentially and
photons appear within a band having a width
connected with the mean life of the atomic
state by the indeterminacy relation. It is to be
noted that the atomic states E~, E2, have

~ G. Breit, Rev. Mod. Phys. 5, 91, 117 (1933); G.
Breit and I. S. Lowen, Phys. Rev. 46, 590 (1934).
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different energies. One could, if one liked, speak
of P2 as the compound state. This would not be
an especially useful procedure for physical appli-
cations, however, because (a) this compound
state would not decay exponentially; (b) the
scattering of light is expressed more simply in

terms of the states c~P~+c~Pq+ . .
It is seen that even in the optical case the

definition of the compound state requires caution.
The natural and useful definition is that of using
linear combinations of atomic states which give
an exponentially decaying probability of atomic
excitation. This definition is slightly more com-
plicated than that for the problem of Weisskopf
and Wigner. It is definite as long as the inter-
action of the atom with the radiation is suffi-

ciently weak. If the interaction were strong the
exponential decay of the atomic excitation would
not be obtained and the compound state could
not be defined in the above manner.

Nuclear resonances differ from the optical
problem in the following respects: (a) There are
cases of nuclear resonances in which the peaks
of excitation curves overlap. The coupling
through emission which has just been discussed
can be expected, therefore, to be of more fre-
quent occurrence. (b) In the optical problem the
direct change of one type of photon into another
is of secondary importance. With Dirac's electron
equation it even disappears altogether. The
scattering of photons in this formulation can be
explained entirely by a succession of emissions
and absorptions affecting the wave function. In
the general nuclear problem such a simplification
cannot be made. Direct transitions between
states in the continuum are possible. (c) The
effect of a nuclear resonance is of interest also
outside the main resonance peak. For slow
neutrons this effect gives the I/v law. There is
evidence for it also in the y-rays emitted by Li'
under proton bombardment below the 440-kev
resonance. (d) The interaction of the atom with
radiation is always small. The level of the com-
pound system responsible for the resonance is a
state in which there are no photons present.
The interactions between nuclear particles are
not sufficiently small to make the analogous
simplification possible.

It is desirable to be able to use experimental
yield-energy curves and to draw from them

conclusions regarding properties of the nuclear
system. Data on widths of nuclear levels due to
neutron emission should be comparable with
similar data for widths due to proton emission.
The comparison can be made only if proper
allowance is made for the effect of the Coulomb
barrier. A quantitative understanding of the
problem is necessary for this purpose. Similarly
it is desirable to know whether peaks in yield-
energy curves indicate the position of levels of
the compound nucleus with any precision and
just what relation these energy levels have to
ordinary nuclear levels. For example, the com-
pound state (C")* formed as B"+H' shows
resonances in gamma-emission at proton energies
that correspond to a mass difference between
(C")*—B"which would be expected if (C")*as
well as B"were stable and if the binding energy
of (C")*differed from the binding energy of B"
only on account of the Coulomb energy. A ques-
tion of direct physical interest is whether the
hypothesis of a symmetric Hamil tonian for
nuclear particles makes one expect a coincidence
of this sort and to what accuracy. Another
type of question arises in observations of the
same level under different circumstances. The
position of the level is not expected to be
exactly the same and some calculations regarding
the magnitude of the energy shift are made in

the present paper.
For the discussion of such questions it is

difficult to use too general and formal treatments
such as have been attempted by Bethe and
Placzek' and by Kapur and Peierls. ' The point
of view of these authors is that one must repre-
sent the collision cross section of a reaction as the
square of the absolute value of a sum of dis-
persion-like terms. Even if this were accom-
plished the result would not necessarily be useful
for the above types of questions because it is
impossible to compute all the terms in such
formulas starting with expressions for nuclear

' P. L. Kapur and R. Peierls, Proc. Roy. Soc. 166, 277
(1938). For the one-body problem at low energies this
theory gives levels which correspond to dg/dr=0 at the
nuclear radius. There are no perceptible resonances at
such energies in the deuteron problem. This is due to the
fact that the KP levels depend on the total energy and
the caution, which must be used in attributing to their
levels ordinary resonance properties, may be emphasized.
These KP levels show pronounced resonance to change of
depth of the potential well but not to change of total
energy.
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forces. It is practically hopeless to analyze data
in terms of resonance levels having variable
positions depending on the energy of incident
particles, as well as on the assumed nuclear
radius, as becomes necessary in the formulas of
Kapur and Peierls.

The unsatisfactory state of the theory of
nuclear resonance makes it desirable to consider
some typical examples. Only partial answers to
some of the above questions will be arrived at
below.

ONE-BODY PROBLEM

(A) Method of complex eigenvalues

For the one-body problem a single and reason-
ably sharp level in the continuum has simple
properties. The absolute value of the wave
function, normalized to unit amplitude out-
side the nucleus, becomes a maximum inside
the nucleus for the resonance energy. An inci-
dent plane wave of particles asymptotic to
exp (ip cos 8) and scattered by a central field is
represented by

(2L+1)PI,(cos t)5'r(p)/p. (1")
The functions Pg(p) are normalized to unit
amplitude at p = ~ and, therefore, a sharp
maximum of 51. inside the nucleus corresponds
also to a maximum of P. The asymptotic form
of I, is

Qr, -e* ' sin (p L7r/2+Kg). —

For a given L a resonance can be expected in

the neighborhood of a complex eigenvalue of
the energy. The possibility of using complex
eigenvalues of the energy has been first intro-
duced into quantum theory by Gamow. ' A con-
nection with resonances has been described by
Breit and Yost." The latter connection has

A(Eo fI'o) —=0.
For small values of E—Eo+iI"0 one has

(2.2)

A(E) = (E—Eo+oi"o)(dA/dE)g o,
(2.3)

B(E)= (E—Eo —oI'o)(dA/dE)*a o.

It is assumed that for real Z, A*=8. The con-
nection with Gamow's picture of an exponentially
decaying state is obtained by forming a wave
packet out of the solutions of (2) with real values
of the energy. One has then as in Eqs. (20) of BY
the following wave packet

I"o I
+" exp ( iEt/It)—

+g dE = 4. (2.4)
(E—Eo) '+ I'o'

This wave packet outside the nucleus i.e. , in the
region where (2.1) applies is given by

recently been pointed out again by Siegert. "
A discussion of the one-body resonances making
no use of complex eigenvalues has been given by
Wigner and Breit. ' Kapur and Peierls' have given
a discussion of one-body resonances also using
complex eigenvalues but along different lines.

By the method of complex eigenvalues one
considers the asymptotic form of the solution of

d'4e/dr'+ (2p/It') (E V) 4—'e ——0, (2)

which is

4e Aef ""+Be'"', k = (2t4E) l/A. (2.1)

The normalization of +~ is such that

(d+e/dr)„o= C

is kept constant for all energies E. If

(d%e/dr), o 0=——
then one uses for C the first non vanishing
derivative of %e. The function A(E) is supposed
to have a root Zo —iI"0 so that

r,=2A *(Eo) exp —( Eot+ ivor) ———(t —r/vo)
(tp0); 0=-

.=0 (t&r/v, ),

(t &r/v, )
(2 5)

=2A(Eo) exp ——(Eot+pvor)+ —
~

t '

(t. &0); +=. k 4 vo)
(t+r/vo &0)

(2.6)

.= 0 (t+r/vo) 0).
G. Gamow, Zeits. f. Physik Sl, 204 (1928); H. Casimir, Physica 1, 193 (1934).

I G. Breit and F. L. Yost, Phys. Rev. 48, 203 (1935).Referred to as BY; G. Breit, Phys. Rev. 40, 127 (1932).
"A. J. F. Siegert, Phys. Rev. 56, 750 (1939).
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Here vp is the classical value of the velocity of
the particle outside the nucleus and is obtained
from

Ep= qP,502.1

According to Eq. (2.5) the wave packet flows

out of the nucleus for t) 0 as a diverging wave.
The place at which 4' becomes zero moves with
the constant velocity vp. For a fixed r the
amplitude of 4' decreases exponentially at the
rate exp (—rpt/5). The sharp break in 4' at
r =vpt is not strictly correct. It is brought in by
the approximation in the calculation of BY in
the neglect of terms in (Z —Zp)' in the expansion
of k in powers of Z —Ep. For t(0 one obtains
only incoming waves as indicated by ipvpr/—A,
in Eq. (2.6) and for a fixed r the function in-
creases exponentially with t up to t=rvp. After
this time 4'=0 at this r. The wave packet (2.4)
represents particles Howing out of the nucleus for
$)0 and Howing into it for t(0.

The mean life of the nucleus is 7. given by

1/r=2rp/k=4p-rp/7i, (I'p in energy units) (2.7)

(I'p in frequency units) (2.8)

In energy units Fp is the coefficient of —i in the
complex eigenvalue. This is convenient and this
quantity will not be denoted here by y/2 as is
often done. The value of I'0 can be computed in
some cases by finding the root of Eq. (2.2).
This is not necessary, however, because one has
LEq. (21") of BY]

(3)

where 5'zp is the real solution of Eq (2) fo.r
B=Ep normalized to have unit amplitude at ~.
The integral in Eq. (3) is taken through the
nucleus and through a part of the barrier outside
the nucleus along the rapidly decreasing portion
of Q. The qualitative meaning of Eq. (3) is clear
when it is noted that the numerator is the
velocity of the escaping particle while the de-
nominator is the probability of the escaping
particle being inside the nucleus. The correctness
of the numerical factor 1 in the formula is not
immediately obvious since the real function

Szp(~)

represents a standing wave and' corresponds to a
density (per unit thickness of a spherical shell)
of —,'rather than 1. The correctness of the factor
1 is shown in BY. It may also be seen from the
fact that inside the nucleus there is little differ-
ence between gzp(p) and the solution of Eq. (2)
for Z=Ep —iI'p normalized so as to make

2IA(Zp) I
=1 (3.1)

in Eq. (2.5). If we assume for the moment that
this is the case, the coefficient 2A*(Zp) which
multiplies the exp I } in Eq. (2.5) has absolute
value one. The rate at which particles How out
for this wave packet is v p and Eq. (3) follows. The
fact that Jp'I/I'dr is practically the same for
the normalization (3.1) of the complex eigen-
value solution as for E=Zp and (I/I')» ——-',

follows from the assumed sharpness of resonance.
This in fact makes J'p'I/I'dr dependent prac-
tically only on C and not on B as long as 8 is
not changed by amounts greater in absolute
value than rp, and the real function Qzp(p)
normalized so as to be a sine function of unit
amplitude at p= ~ satisfies Eq. (3.1) so that
4'zp= Qzp Illakes the coefFicient of the exp in
(2.5) have absolute value 1 in agreement with
Eq. (3).

The correctness of the coefficient 2A*(Ep) in

(2.5) can be seen without integration if one
observes that this coefficient must be B(Zp —irp)
and that

In fact outside the nucleus the normalization of
Eq. (3.1) holds. Hence according to (2.3), I

CI'
is proportional to (3.2) and I/I' inside the
nucleus is, therefore, also proportional to (3.2).
A nuclear reaction which is proportional to the
probability of finding the incident particle inside

B(Ep—iI'p) =A*(Zp —iI'p+2iI'p) = 2A "(Zp).

Equation (3) is definite only if the upper
limit can be defined without ambiguity. For
cases where this cannot be done a more precise
formulation has been given by BW. This makes
no use of the complex eigenvalue point of view
and allows a better definition of the upper limit.
It follows from Eqs. (2.3) that for the wave (1")
the probability of finding the particle inside the
nucleus is proportional to
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the nucleus is also proportional to this expression
and is thus represented by a resonance formula.

According to Eqs. (2.3) the phase of Q changes
by x as E changes from Ep —nFp to Ep+nFp
for n appreciably )i. One goes through a reso-
nance for scattering in the vicinity of Zp. The
explicit connection with the direct calculation of
phase shifts is seen through Eqs. (9), (9'), (10'),
(13), (17) of BY. The discussion of BY and of
BW at this point is perhaps too brief and the

discussion of Siegert brings in a distinction
(mentioned in reference 13) between resonance
and potential scattering which is rather artificial
and does not correspond to the usual one. It
may be permissible, therefore, to consider the
connections again and to extend them so as to
include the combined eR'ect of several complex
eigenvalues for the energy. It may be possible
to represent the function A(E) defined by Eq.
(2.1) as

(3.3)

and to have 1/n(E) a sufficiently smooth function of the energy to make its more detailed considera-
tion unnecessary. "The chance of finding the particle in the nucleus, according to Eqs. (1")and (2.1)
is proportional to

I1/A(&) I'

and shows, therefore, the interference of X terms of the resonance type. For special functions A (8)
it is possible to have n(Z) =const. and N= ~. The analytic character of A (8) is not always easy to
ascertain and it appears preferable, therefore, not to assume that n(Z) is a constant. The representa-
tion of 1/A(E) by the sum on the right amounts then to splitting 1/A (8) into a smoothly varying
part 1/u(Z) and a part represented by g which is designed to take out the bumps of 1/A(E). The
partial scattering cross section corresponding to angular momentum L is

0 g ——(2L+1)(A.'/m. ) sin' Zg.

The phase shift Z~ is obtained from (2.1) which yields

(3 4)

so that
exp Ii(KI. L~ /—)2I =iB/IB~ =iA*

/I A(

and

sin Eq [A*+——(—)~Aj

(2L+1)A' A* A (2L+1)A'
~
1/A+( —) ~/A*~ '

01= 2+(-)' +(-)'
4x A A* 4~ f1/A f'

(3.5)

(3.6)

Equation (3.6) shows that the partial scattering cross section o 1. is a fraction in which both the
numerator and denominator are sums of the type of Eq. (3.3). This form of the scattering cross
section is different from the formulas frequently given in which 0.

L, is represented as the square of
the absolute value of a sum of terms of the type

E—Z„'+iF.'
(3 7)

Even if the form (3.6) should be reducible to (3.7) there is no reason to expect E„—if'„ to be equal
to 8„'—iF„'. The representation of partial cross section by "dispersion theoretic formulas" is seen
to be somewhat arbitrary in the case of interfering levels. The interference is seen to take place in
two sums occurring in the numerator and the denominator of a fraction separately as in Eq. (3.6)
rather than in a single sum such as is written in the form (3.7).

"Professor G. Y. Rainich has called the author's attention to the fact that for entire functions 0. may be set=const.
and the summation is then an infinite series.
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In the vicinity of a single sharp resonance level one may write

1 1 1/A '(E„ir-)
+

A (E) P(E) E E„+—iI'„
(3.8)

and consider I/P(E) a smooth function of E. Since the whole scattering is due to the potential V no
reasonable distinction between I/P(E) and 1/A(E) —I/P(E) as referring to "potential" and "reso-
nance" scattering can be made in this problem. "Both terms are in this case due to potential scatter-
ing. For large P(E) one has

where

A-' [b„l'„—a„(E—E )]'
OL, (2L+—1)—,(L even)

~ (o-'+b. ') [(E—E-) '+I'-'3

1/A'(E„—i I'„)= o„—ib„

(3.9)

and a similar formula for odd L Thus .even neglecting I/P(E) in (3.8) one obtains a shift of the
maximum of 0.~ with respect to the maximum of

1/[(E—E„) +r„j.
If we neglect the variation of A with E the maximum of O-L, is at an energy

E=E„a„I'„/b„—
and is displaced with respect to E=E„by an amount of the order 1'„.There is thus no exact agree-
ment between the maximum of the scattering cross section and the maximum of the probability of
the bombarding particle being in the nucleus. The two maxima are displaced relatively to each
other by an amount of the order of magnitude of the width of the level. A displacement of the same
order of magnitude can be expected between the maximum of the y-ray yield curve and the maximum
of the scattering cross section. Additional shifts are produced by 1/P(E) which has been neglected. in

Eq. (3.9). In the case of Coulomb scattering there are additional shifts which are due to the inter-
ference of the Coulomb wave with resonance scattering. These have not been considered above.

(B) The method of regular and irregular functions

The method of complex eigenvalues has some advantages in introducing from the beginning the
quantities 8„—it'„which appear also in the final formulas. It is not a convenient method, however,
for the computation of special problems. The values E„—iI'„are troublesome to find and an analysis
of the series in Eq. (3.3) by Cauchy's theorem is complicated. The possibility of a continuous dis-
tribution of poles in 1/A(E) may also enter. For physical applications one needs 1/A(E) only for
real Z. For this reason the method of complex eigenvalues has been partially related to the straight-
forward use of wave functions for real E by BY to the extent of Eq. (3) of the present paper and by
BW in a more thorough manner. The frequency shifts, discussed at the end of the preceding section
have not been covered in these papers and will now be considered.

The value of Qz, outside the potential well (r)a) is obtained from the requirement of the con-
tinuity of Q& and its derivative. This requirement gives

1 1 L—=—(1 Fr.Gr.b iFg'—6) = (Gz+~Fr. ) —(Gr, '+a Fr, ')
Qr. Fz, 5L

1 p$r. '
Gy. 'l 66zFrl, ,

I+iF.G.]
— ); (r&o)

Gs. — 0 QL, Gr. & F.&
'

(4)

&= Fr. /Fz ttr. /gr. , Fr =NFL/dpi .GL, =dGr/dp.
'3 Such a distinction is made in the one-body problem by Siegert, reference 11.
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The second of the three forms for 1/$z follows from the invariance of zsz'(Gz +zFz) 6z—(Gz'+i Fz') = 1

as is seen for large p. The functions Fr. (p), Gr, (p) are the regular and irregular solutions of the wave

equation

d'Fz I.(L+1) 2zz

Fz.+ EF—z.
——0 k' = 2p E/k'

dp~ A".

defined by their asymptotic forms sin (p Ln/—2), cos (p L7r/—2). The only potential barrier con-
sidered for these functions is that due to the term L(L+—1)/r' in the wave equation. The nuclear
potential is supposed to be zero for r&a, . The maximum of Qz. for a high potential barrier corre-
sponds approximately to

1 —Fz,Gz, 8 =0, Gz, '/Gz. =pi'/5z. (4.1)

The first and second forms of the above equation are equivalent on account of

Fz, 'Gz. —Fz.Gz,
' = 1

and both give for the resonance of 0;...ii/A'

z, ——iGz, .

(4.2)

(4.3)

This relation means that at resonance the wave function outside the nucleus is a multiple of the
irregular function Gz. For the resonance conditions given by Eqs. (4.1), (4.3) one has

tan Ez, = ~, sin' Xz.=1.
These conditions correspond exactly to maxima of

o z/z1' (=maximum)

(4 4)

(4.5)

and for sharp resonance give also maxima of the scattering cross section. Equations (4.1), (4.3) have
been used by BY and BW both in the above sense and as an approximate way of finding the reso-
nance energy of the maximum of ! Qz! ' inside the nucleus. For future reference there is given below

also the formula for EI.
RLFL BI. FI. FI

tan Xz, ——

Qz'Gz —QzGz.' 1 —FzGz6
(4.6)

The value of g& /Pz at r=zz is determined by the wave equation and the boundary condition at
r=0. Equations (4.6) and (4) may be used, therefore, for the calculation of tan Kz, and Pz. The
invariance of QzFz' Pz'Fz, gz'G—z —QzGz' (Wronskians) for changes in p together with Eq. (4.2)
shows the correctness of the second form of Eq. (4) and the first form of Eq. (4.6) practically without
calculation. One has from the asymptotic form for

gz. =[Fz cos Kz+Gz sin Kz] exp (z'Kz), (r&iz) (4 7)

which can also be verified by means of Eqs. (4.6) and (4).
For high barriers (i.e. , high values of L(L+1)/r') one has

Gz(kzz) »Fz(kzz) .

Equation (4.7) shows then that the maximum of ! Pz(kzz)!' should fall approximately at cos Kz, =0,
sin Kz, =1.From Eq. (4) one obtains the condition for a maximum or minimum of ! z, !

'

&!Bz. I-'- 88Gz z7 Fz, Gz. z7 5 8(8Fz)= (FzGzb 1) + —+ +&Fz
Fz.BF Fz.'DE Fz.OE

Resonance to scattering maximum of 0„/A' occurs for FzG&8=1. At the energy for which this
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happens one has
BI6ii ' B(F~'B')

QP
BE BE

(5.2)

and the maximum of the wave function inside the nucleus is not reached at the same energy as the
maximum of o „/A . An estimate of the difference in energy for the two maxima will now be made.
From the second of the three forms for 1/5'r. given in Eq. (4) one obtains

One has the relations

1 ()) r,
' Gr') "- (Br.' Fr"t

+ Fr
I

& gr. Gr& . & gtr. Fr. )
(5.3)

( BFr. ) k-' f" B ( BSr. l k"-

BF (Fr.Br) EFr.' &o BE (Qr.Br)'Fgr, ' &0

and the resonance width is determined by

E p' GI.'EB BGI.= k I ( gy r. l
-'dr+

"o kBE GI.Br,=.

(5.4)

(5.5)

with AZ determined so that at a distance AE from the resonance energy l gr, l
has one-half its maxi-

mum value. In the derivation of Eq. (5.5) it has been assumed that the resonance is so sharp that
the maximum of

l gr. l' occurs at the same energy as the maximum of 0„/A'. It was found by means
of Eqs. (5.4) and

(gr. Gr. )-~Z Gr, 2l

BZ E yr. Gr)
(5.5')

on account of the first factor in Eq. (5.6). By means of Eqs. (5.4) one obtains

which is suggested for sharp resonance by the last of the three expressions for gL in Eq. (4). At
E=Eo+AE the scattering cross section is also approximately —, of its maximum value as is seen from
the fact that (5.5') makes tan Kr. =1.For large

l
Gr/Fr.

l
the scattering cross section and

l gr(ka) l

are nearly proportional to each other. This is seen from Eq. (4.7) which gives

l QI l

' = [1+(Fr/Gr) cot Kr)'Gr sin' Kr. '
(5.6)

The condition which must be satisfied for the proportionality of the scattering cross section in units
A' and the probability of finding the particle in the nucleus is

l $r. l
'/sin' Kr. =Gr.'[1+(Fr./Gr) cot Kr,]'=const. (5.7)

Close to the resonance peak one may neglect (Fr/Gr) cot Kr. . The ratio is then Gr.' which varies
with the energy. For high barriers G~ is likely to decrease with the energy. The scattering cross
section is relatively higher, therefore, on the higher energy side of the peak around its main part.
There is thus no exact correspondence between the maximum chance of the bombarding particle
penetrating the nucleus and the scattering cross section and the correspondence becomes poor when

I
tan K.

l
—

I F~/Gil

(~' G'l
BF 4 Qr. Gr. )

($r,'

BF E Qr. Fr. )
(Qr.

tag F, )

kGL,

Boner.
' ~

k Fr.

gp, ~ J

Gi.
(+—p p)

Gi B BGg

kBE GIBr

FrB BGz B(1/Gr)
i„dr—

kBE GI.Br



RESONANCES IN NUCLEAR REACTIONS

In these formulas Eo is the energy for which the sca,ttering resonance condition (4.1) is satisfied.
The derivatives rt/8E are supposed to be evaluated for E=ED. The same convention will be followed
in the following approximate calculations of the energy shift. In the vicinity of E=Ep one has
according to Eq. (5..3)

—(E Eo) '&

~$1.)E'

a - t5,. G,. i- ~ 1 E-E. a-
+ —' —F~I

BE &

/gal,

Gr & Gg. ' Gg BE ( Q~ FI )

The second derivative of [FIgr, '/$r, FL,'/—FL)]' is neglected. Minimizing the above expression,
one obtains the condition

1 p E 8 BGI, EOB(1/GI, )
' Qr. '&p+ — +

EOFI. Qr, ' & kBE GI Br FrBE

1 p EOB BGI,
5:r.'dP+

kBE GcBr

(5.8)

Similarly the corresponding approximate condition for the minimum of
~
Gr, /Qr, ~

'
1S

E~ jVO—
E08 BGg

Gg'
~ $r.'dp+

-QL2 J &BE GLBr

It L

zK
Gg (5.9)

Here AE is introduced by means of Eq. (5.5). For high barriers
~
Fc/GI.

~
&&1 and ~E' —Eo~ &&AE.

The sItift of the peak in such a case is smal/ in comparison with the resonance widtIt and the barrier
penetration factors enter in the same power in (E —Eo)/AE as in AE/E. According to Eq. (5.8)
E—Eo is of the same order of magnitude as E' —Eo. The term (Eo/FI)8(1/Gc)/BE contains the
penetration factors in the same power (zero) as the other two terms in the numerator of Eq. (5.8)
and there is no special general distinction between them. It is thus seen that the energy shifts indi-
cated by Eq. (3.9) are the less important the smaller

~
FI/GI,

~
~

This conclusion can also be seen from Eq. (5.6). For E=EO+AE the value of GzP is

(Gr, ')Lo+2Gr(BGc/BE)E
~

G12dp~Gg2+2/p.

The latter estimate is very rough. The point is
that the addition to GI,' is of zero degree in GI.'.
The fractional change of the factor GI.' at
E=ED&DE is roughly 1/GI, ' and becomes negli-
gible for high barriers.

The essential point of the approximation to
resonance by the method of complex eigenvalues
and the method of regular and irregular functions
is the same. Resonance occurs nearly at the
energy for which

~
1/Qz,

~

' has a minimum. At the
minimum this quantity can be approximated by
a parabola and in this approximation formulas of
the resonance type are obtained for cross
sections.

One-body problem with strong repulsion

If the nucleus is surrounded by a strong re-
pulsive field acting in addition to the centrifugal
barrier" then it is more natural to modify the
above procedure and to introduce wave functions
in the repulsive field. The repulsive field has to be
continued to r =0 and there is some arbitrariness
involved in this step. The procedure is illustrated
in Fig. T. The heavy line is the potential energy
curve. The light line is the continuation of the

'4 The repulsive field considered here is not the Coulomb
field. The calculations are easily modified to include this
case also. The notation used here is convenient for appli-
cations to many dimensional problems.
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ac b'

Frr. 1. Potential well and potential barrier. Heavy line
represents the actual potential. The light and dotted lines
represent auxiliary repulsive potentials. The height of the
straight horizontal line is the energy.

repulsive potential to r=0. At r=a the two
curves part. The region from r =a to r=b is the
potential energy barrier and the region a(r&b'
is the region of negative kinetic energy. The
auxiliary repulsive potential could be drawn in
also as the dotted curve and in an infinite number
of other ways.

In the auxiliary repulsive potential one obtains
a regular solution fc for r times the radial
function. For r )b this function is a linear combi-
nation of corresponding functions without any
potential. One has

fi. Fc cos 8c+G——J. sin 8c,
gL= —I'L sin bL+GL cos bL. (6)

+L &L+ ~L ~ (6.2)

For r)b one has according to Eq. (4.7) and

Here lc is the phase shift of fc with respect to
FL and the function gL is defined so as to be
asymptotically the cos of the same argument of
which fc is the sine. For r&b the function gc is
defined by the radial equation and continuity of
the function and its derivative at r =b.

From Eq. (6) one obtains

fc'gc fcgL,
' ——Fg, 'Gc —FcGc'=1. (6.—1)

The phase shift of gc with respect to fc will be
denoted by ~L and one has

Eq. (6)

k.=(fr cos Kr+gr sin Kc) exp If(Kc+8c) I. (6 3)

But from r=a to r=b the actual potential and
the auxiliary repulsive potential are the same.
Therefore Eq. (6.3) holds also for all r)a and
can be applied at r =a where the attractive region
begins.

The usefulness of this model is seen in cases in
which the region r (c can be pictured as an
approximation to the interior of the nucleus,
somewhat as in the case of the Coulomb barrier.
In such a case one is interested in ~gc~' in this
region and one can obtain an idea of these by
studying ~gz, ~' at r=u because in 0&r&c the
shape of $1. does not depend critically on the
energy. At r=a one has, on the other hand,

~
gL/fc ~&&1 for high barriers and one obtains,

therefore, higher reaction yields for approxi-
mately those energies for which sin ~L ——~1.The
scattering cross section depends, on the other
hand, on sin' KL and one has thus an energy
shift between the peaks of the scattering cross
section curve and the curve for ~Qc~' which is
due to bL. This shift is of the order of magnitude
of the width of the resonance curve multiplied by
bc/~ because the half-value width of the reso-
nance curve corresponds to a change in EL by
s/2.

It is natural to expect a shift between the
energy of maximum penetration and the energy
of maximum scattering. Suppose, for instance,
that the maximum of jQc(kc) ~' occurs at the
same energy (Fig. 1) as the maximum of sin' Xc.
The maximum of

~
Qc(ka)

~

' will not occur at the
same energy because the barrier between
c and c affects the wave function. The ratio
~gc(ka)/Qz, (kc) ~' varies by large amounts in

the vicinity of resonance, provided a and c
are sufficiently far apart and an energy shift
results.

Since the repulsive potential can be continued
to the left of a in an infinite number of ways the
method of the auxiliary repulsive potential is not
unique. Even though the functions fr„gz, are
natural ones to use they are only auxiliary
quantities, while 5'& is the actual wave function.

FIG. 2. Illustrating the
cusp at the intersection of
—ce and v.
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One has
ScfJ.

' 8r.'fr. fl.'&' ( fL' QI.'i
tan ~1.——

gi'az, 'k.g—1.
'

~ fi—g i~' & fc

(8~. gi l ' (Sr.
,

,;=g. ———
I +f

IB.-I' — & t)' g. )-

(6.41)

(6.42)

analogously to Eqs. (4.6), (5.3). For the width of resonance (AE)' as measured by I Pz. (ka) I' one has

r' g~. 'E& &gl- r'
=k I

I
pl, I'dr+ = I I/I. I'dp, LMaximum of IQL(ka) I'].

(AE)' ~o kBE gear r=a ~0
(6.43)

This formula is analogous to Eq. (5.5). The function g& and the other functions occurring in it are
evaluated for the energy which gives maximum

I gr, I
inside the repulsive barrier, however, and this

energy is not the same as the energy for which sin' Xi, is a maximum. Equation (6.43) should not be
applied, therefore, to an estimate of the width of the scattering resonance in the general case.

A superficial comparison of Eq. (6.43) with Eq. (5.5) appears to indicate that (AE)'=AZ because
the right-hand sides do not depend on the choice of the upper limit and Eq. (6.43) could equally well

be written
E p gI. EB Bgl.

18
,'diE)' ~o kBF. gi.Br,=g

(6.43')

The integral in this formula has the same form as in the corresponding modification of (5.5) vis

Gl. 'EB BGI.—= k
I $1, I

'dr+
~o &BE GL,&r,- f,

(5.5')

suggesting that AZ=(DE) . This is not the case because the energy which must be used in Eq.
(6.43') is for resonance at a while in Eq. (5.5') the energy is for resonance at b

TWO-DIMENSIONAL PROBLEMS

Green s function for separable two-dimensional differentia equations

Consider the differential equation

in the domain

~0(~, y) = + + ' —&(~) —l'(y) k(~, y) =o
Bx- Bp~

—C(X(G,
—oo (y g+ oo

with boundary conditions
f(~, y) = 0( rl, y) =o— (& 2)

It will be required also that for y= & ~ and fixed x the wave function should either vanish ex-
ponentially or else be asymptotic to a sum of a finite number of sine functions of multiples of y with a
number of fixed but arbitrary phase constants. In order that the latter boundary condition be a
possible one, it will be supposed that V(y) approaches a constant value faster than 1/y. This constant
value can be made =0 without loss of generality by changing I~.

" so as to absorb the difference and this
change will be supposed to be made.

The differential equation

f d'/dx'+X„U(x) ]u„(x)=0— (& 3)
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with the boundary conditions (7.2) defines in —a &x &a an orthonormal set with eigenvalues X . The
function U(x) will be supposed to have either no singularities or if it has singularities these will be
supposed to be sufficiently innocent so as to allow the existence of the set ) & () 2 &) 3 with a mini-
mum X& & —~. A particular solution of Eq. (7) is obtained by letting

with

and with

4(x, y) =u-(x) Y.(y)

~' =k'+X

Ed'idy" +k' —~(y)jY.(y) = o.

(7.4)

(7.5)

(7.6)

The dependence of k on n is not explicitly indicated here so as not to compIicate the notation. There
are two linearly independent solutions of Eq. (7.6). These will be

v, (y), w. (y),

respectively. The solution vq(y) will be chosen so as to be acceptable at y = + ~ and w&(y) so as to be
acceptable at y= —~. Thus if at y= & ~ the solutions of Eq. (7.6) are of the exponential type,
v&(y) will be taken as the exponentially decreasing branch and similarly w&(y) will be arranged to be
exponentially increasing with increasing y. This condition is schematically indicated in Fig. 2. If, on
the other hand, k') 0 then one may use any pair of linearly independent solutions of (7.6) for v and w.

These solutions will be restricted later so as to give either diverging or standing waves. In aII cases
the functions v&(y), w&(y) will be normalized so as to have

vq'(y) wq(y) —v, (y) wq'(y) = 1,
»'(y) =d»(y) idy. (7.7)

If Eq. (7.7) holds for one y then it holds also for all y as a consequence of Eq. (7.6) according to the
theorem regarding the invariance of the Wronskian. A kernel will now be defined as follows

&(x, y; 8, S) = Zvk(y)w. (V)u. (x)u-(k) (y&"),
&(x, y; $, ) = 2"(v)w. (y)u. (x)u-(t) (y&v)

where it is understood that k varies with n in accordance with Eq. (7.6). It will now be shown that

' &(x, y; k, v) v($, n)d&dn = ~(x, y). (8.1)

This equation will be first verified for the special form

v(E, ~) =u-(k)f(v)
One has

(8.2)

X(x, y; P, q) u„($)f(g)d)drj= Zu„(x)
eJ

Y&(y, ~)f(v)d"=u„(x)MJ Ylr(y, v) f(g)dv,

where

and

It remains to show that

cV =d'idy'+ ~' —X.—V(y)

Y.(y, v) =»(y)w. (v) (y»)
Y~(y, v) =v~(s)w~(y) (y&n)

~J Y~(y n)f(n)dn = f(y)

(8 3)

(8.4)

(8.5)
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This is the case according to the construction of Green's function for one-dimensional problems as
explained in Courant-Hilbert. "The special case in which v&(y), wz (y) are the same is excluded for the
present. The verification of Eq. (8.5) is indicated next for the sake of completeness.

d2 +00 d2 ~
00

I'k(y, ~)f(n)de= »(3)~.(n)f(~)de+, ' »(~)~«(y)f(n)A
dy2 2 g

~
00

s«'(3)~1 (n)f(n)de+ —» (n)~~.'(3)f(n)~n = L~«'(r)~i (3) s.(—3)~ 1(y)]fb)
dy ~„

+J ~'"(r)~.(1)f( I)d"I+~ s()1~"(3)f(n)d I

Substituting this into Eq. (8.5), taking into account (7.7) and 3IIv&(y) =Mmz(y) =0 one verifies Eq.
(8.5). In order that the calculation in Eq. (8.6) be valid it is necessary that the integrals occurring in
it converge. In applications p(x, y) will vanish except in a finite range of values of y so that no
difficulty will be met in this connection. Having verified Eq. (8.1) for the special form (8.2) one sees
also that Eq. (8.1) holds for

P(x, 3) = Zu. (x)f-(3). (8.7)

If the sum is finite the above verification applies directly. If the sum in Eq. (8.7) is an infinite series an
investigation of convergence is required. This has not been carried out in the general case. No
difficulty is expected in this connection in view of the fact that in special cases Eq. (8.1) can be
verified by other methods.

According to Eq. (8) two diA'erent expressions for IC are used depending on whether y) s or y (g.
These approach the same value Pv&(y)zu&(y)u„(x)u„($) as the line y=g is approached in the two
regions and X(x, y; P, g) is continuous on that line. The derivative normal to the line appears to be
discontinuous being given by

LBK(x, 3; $, q)/By] ,+0 [BK=(-x, y—; $, q),~By]„„0=+=Lv„'(g)w, (g) v, (y)—w„'(q)]u„(x)u„($) (8.8.)

On account of Eq. (7.7) the right side of the above formula becomes

P u (x)u„($) =B(x—$).

The discontinuity in the derivative occurs, therefore, only at the point

(»3') =(5 n).

If one wishes to work with complex eigenfunctions the product u„(x)u„(t) in Eq. (8) can be replaced
by

u„(x)u„*(f)

and the above argument remains essentially unchanged. It should be noted that Eq. (8.1) has been
verified only for such forms of p which can be expanded as in Eq. (8.7). This is a restriction which
must be watched especially at the boundaries of x since the boundary conditions for P have no direct
significance for p.

General plan for applications of Green's function

In proper units one can apply the wave equation (7) to the discussion of a quantum-
mechanical system consisting of two particles with the following interpretation of quantities:
«'=total energy, X„=energy of x particle in state n, k'=energy of y particle, and u„(x) =wave
function of x particle in state n.

'~ R. Courant and D. Hilbert, Methoden der ma$hematischen Physik (Springer, Berlin, 2nd edition, 1931),Vol. I, p. 302.
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In Fig. 3 a schematic picture of the two-
dimensional condition is sketched. The wave
function is confined to the strip of width 2c on
the boundaries of which it is supposed to vanish.
The wave equation (7) holds outside the shaded
region A. Inside this region another and in

general a nonseparable wave equation is sup-
posed to hold. The potential energy function

U(y) is schematically represented as a barrier
sticking out of the plane of the paper. In order
not to complicate the figure U(x), was taken as
zero and U(y) was made to vanish in the shaded
region. Neither of these simplifications matters in

the applicability of the method.
Outside the shaded region the wave function

will be represented as

P(x, y)= I IK(x, y; $, ~1)j
X ~(&, ~)d&d~+Po(x, y) (9)

density over a surface enclosing the charges. The
possibility of doing so depends on the existence of
solutions of elliptic differential equations in

closed regions with prescribed boundary values
and may be seen as follows. A will be bordered
by a thin strip of uniform thickness just outside of
it and shown shaded in Fig. 4. The original prob-
lem will be modified by requiring that the wave
equation (7) holds everywhere except in the
shaded area of the strip. The values of P on the
boundary of A (inner boundary of strip) will be
taken to be those given by Eq. (9). These values
determine a new P inside A which will be called
p. y is a solution of Eq. (7) and is continuous
with P just outside the shaded border when the
border is thin. The normal derivatives BP/Bn,
Bp/Bn are not continuous in going across the
border as in electrostatics. Leaving the thickness
of the strip finite but small one can join y to P by
smooth curves across the strip and define a
function

and it will be supposed that

p(x, y) =0 (outside A); Zfo ——0. (9.1)

4 = f outside A,
+= y inside A,
+=joining function in strip.

(9.3)

In consequence of Eq. (8.1) one has

2$ =0, (outside A). (9.2)
Now form

0 (x, y) = 2+. (9.4)
The function $0 will be used to represent the
incident wave and P —fo will give its modifi-
cation due to the interaction potential in the
region A. The reflection of the waves is thus
pictured as due to a source density p placed
within the interaction region. In the analogous
electrostatic problem the source density is re-
placed by a charge density. Since for k')0 the
functions vj„v@1, are not uniquely determined by
the boundary conditions and by Eq. (7.7) one can
arrange for P —$0 to have the desired asymptotic
forms (outgoing, incoming, standing waves) at
y=~ oo,

Some qualitative information can be obtained
from the form of Eq. (9) without special as-

sumptions concerning the location of p(x, y). It
should be pointed out, however, that in a number
of cases it is possible to condense p(x, y) to a very
narrow strip on the boundary of A. This is a well-

known procedure in electrostatics and it corre-
sponds to representing the field due to a col-
lection of charges by an equivalent surface charge

From the definition of 4 it follows that ~(x, y)
has a value different from zero only in the shaded

Pgri-ier V

FIG. 3. Illustrating the
two-d i mensional stri p
model. The wave function
vanishes within the verti-
cal strip of width 2a. The
interaction between the
particles takes place with-
in area A.
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FIG. 4. Illustrating the
concentration of source
density to the periphery
of region in which the
interaction takes place.

According to the above one expects to be able to
replace a surface distribution of sources by a
distribution of sources on a contour in agreement
with physical expectation. One has for an
infinitely narrow strip

strip. Consider
P =$0+ K(x, y; $, ») o.($, ») ds,

(9 8)
t'

y(x, y) =po+J J K(x, y; &, »)o.($, »)dfd» (9..5)

This function satisfies

Zy = 0 outside strip,
Zy= 0. inside strip.

(9.6)

Comparing (9.6) with (9.4) one sees that y and 4'

satisfy the same inhomogeneous equation. Also

Po and K determine the asymptotic behavior of
y and P at y= & ~ and one can see that this
behavior is the same for P and y. In fact the
choice of vk(y) in (8.4) determines completely
whether for y = ~ ~ the nth state of the x
particle is excited together with y particle moving
towards y=+ ~ or y= —~. It is usually as-
sumed that the specification of boundary con-
ditions in the above sense determines the wave
function. Adopting this view, it follows that

x=+,
y= P outside strip.

ds'=dP+d»'

4(x, y) =
J

K(x, y; k, »)~($, »)&s. (10)

The continuity of P and its normal derivative on
the boundary gives

The integration is carried out along the outer
boundary of A and 0 in (9.8) is the previous 0

integrated through the strip thickness. "
The value of P on the boundary of A and the

differential equation inside A determine P inside
A and hence also 8$/BN at the boundary. The
connection between the values of P and those of
BP/itn on the boundary is linear, therefore, and
the problem reduces itself to the solution of linear
equations with the density function 0 of Eq. (9.8)
on the one-dimensional boundary of the region A.

This connection can be shown more explicitly
by introducing Green's function for the interior
of A for the differential equation obeyed by P
inside this region. In terms of it one can write

$0(x, y)+ K(x, y; $, »)(r($, »)ds= ~ K(x, y; $, »)o($, »)ds, (10.1)

ago(x, y) t aK(x, y; (, ») aK(x, y; P, »)+ I
— —o (&, ») ds =

~

— 0($, »)ds-,
l9n+ 8nq 8n

(10.2)

the outward drawn normal being denoted by n+ just outside of the boundary and the inward drawn
normal by n just inside, as in Fig. 4. The above equations involve values of 0. and 0 over the contour.
To emphasize this write s for (x, y), s' for (P, ») and

a(s, s') =K(x, y; $, »), a(s, s') =K(x, y; $, »),

b(s, s') =BK(x, y; $, »)/Bn+, b(s, s') =BK(x, y; $, »)/Bn,

go(s) =~So(x, y)/~&+.
One has then

fo(s)+ t a(s, s')o.(s')ds'= t a(s, s')o. (s')ds',

go( )+~t~(s, s ) (s )ds =
J 5(s, s )o(s )lB .

"The possibility of singularities in 0. is not excluded.

(10.3)

(10.4)



522 G. BRF IT

The construction of E and E thus reduces the problem to the solution of two simultaneous integral
equations in a one-dimensional domain in two unknowns 0., 0-.

The linear connection between P and 8$/Bn on the boundary is expressed in the above by

I
lP —

J
a(s, s')o (s')ds', Bg/Bn = b(s, s')o(s')ds'

It can also be expressed in other ways. Thus, for example, for the interior of a circle, inside of which
the potential is axially symmetric, it is convenient to use polar coordinates and a Fourier expansion
according to the azimuthal angle. The values of P on the boundary determine then the values of
the radial functions by integrals involving P(s) linearly and Bf/Bn is a sum of such integrals. The
formulas are

p
2 a.

p(s) =P (e'"'/2m) P(ao)e '"'d&p , ds'=ad&
Jp

21r

ap/an =P LR„'(a)/R„(a)](e'"'/2~) I P(a&p)e '""dp.
0

Substituting into the last of these equations by means of p(s) =fo(s)+J a(s, s')o(s')ds' and &0/~n-
=g,(s)+fb(s, s )o(s')ds' one has a single integral equation in o(s). The radial function belonging
to e'"' is denoted here by R„.

Degeneracy due to excitation

The spectrum of eigenvalues of Eq. (7.6) may be entirely a continuum. It is then always possible
to find both v& and w& for every x and n. If the spectrum of (7.6) has also a discrete part then it may
happen that for certain values of ~ and n =n it is not possible to find both v~..* and m~*. This happens
whenever k2 is an eigenvalue of Eq. (7.6) and in this case the energy of the two-particle system in
the incident state Po is just equal to the sum of the energies of the x particle in the state n and the y
particle in the state k. The same function v&*(y) is (to within a constant multiple) the only acceptable
one both for y =+ oo and y = —oo, and it is impossible to construct a satisfactory YI, (y, q) by means
of Eq. (8.4) on account of the failure of Eq. (7.7). This degeneracy of the kernel can be avoided by a
slight shift of the total energy and no difhculty arises as long as the energy balance for simultaneous
capture of the two particles is satisfied approximately rather than exactly. As this condition of
resonance is approached the product of the normalizing factors in vt,*, mj, * must be increased in order
to satisfy v& 'tv&~ —vz wI, *'——1 and Yz*(y, s)~~. This does not mean, however, that one obtains an
infinite probability of the formation of the state because a(s, s ) in Eq. (10.3) also becomes large.

For k =k both vt, and m~ are to within a constant factor =vt, * and it will be shown next that

I', (y, s) -v, (y)v), (v)/(k' —k').

This relation can be obtained as follows. From the differential equations satisfied by vt„m&, vA, * one
obtains

b

I:»*(y)»'(y) —»(y) ve'(y)]-'+ (k' —k') J"»(y) ve(y) dy =0
a

The asymptotic forms of the logarithmic derivatives of the functions are

"'(+ -)/"(+ -)=-(-k')' ~.'(- )/~. (- ) =(-k')',
vj,"(+~)/vp (+ ~) = —(—k') '*; vs*'( —~)/vt, '( —~) = (—k-") i,

and the functions vanish exponentially as follows

vg(+ ~) =wj;( —ao) =vp*(+ ~) =vg*( —~) =0.
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From Eq. (11)one obtains on setting a=y, b=+ ~ a formula for»'(y)/»(y) —»~'(y)/»*(y). Similarly
forming an expression analogous to (11) with wi, (y), » (y) one obtains a formula for m&'(y)/ur&(y)
—»*'(y)/ve(y). Subtracting the second formula from the first, one obtains

, ~.b) T.
" »(y)

»'b)~~(y) —s'(y)~~'b) =(k' —&') I' s.(~)s'(n)dn+ I' ~ (n)s'(~)dn .
-»*(y) ". » (y) "--

In the limit of k=k the right side of this equation can be made equal to unity if one sets

iii —uii -pi,„/(k'-' jc ) 2

and normalizes
+00

vi*-'(v) dy = 1.

(11.1)

(11.2)

The two equations (11.1) can never be satisfied for all y. For fixed y, however, one can make
~

k —k
j

sufficiently small so that the shape of »(g), zoi, (g) is practically the same as that of »'(g) for (iv( ( ~y(.
For fixed y and sufficiently small

~
k —k

~
one has then the limiting form

I';(y ~) = '(y) .*(n)/(k' —&'). (11.3)

A special problem will now be considered. It will be required that the wave function be zero over
the area of a small circle surrounding the point (P, q). The wave equation (7) will be supposed to
hold outside the small circle. The interaction between the two particles is thus entirely inside the
circle where it is infinitely great. This example will be considered in more detail later but at present,
by means of Eq. (11.3) one can see the effect of resonance due to excitation. Close to resonance the
values of X(x, y; P, g) over the circle are"

& (, y k, ~) = -*'(8 "(n)/(k' —k')+2 '. (12)

Here Pc represents the effect of other states in E and suffix C means: on circle. Denoting the incident
wave by $0(x, y) one has the approximate solution

~-*(~)~-*(f)»(y)»(~)/(k' —&')+2' I-(~)~-(5) I'.(y, ~)
P(x, y) =P,(x, y) —tl, (g, q)

u„*'(&)vi,*'(g)/(k' —k') +Q c' u„(x)u„(g) I'i, (y, g)
(12.1)

This formula is approximate only. Its main inaccuracy lies in the assumption that Qc in the de-

nominator has the same value for all points on the circle. This is the case to a first approximation,
the logarithmic term in (x—P)'+(y —g)' being predominant in Pc for small circles. The effect of a
single term in the summation in Eq. (12.1) may include in it a wave extending to y= ~. The above
formula shows that for k k these waves become small. An individual term behaves as

4'0(k, g) & "'(k)&i*'(v)/pc'
1— Yi, (y, g) u„(x)u. ($)2 c' k' —k'+N. *'(5)»"(v)/2 c'

(12.2)

and shows a maximum for k'=k' —n„"($)»"(p)/Qz'. The latter equation cannot be satisfied accu-
rately because Pc' is only approximately real. The resonance has, therefore, a finite width. At the
maximum the above calculation breaks down because then the parts of u (x)u„~(g) Yi, (y, p) which
have been neglected become important. For k =fc, however, the above scattered wave is zero. This,
of course, is also only an approximation. For k=k one has from (12.1)

0'(» 3') =6(& y) —A(t s)& *(x)iii*(y)/L& '($)si'(9)). (12.3)

'7 It is natural that I «and vk«occur symmetrically in this case.
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This expression is an exact solution of the wave equation and it vanishes at (&, v). It is, therefore,
also small on the little circle. It is understandable that the scattering due to the interaction within
the circle is small at this energy. "The incident wave is in a sense "sucked in" to produce excitation.

Extension to several dimensions

An extension of Green's function given by Eq. (8) may be made by generalizing the variable x to
a set of variables: x&, x2, x,. The functions u„(x&, x2, , x,) are supposed to satisfy

g2 g2—+ + +X„—U(xg, .
, x) u„(xg, , x) =0.

8xq- BXs"

The X„and u„are supposed to form a complete and discrete set of eigenvalues and of eigenfunctions
for this equation. The wave equation outside the region of configuration space in which the particles
interact is

and
Zy(x, , x„y) =0

g9 82 82

+ + —+ + ~' —U(x), x,) —V(y).
Bxy ~&s

(13.1)

(13.2)

Defining k' as before and subjecting v&„.(y), wl, (y) to Eqs. (7.6), (7..7) one defines the kernel

X(x, , x., y;. . . . $„v) =P va(y)w~(v)u (xi, .
, x.)u„($~, , $,) (y&v)

=2 vk(v)~'(y)~. (x, x.)~.(&~ &.) (y & v).

One verifies in the same way as before that

(13.3)

X(xg, , x„y; $g, , f„rl) p($g, , („v)ding df, dv = p(xg, , x„y). (13.4)

In applying the above generalization one may think of x&, x2, - x, as describing the internal con-
dition of the bombarded nucleus and of the coordinate y describing the incident particle. Green's
function E is designed so as to represent coherently scattered waves and scattered waves with excita-
tion of the bombarded nucleus by means of the source density p(xq, ~ ~, x„y).

The restriction of the operator 2 to the form of Eq. (13.2) is not essential. The method still works
for

2=%+~' —V(y)

where N is the wave equation operator (multiple of Hamiltonian) for the bombarded nucleus.
Equation (13) should then be replaced by

(S—X„)u„(xg, . , x.) = 0.

The operator N may contain exchange forces. The separability of N into parts corresponding to
x&, . , x, is not assumed and is not necessary for the working of the method. The degeneracy due to
excitation works out very similarly in the many-dimensional and the two-dimensional models.

Modification for central fields

A schematic discussion of radial functions for particles colliding with a nucleus can be carried out
along the above lines. The differential equation

8" 8"
&4(r~, r) = —+ +~' —V, (r~) —V(r) 4(rg, r) =0

QyI~
(14)

Minima in scattering can be produced also in other ways as has been brought out by Vtl. R. MacPhail, Phys. Rev.
57, 669 (1940) from the general point of view of interference.
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will be considered subject to boundary conditions

0(0, r) = 4(ri, 0) =o. (14.1)

The distances of particles 1, 2 from the center of gravity of the system are here denoted by r j, r. The
potential energies Ui, U are supposed to include the centrifugal force terms L(L+1)/r' which enter
if the angular momentum I, /0. Particle 1 will be supposed to be confined to the nucleus and, as in

the preceding section, the scheme may be generalized to include the case of a composite system
instead of the single particle i.

Equation (14) corresponds to the two particles being in separate fields of force described by
Ui(ri), U(r). By an extension of the previous scheme one can discuss the interaction between the
particles provided the potential energy is taken to be a function of r& and r only. Actually the potential
energy is also a function of the polar angles of the two particles and the present discussion is incom-
plete in this respect. One may hope, however, that this idealization spoils only the quantitative side
of the problem but does not affect radically the qualitative conclusions regarding effects of resonance.

The eigenvalues )„of
[8'/Br i'+ h Ui(—ri) 7u„(ri) =0 (14.2)

are supposed to form a discrete set and the eigenfunctions N„are normalized by

,
'u„(r, ) i

'dri ——1.

The number k is defined by

and functions f&, g& are defined by

g2 —g +P'4 (14.3)

Ld", dp'+1 k'U(p! k—) If' (p) =0
t d'/d p'+I k'U(plk) —jg~(p) =o.

(14.4)

The function fI, will be regular at r = 0 and will be normalized so as to be asymptotic to a sine function
of unit amplitude at large p. The function g~ will be asymptotic to a cosine function and gl, +if', will

contain p only as e'&. One has the relation

fl gj fl ga = 1, — (14.5)

the diiferentiations being performed with respect to p. If the functions fz, g& are not oscillatory
(k &0) then fz will still be understood to be regular at r = 0 and gz will be made to vanish exponentially
at r= ~. In this case the normalizing constants in fr„gj, will be adjusted so as to satisfy Eq. (14.5).
The exceptional case analogous to that already discussed under "Degeneracy due to excitation" may
also arise and can be treated analogously to Eqs. (11) (12.3).

The function g1, (p) is analogous to v&(y) inasmuch as it is always admissible at + ~. The smaller of
the two arguments of the kernel cannot occur in gI, since gj, is not admissible at r =0. One is thus led to

Ks(ri, r; ri', r') = P—u„(ri)u„(r&')f~(kr')g~(kr)/k (r) r')

=P u„(ri)u„(ri') f~(kr)g~(kr')/k (r&r').
(14.6)

The above kernel has the suAix S so as to indicate that its asymptotic behavior at r = ~ is that of a
standing wave. The —sign present in Eq. (14.6) is due to the fact that substitutions v~g, ui~f made
in (7.7) would give —1 on the right side of Eq. (14.5). Practically the same calculation as that carried
out in Eqs. (8.5), (8.6) gives

2
J JtK,~(r&, r; r&', r') p(ri', r')dri'dr'= p(ri, r). (14.7)
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Another possible kernel is

KD(rI, r; r&', r') = p u (r&)u (r&')fi (kr') [g&(kr) +pf&(kr)]/k+ p u„(r&)u„(r&')f&(kr')gk(kr)/k (1.48)
I 2)0 k2(0

This kernel contains for large r only diverging waves and the index D refers to "diverging. " By
adding to the incident plane wave solutions of the type

KD(rl r; ri', r') p(ri', r')dry'dr

one is sure that at a large distance the asymptotic form of the wave function is the incident plane
wave plus a diverging wave.

QUALITATIVE APPLICATIONS

Large repulsive interaction in sma11 region

The interaction between the two particles will be supposed to be confined to a small circle as in

Eqs. (12), . (12.3). On the circumference of the circle the wave function is supposed to vanish so
as to correspond to an infinite repulsion within the circle. The circle will be referred to as an "obsta-
cle" because its interior is a region into which the wave cannot penetrate. "

In the absence of the obstacle the wave function will be taken to be of the form

Pp(rI, r) =u„p(rI)fop(kpr) exP [P'8(ko)]

and for any real k the asymptotic form at r= ~ will be

fI„-(kr) sin [kr —Lo./2+ 5(k) ].

(15)

The functions fp(kr), gp(kr) are analogous to fI„gI, used in the discussion of the one-body problem in

Eqs. (6), (6.43). The function pp(rI, r) replaces the term

in the expansion of the plane wave

u.o(rI)Fz(kor)~go(rI, r) (15.1)

u~o(r~) exp (ikos) =u~o(r~)gi~(2L+1)PI(cos 0)FI(kpr)/(kpr) (15.2)

The substitution of (15) by means of (15.1) into (15.2) gives a modified plane wave consisting of
the plane wave u„p(r~) exp (ikps) plus a scattered wave. The initial state of the particle 1 is np and
the particle 2 is in the state exp (pkps) and the substitution indicated by Eq. (15.1) gives, there-
fore, the solution of the scattering problem, taking into account the central field potential V(r)
but neglecting the interaction between particles 1, 2. To the function Pp(r&, r) one may add

ffK~(r„r; r&', r') p(r, ', r')dr&'dr' with p(r&', r') =0 outside the obstacle and the result may still be
substituted in place of u„p(r&) FI,(k pr) in formula (15.2) without adding anything to the wave function
except diverging and exponentially decaying waves. If the obstacle is sufficiently small to make
I(p(r&, r) practically constant on the circumference, then one may use as an addition to It p a constant
multiple times Kn(rI, r; r~p, rp) where (rIp, rp) is the center of the circle. In this approximation one has
to replace

u o(rzo) fpo(koro) exp [pb(ko)]Kn(r&, r; rio, ro)
Po(rI, r)~u o(ri)fr: (k or) eoxP [ih(kp)] (15.3)

(Kn(rIo+a cos 0, rp+a sin 8; rio, ro))A p

"In the present model the interaction is large whenever one of the particles is on the sphere r1 = r10 and the other on the
sphere r = ro. It does not correspond to a simple law of force on a two-particle model. The requirement of a vanishing wave
function in the triangular region r1 &r would perhaps be more natural since it would correspond to the incident particle
never penetrating closer to the center than particle 1. This type of interaction is of the type considered in Eqs. (16)

~ . (16.4). No such model can represent the actual case perfectly and extreme cases are, therefore, worked out.
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Here a is the radius of the circle. The value of ED on the circumference is averaged over the angle 0

between the radius and the rt axis. For a small circle the value of (Xz&)A„depends logarithmically on a
as for the electrostatic potential and its dependence on the energy is not especially critical. The
second term in Eq. (15.3) contains a part in u„p(rt) Lgpp(kpr)+pfpp(kpr)] which combines itself with the
divergent wave part of the first term to give the coherently. scattered wave. The contribution due to
this wave to the plane wave in Eq. (15.2) is

2L+1 exp [i8(ko)]—sin 8(k,)+ f„o'(k. oro) u„p'(rto) P&(cos 8)u„p(r&) exp {iLkpr+ 8(kp) ]I. (15.4)
kpr ko(&L )A

Distinction of potential scattering Her.—e the specific nuclear scattering adds itself to the potential
scattering represented by sin 8(kp). It should be noted that in this problem a definite distinction
between pure potential scattering and potential scattering + nuclear scattering can be made. For
pure potential scattering one has

2L+1
4's, ooh, pot

kpr
sin 8(ko)PI (cos 8)uoo(r&) exp {iLkpr+ 8(ko)] I.

For a known p, , „h one obtains a coefficient sin B(kp) exp Lib(kp)] and the point is that an arbitrary
number cannot be represented as e" sin 8 with a real b. This complex number has the special property
of having a square of its absolute value equal to its imaginary part.

For incoherent scattering with excitation n the above model gives

2L, +1 Pl, (cos 8)
;„„h=+, u„(rt) exp {i[p+6(k )p+ (k8)]I u o(rto)u„(rto) fp(kro) fko(korp). (15.5)

kpr k(Eg))

Equation (15.4) gives the scattered wave for which the nucleus is left in the original state np. Equation
(15.5) gives the scattered wave for which the nucleus has been transferred into another (e.g. an
excited) state.

The denominator (Xz) contains a number of the fh and the barrier penetrabilities enter in compen-
sating products f&g& since all quantities in (XD) refer to the inside of the nucleus. The dependence of
(Xzs) on energy is, therefore, much less marked than that in the numerator. One sees that primarily
it is

u„(rtp)fp(krp)/k,

that matters for the amplitude of the scattered wave in the present example and in this case
~ fp {

' is
a measure of the probability of escape to the state n,.

Repulsive interaction in large region

Some of the qualitative features of the above example hold also in more general circumstances.
Several small repulsive regions inside the nucleus give a dependence on energy of the scattered wave
similar to that of Eqs. (15.4), (15.5). Sources of X& put inside each obstacle have then strengths
determined by (X&) ' for each obstacle and the intensity of the incident wave + wave scattered by
other sources. If the obstacles are sufficiently small and there are not too many of them the wave
scattered by other sources can be neglected and the energy dependence of scattering or excitation is
the same as before.

If, however, the scattered wave inside the nucleus is comparable with Pp(rz, r) then the energy
dependence of f,, „h, f„;.,h outside the nucleus is also changed. Equation (15.3) may be used for a
crude estimate of some of the effects. The repulsion will be supposed to take place in a circular region
having dimensions comparable with the wave-length inside the nucleus and it will be supposed high
in this region. As a crude approximation the wave Pp(r&, r) will be canceled approximately by a source
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of KD at the center so that Eq. (15.3) still will hold. Only in this case EDdo'es not depend primarily
on the radius of the circle and the denominator may have a decided energy dependence.

If one of the terms in Eq. (14.8) for XD is appreciably larger than the others inside the nucleus
and if for it g&. (k'rp)»f& (k'rp) then one may set

—(ED) u„(r~p)fp. (k'rp)go (k'rp)/k'. (16)

Here A."='A„+k"so that the state n' goes with the wave number k'. If, besides, n'=np, k =kp i.e. , if
the incident state is the one that is important inside the nucleus then Eq. (15.4) becomes

4'o, ooh

2L+1 fko(kor o)
u p(r~)PI. (cos 0) sin 8(kp)— exp [fB(kp)] exp {i(kor+&(ko) }

kpr gl fo(koro)
(16.1)

and from Eq. (15.5) one obtains

s, incoh

2L +1 u„(r~p) fp(krp)
u„(rg) I I(cos 8) exp {o[p+h(kp)+5(k)]}.

u.o(rip) gko(koro)
(16.2)

Equation (16.1) corresponds to the scattering cross section

and (16.2) to
p„q (Ap'/7r)(2L+1) Isin 8(ko) [fko(korio)/gko(korio)] exp [&8(ko)]l'

(AAp/p)(2L+1) I
u (rso)/u o(rio) I'I fp(kro)/goo(koro) I

'.

(16.3)

(16.4)

The last formula can be compared with the
result of the considerations of Kapur and Peierls
as used by Konopinski and Bethe" and those by
Weisskopf and Ewing. " Konopinski and Bethe
apply the theory to Li'+H' —+He4+He4 and
they use

I', 8*'/G, ', ~ A'I', E 'G *, (16.5)

where G~ according to their paper is the irregular
function of the proton for the Coulomb field.
Equation (16.4) contains the factor A

I g&p(kprp)
I

which shows a similar variation with energy.
The following points may be noted in a com-
parison of the two results.

(a) Equation (16.4) does not give a solution
of the Li'+H'~He'+He' problem in a direct
way. It is obtained only as an approximate
solution of the excitation problem. One may
nevertheless expect some similarity between the
energy dependence of the excitation and dis-
integration processes. Since the factors A

Ifp(krp)
I

'
X lu-(r~o) I' »d Aolu-o(r~p) I

'lg»(koro)
I

' a«
characteristic, respectively, of the final and
initial states one has reasonable grounds for ex-

2'E. J. Konopinski and H. A. Bethe, Phys. Rev. 54,
130 (1938).

2'V. F. Weisskopf and D. H. Ewing, Phys. Rev. 57',
472 (1940).

pectingthedependence Aol u o(rio) I 'Igpo(korp)
I

to hold also for disintegrations in the approxima-
tion in which Eq. (16.4) has been obtained.

(b) Since the formalism used is essentially the
same for the case of several coordinates r&, ~ ~ ~, r,
replacing the single coordinate rI the above can
be applied to the case of a nucleus excited by
bombardment of the particle whose coordinate
has been denoted by r&. If the nucleus disin-
tegrates into two products (with a small proba-
bility) from the state n a three-body disintegra-
tion is described.

(c) The approximation used to obtain Eq.
(16.4) is very crude. Essentially it neglects the
effect of all states except u p(r&)g&p(kpr)/kp which
are produced by the sources of Green's function
inside the nucleus. The complete expression
according to Eq. (14.8) contains other terms
besides and these contribute to (XD). In addition
the approximation of replacing the many sources
of diverging waves inside the interaction region
by one at the center neglects interference e8'ects
which contribute to an additional energy de-
pendence.

(d) The function gpp(kpr) which enters into the
present discussion is not the irregular function
for the Coulomb field but the irregular function
for the solution of the radial wave equation with
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infinite plane with constant ~. In plane polar
coordinates the axially symmetric solution
satisfies

d'P/dR'+dP/RdR+ [»' V(R—) jg =0, (17)

which is the same as

RLPULSIYE:
INTERACTION

FIG. 5. The two-dimensional resonance model.

the Coulomb field modified by the average
nuclear potential taken into account by the
difference between V(r) and the Coulomb poten-
tial. (The Coulomb field is here thought of as
breaking off to zero at a reasonable distance
outside the nucleus. If this is not done the above
formulas must be changed to take into account
the effects characteristic of the 1/r potential. )

Schematic representation of two-body resonance

The interaction potential will be supposed to
be large and attractive in a small circular region
surrounding the point (r&0, ro). Outside this
region there is a narrow ring LFig. 5j within
which the potential is repulsive and sufficiently
high to serve as a barrier for waves emerging
from (rqo, ro). The two-dimensional region formed

by the circle and the ring is somewhat analogous
to the Gamow, Gurney-Condon model of radio-
active decay. The depth of the potential well and
the height of the barrier will be adjusted so that
for a suitable energy the wave function is large
inside the circle and small just outside the ring.
For this energy the circular resonance region
will be found to act as a strong source of two-
dimensional waves which will give rise to strong
scattering. The wave function within the circular
region is in this model a schematic representation
of the compound nucleus which is formed by the
coupling of the two particles to each other. In
this model the compound nucleus is screened
against external disintegration by the repulsive
region in the ring and in addition also by the
barrier U(r)

The resonating properties of the circle-ring
system will be first defined by coupling it to an

is a solution of Eq. (17). One has

Jo(KR) (2/mKR) l cos (~R —~/4)
(~R&&1) (17.3)

No(KR) (2/Tr~R) i sin (~R —7r/4),

so that by Eq. (17.2)

P~ (2/7r~R) 2 cos (~R —s-/4+ p), (~R&&1). (17.4)

Equations (17.4), (17.2) show that p is caused
by V(R) in the same way as the phase shift X is
produced in the single-body problem. It will be
assumed, therefore, that close to the resonance

tan y—DE/(8 —Ep), (17.5)

where AE is a positive constant. This assumption
is reasonable in view of Eq. (17.1) which is like
the radial equation for Q in the central field
problem. Eq. (17.2) does not apply for R(RO.
At R =Rp it joins smoothly to the internal
solution. One has

( dP ) Jp (RRO) cos tp Np (KRp) sin p—(».6)
(PdR) R„JO(KRo) cos p No(~Ra) sin p—

and this formula does not depend on whether
the ring is coupled to an infinite plane or to the
actual potential provided one may assume P to
depend only on R for R&Rp. In fact this axially
symmetric part of P is determined by Eq. (17)
and the requirement of regularity at R=0. The
requirement of axial symmetry is good only if

x = ~Rp&&2.

For small x

Jo(x) = 1 —x'/4+
sNO(x)/2= Jp(x) In (yx/2)+x'/4+

d'(R lP)/dR'+ [~' V(R—) +1/4R' j
X (R'P) = 0. (17.1)

Here V(R) is the potential within the circle-ring
region and V(R) =0 for R)Ro. Outside the
circle-ring system

P= Jo(~R) cos &p No(~R—) sin y (17.2)
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2/vrRp(dp ) Kg

EpdRI Rp 2 cot pp
—(2/m) ln (qx/2)

The formula

Jp(x) Np (x) Np(x) Jp (x) = 2/s g

when used to eliminate Np' in Eq. (17.6) gives

The variation of Pp over the circle-ring system
is neglected and in (18.1) the average values of
P, dP/dR over R =R p are used. These values will
be denoted as (f), (dP/PdR) and one obtains

(dP/PdR)

(Kg)—)(dg/PdR)+(dK~/dR)

Since x«1 this expression will be approximated
by

—(KD)—
cot p —Np

—1

—(dKD/dR)
f(:¹p'

( dP q
—2AE/prRp

~igdR~ Rp E—Ep —(26E/s. ) ln (yx/2)

One has approximately

4iXD Jp+ilVp (18.2)

(l 7 7) and hence 4(dKD/dR) ~Np' so that
cot y —¹p

4
where the approximation (17.5) has been used.

In the presence of U~(r~), U(r) and with the
boundary conditions P(0, r) = P(r&, 0) = 0 the
approximation

(Np) —cot p 4(KD)

(18.3)
E Ep AE—(Np)

—+4AE(KD)

4(r~, r) = up(rl, r)
+neap(rap rp)Ko(r„r; rip, rp) (18)

On account of the potential field U(r) the
quantity u„p(r&)FI.(kpr) in (15.2) should be re-
placed by Pp(r&, r) as in Eq. (15.1). On account
of the resonance interaction in R (Rp one must
make the substitution

will be used. Here Pp is given by Eq. (15) and
it is assumed as in Eqs. (15), . (15.5) that the
density p in R&Rp can be replaced by a point
source. This assumption is a poor one close to
R=Rp but the axially symmetric part of P can
be represented by a point source. One has

dP/dR uPp(ryp, rp) (dKD/dR) Rp

and
(dK'o/dR) R,

EgdR~ Rp 1/n+(KD)Rp

with P given by (18), (18.3). These substitutions
are made in the right side of (15.3) and
u„p(rq) exp [ikps] is subtracted from the result.
The difference is the scattered wave. Its value

(18 1) for large r is obtained by means of the asymptotic
expressions

fpp(kpr) exp [i5(kp)] i ~ sin 6(kp) exp {i[kpr+8(kp) ]I +Fpp(kpr)

gp(kr) +ifp(kr) i ~ exp {i[kr+ 8(k)]}.
The scattered wave at a large distance is

2L+1
Pr. u„p(r|) sin 5—(kp) exp [ikpr+ib(kp)]

kpr
1—a+ p(rip)fpp(kprp)P(k'&0)u„(r~)u„(rip) —fp(krp) exp [ikr+ib(k)+i8(kp)] . (18.4)
k

The first term in the braces represents scattering due to U(r) The remainder is d. ue to the resonance
interaction, Neglecting the former one obtains the scattering cross section due to resonance scattering

k
p„,=Q(k'&0)~~dQ r'

~

dr~ —!Q,I„'-",
~o ~o

(18.5)
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where P.p is the part of P, due to excitation into the state n and emission of the wave gp+ifp. The
factor k/kp is introduced into (18.5) because the number of emitted particles is proportional to their
velocity. Substituting into (18.5) one finds

Ap' 1
&r-.= (2L+1)

~
a~ 'upo'(rio) —fop'(korio)E(k') 0)u '(rro) —fp'(kro)

kp k
(18.6)

Introducing n by means of Eq. (18.3) one has

where

(2L+ 1)Ap' I'.pP I'.

~
~

E E. AE—(No)—+4AE(En) l
''

I
I'„=4AEu„'(r~o) —fp'(kro).

k

(18.7)

(18 8)

The expression (14.8) for XD is now used to obtain (XD). The imaginary part comes only from
P(k') 0) and consists of a finite number of terms The. real part is an infinite series and has a loga-
rithmic singularity like that of Np/4. Denoting the real part by Re and the coefficient of the imaginary
part by Im one has from Eq. (14.8)

4AEIm(En) =—Q I'„, (18.9)

which when introduced into (18.7) gives

(2L+1)AoPI'„p+I'„
Ores =

m I E—Eo —(No) AE+4AERe(Xn) pP r.
~

'— (19)

This is the ordinary formula for resonance competition. It has been obtained with the following
restricting assumptions.

(a) The two-dimensional region within which the interaction takes place is small. This assumption
does not mean that within this region the interaction is small. The result of this assumption is to
simplify the result by making I'„depend only on u„', fp' at rz ——r&p, r = rp. (b) Resonance was assumed
to be sharp.

According to Eq. (18.9) the damping constants I'„depend on the constant 4AE which is charac-
teristic of the resonance region. Besides, there is present also the dimensionless factor u„'(r~p)fp'(krp)/k
which is characteristic of the binding of particle 1 in the residual nucleus, the energy of the escaping
particle and the potential barrier through which this particle must escape. The barrier enters im-

plicitly through fp'(krp). The presence of this factor could be expected by analogy with the result of
Wigner and the writer by a method analogous to the Weisskopf-Wigner theory of the absorption and
emission of light. The damping constant is then proportional to the square of the matrix element of
the interaction energy divided by the average energy interval,

~
3/1,

~
/Av, in the notation of the above

reference. This quantity varies with the energy as fj, /k in exact agreement with the result obtained
on the present model. It is claimed, on the other hand, from the considerations of Kapur and Peierls
that I' ~ E&/Gz'. The difference between the results is in a sense quantitative rather than qualitative
and it is perhaps unnecessary to emphasize it. For slow neutrons both results give F ~E& and for
small r one has F&G& ~ p ~ El so that F&'/k and El/Gp' vary with energy in the same way. For low

energies fp' and Fpo also vary similarly. On the other hand fp'/k, E&/Gp' do not vary with energy in

exactly the same way and it should be noted that f&'(rp) is here taken at r =rp i.e. , at the mean r of
the compound state rather than at the arbitrary nuclear radius of Kapur-Peierls.
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SPEcu r. Two-DIMENsloNAI. GREEN's FUNcTroNs

(A) Infinite plane

The differential equation
((1'/Bx'+8'/By'+1) /=0

is supposed to hold through an infinite plane. Green's function is

&o = (1/4l)IIo"'(L(x —5)'+(y —s)'j') (20)

whele IIO( I Is the Hankel cyllIldrIcal fuIlctloII of tile first klIld. Tile Illetllod of h.qs. (7) will liow be
applied to the computation of Ii.o and the result will be shown to agree with Eq. (20). The point of
doing so is to make sure that the method works also for a continuous spectrum of )„.

Quantizing in the interval I./2 &x&—I./2 by means of the periodic boundary condition one has

u„(x) =I -'*e"*

r=2r(n/I. n=0 &1 &2

Equation (7.6) gives
u„('x)u„*(p}=I='exp LI'r(x —$)j.

ok(y) =Ã(,e"", u(, (y) =. lil'ie ""
(20.1)

k = (1 r'-') '* for—1 & r'
k=il(1 —v')ll for 1(r'

Rn(i according to tile florl11alizIIlg coI1(lltloII (7.7) oIle llas

2ikXI,2 = I.

(20.2)

(20.3)

Substituting (20.1), (20.2), (20.3) into Eq. (8) and remembering that the interval between successi~e
r Is 2I(/Is OIle 11RS foI' IRIge L'

1 +"' 1
&o(x. y; 5, r() =

i

—— e~p [~r(x k)+~(1 —")'(y s—)jdr; —b &s).
4I(i ~ (1 r') '— (20.4)

2 p cos Tx
IIo"'((x'+y')')=- i' ———,e p LIlyl(1 —')

(1—r') *'

2 t Icos (rx) 2 f COS 7X
e&p L'lyI(1, "-)-*ld,+ e„p L (, 1)',

, yl jd, (205)
Ir ~0 (1 —r')*' (r' 1)*'—

This expression for IIO") is not obviously symmetric in x, y. It shows the importance of states with
negative kinetic energy for motion in the y direction. The JI" part of the formula consists of such
states. It should be noted that these states of negative kinetic energy may contribute to the asymptotic
value of Ho"' for x~ ~. Setting x=0 in Eq. (20.5) one obtains

p oo r
0
(II (y) —

~ e (( sinh ((f)+
~

~
eis sin Pde (y )0)

0

(20.6)

which is obtainable from Eq. (2) in Watson's Theory of Bessel Punch'ons, p. 178.21 Setting y=0 one has

2 f cos Tx 2 f cos Tx
IIO'"(x) =—

~

—— (fr+— — dr, —
II sIO (1 —r )* I(I s( I (r —1}'

~' G. N. watson, T'heory Of Blesse/ FNm(eggs {Cambridge University Press, 1922).

(20.7)
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which is verified by means of

1 f' 2
Jp(x) =—

~

cos (x sin 8)d8, No(x) = ——
~

cos (x cosh t)dt:, II,&'& = Jp+fNp
7I p p

For large x, Jp(x), Np(x) have comparable values and Eq. (20.7) shows that Np arises in this case
from waves with a negative kinetic energy of the y motion. The most important values of 7- are those
slightly )1 which correspond to only slightly negative kinetic energies of the y motion. In Eq. (20.6),
on the other hand, the negative kinetic energies contribute the first integral and one has

1
g
—jy{ sinh tgjI ( e I tJI &Qf—

0

This is negligible in comparison with Hp"'(y) for large
~ y f. Along the y axis, therefore, the negative

kinetic energies of the y motion do not contribute to the dominating term of the outgoing wave.

(B) Quadrant x)0, y)0
The same differential equation as in case (a) is being solved subject to boundary conditions P(0, y)

= P(x, 0) =0. Green's function can be obtained again by the general method and this time by the
modification for central fields, as in Eq. (14.8). The substitution r&~x, r~y is made, the functions u„
are quantized in the finite interval 0 (x(L and are (2/L) l sin rx while the interval between successive
r is Ar=7r/L. One obtains

2 p" sin rxsin ~$
ED sin [(1—rP)'*gj exp [p(1 —r"-) '*yjdr

(1—r')"
(21)

with the understanding that for

(21.1)

Rearranging expression (21) one expresses it in terms of integrals of the form (20.5) and obtains

1
&D =—{Hp"'([(x—$) '+ (y —n) 'j') H'p([—( +xf) '+ (y v) ' j*)—

4i
—Hp'"([(x —$) '+ (y+ s)'j'-) +Hp"'([(x+ f) '+ (y+ P) "j') I, ( )

which can be also obtained from (20) by placing negative images of the source at (—$, rl), (P, —s)
and a positive image at (—$, —s).

It will be noted that in both of the above examples ED is asymptotically an outgoing wave at a
large distance even though this is not obvious in the forms (20.6), (21).

(C) Straight channel

The region considered is —a(x(a, 0(y( ~ and P(x, y) is subject to the boundary conditions

4(a, y) =4(-a, y) =o

and for y = ~ it is required that X& be an outgoing wave. These are the boundary conditions required
for Eq. (14.8) for use with central fields. The substitution

(r&, r) = (x+a, y)

is made. The wave equation in the strip is taken to be

($2 /Qx2+ pl 2/ ply 2+ &2)P —0
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One has
u (x) =a l sin [xe(x+a)/2a]; k'= ~' 7—r'n'/4a' m=1, 2, 3,

1 7m 7m
KD = P (k'-) 0) cos —(x—$) —(—)"cos (x+ P) sin rq e'~&

26k 2G 2Q

7m 7m
+P (k'&0)— cos —(x—$) —( —)"cos —( x+f) sinh ~kedge

~~~&,

2a~k~ 2a 2Q

(22)

(y &n)

For ~~0 this expression becomes

1—KD ———R.P. ln
2'

1+exp I(m/2a)[ —(y —q)+i(x+f)]I 1 —exp I(m/2a)[ —(y+g)+i(x $)—]I
1 —exp I (m/2a) [—(y —q)+i(x $)]I 1+—exp I (~/2a) [—(y+g)+i(x+$)] I

(y & ~) (22 1)

The expression under the logarithm is a function of x+iy and, therefore, the right side is a solution
of Laplace's equation as it should be. The boundary conditions are verified directly in Eq. (22.1).
Also one sees that Xn and its derivatives are continuous except at x+iy= (+i' At th. e latter point
ED behaves as

1 7r

~ =—ln —[(x-~)'+(y-~)']:
2' 2Q

(22.2)

Constant terms have been dropped. Except for constant terms ED is seen to be the electrostatic
potential due to an electric charge of linear density (—1/4~) on an infinitely long filament perpen-
dicular to the plane (x, y) and crossing it at the point ($, g). This is in agreement with Poisson s

equation in electrostatics which is in two dimensions

( g~ g2 ) + p 1
+

~

—~(~, ~) l. [(x 8'+(y--~)']-'«d~=. (x, y),
&Bx& By-') J J 27r

which is the same as Eq. (14.7) for XD in the limiting case of Eq. (22.2).
If ~') 0 but &&~'/4a' one may still apply Eq. (22.1) in the rectangle 0 &y &2a as an approximation.

Since in the form of Eq (22) th. e series converges slowly one sees here the importance of taking into
account many states of excitation of the residual nucleus.

For any z the series (22) for XD behaves for high n like the series (22.1) and as long as
~ y —g ~

40
this series remains convergent when differentiated with respect to y. The convergence is due to the
presence of the factor exp [—m.m

~ y —q ~
/2u]. It will now be verified that BX~/By is continuous on the

line y =g. For a small e) 0 one has for ~' &~'/4a'

1 7m 7m

~/B»~=. + —(B&D/By).=.—=&—«s —(x —5) —(—)"«s —(x+t) [e ~"'+e '~@"sinh (k ~.]
2Q 2G 2G

The second term in square brackets gives an absolutely converging series which vanishes with e and

may, therefore, be disregarded. The 6rst term also gives an absolutely converging series if e)0.
For ~=0 the series does not converge. As &~0 the sum can be seen to ~0. In fact e can be made so

00 N

small that e7rX/2a«1 for X)&2a~/m. . The P is split into P+P and the series is compared with its
n=l 1 N

N

value for the same e and a=0. The difference of the P is negligible on account of the assumption
l

about e and the difference of P is negligible on account of the assumption about N. On the other
N
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hand for «=0 the series can be summed and gives 0. It is thus seen that BKD/By is continuous on the
line y=g. The point (x, y) = (P, s) is, of course, an exception.

The main object of the above example is to illustrate the importance of excited states in the
vicinity of the region in which interaction takes place. This is seen in the limiting form of Eq. (22.1)
in which the outgoing waves combine to give the electrostatic solution. If there are two obstacles,
instead of one, and if their distance apart is smaller than the wave-length the wave scattered by
(Pi, gi) gives a contribution to P at ($&, q2) which contains many states of excitation.

(D) Transformation of Hankel function

The relations of Eq. (20) suggest formula (20.6) for the Hankel function IIO&'&i. This will now be
verified by means of contour integration. According to Courant-Hilbert. "

1
IIoi'&(r) = —— ~I e *"" rdl,

~ ~r. y

(23)

where the path of integration is from —i ~ to 0, then to —m and finally to —++i ~ as indicated in
I'ig. 6. The differential equation for IIp") is satisfied also for other paths of integration provided

Leos i e
—ir sin r] ir —0 (23.1)

where f=c and g = b are the limits of integration. The path will be deformed into L ~' which starts at
$Q i ~ and goes over $p, 7I + po to ir+ $p+i n with ir/2 )Po )~ . t This path is not the path
denoted by Li' on p. 408 of Courant-Hilbert I.] The condition (23.1) is satisfied by I &' because
cos &0& 1. The integrand of (23) vanishes at the ends of the path for both I i and Li' and no poles of
the integrand have been crossed in the deformation. One has, therefore,

II (1)(r) — s ir sin rd(
m- ~l.g'

(23 -')

Setting t'= g+iq and introducing the abbreviations

y=r cos $0, x=r sin $0,

one obtains
'7 oo

II i ~(r) =—
)I cos (x cosh ~lir

—s sinh sdit+ eir sin iid8.p

7CZ p 7I $p

(23.3)

(23.4)

Substitution of 7 =cosh g in the first integral changes it into the second integral of Eq. (20.5). The
second integral in (23.4) is transformed as follows

s/2

exp (ir sin 8)d8 =— exp (iy sin 8 ix cos 8)d—8 = e'" -—' ' cos (x sin 8)d8.
X ~p 7l p

The se'cond integral in (23.4) is thus the first integral in (20.5) so that the latter representation is
equal to (23). It will be noted that the restrictions

0&(,&~/2, x&0, y&0

are essential for the deformation of L~ into L~ and that these conditions are also essential for the
applicability of the construction of Hp&') as 4iED.

The somewhat unexpected features of (20.5) are its dissymmetry between x and y and the fact
that it is not obvious from its form that it represents outgoing waves in any direction but that of

2'Reference 15, Vol. I, p. 407.
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increasing y. The way in which (20.5) gives an outgoing wave for y =0 has been discussed in connec-

tion with Eq. (20.7). It may be pointed out that

2 p" sin ~x 2 p' sin ~x 2 p" sin ~x
d7-=— —d+— dr

7r ~0 (1 —r')i ~ &o (1 —r')~ mi &, (r"-—1)-'

is also an outgoing wave for x&0. One has in fact

2 l" sinrx (2)' ( 7r)—d&= —&A(x) ~(
—

I
cos

I
'--

I

xi J
& (r' —1) ' (vrx) E 4)

and
2 p' sin ~x 4 (2)' (

dr =—[J,(x)+-',J3(x)+-',J„.(x)+ j )
—

)
sin

(
x ——).

E x) E 4)

Combining these relations one has

2 p" sinrx (2)'*
si(z —r/4)

(1—v')" (~x)
(23.5)

This formula is another example of an outgoing wave which is compounded of stationary waves.

It and Eq. (21) show that the general method of Eq. (14.8) when applied to a continuum can give in

special cases outgoing waves in all directions within the quadrant x&0, y&0. This does not mean,

however, that the same is true in the general case.

FINAL REMARKS

The calculations of the last section show that
the behavior of XD close to the singular point is

in fact such as has been used in the calculation
of scattering by a small obstacle in the (r&, r)
plane and the related calculations on the inter-
action in a large region as well as with resonance.
The example of the straight channel shows how

at the singularity the logarithmic dependence on

(x—g)'+(y —s)' is obtained. In fact for small

values of this quantity the contributions of high

terms in the series of Eq. (22) approach the
limit for ~=0 and give the electrostatic term.
It is clear, therefore, that close to ($, q) one needs

a larger number of excitation states to represent
the wave function.

In the two-dimensional model the singularity
is logarithmic. In m dimensions the dependence

of X close to the singularity is of type
const. [P(x;—P )'j' "+'&".The effect of a source

of a diverging wave is the more localized in the
m space the higher the number of dimensions

and the region in which the higher states are
especially important becomes more confined as m

increases. The scattered wave function outside

the nucleus may be expected to be small in com-

parison with the difference between the actual
and incident wave functions inside the nucleus
in a many-dimensional diagram. The importance
of the intermediate state is in this sense increased

by increasing the number of interacting particles.
The two-dimensional resonance model treated

above gives the expected answer. It does not
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include the effect of competitive emission of
several particles but only the e6ect of competi-
tion between various types of emission of the
same particle. For the discussion of more general
competitive processes it is obviously more suit-
able to bring in the intermediate state in a more
pronounced way. It is possible to do so by a
generalization of the method of complex eigen-
values to many-dimensional problems. This will

be treated in another publication.
The occurrence of the regular and irregular

solutions of the radial equation (fq and gq) in the
formulas for the scattered waves is not special
to the two-dimensional model as is clear from

the many-dimensional extension in Eqs. (13.1)
(13.4). The examples show that in special

cases the factor f~' occurs in the formulas. If the
interaction is distributed within the nucleus,
however, then the general form of Green's func-
tion shows that the gI, occur in the denominators.
In the general case the gI, for all excited states
will occur and very special assumptions about
the relative importance of excited states are
necessary to leave the simple factor [gl 0(koro)] '
in Eq. (16.4). Quantitative agreement with
experiment obtained by application of formulas
with one or another simple choice of such factors
does not appear therefore to be very significant.
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The Principal M-Series Emission Lines of Tungsten and the K Absorption
of Magnesium and Aluminum

J. H. A/IUNIER, J. A. BEARDEN AND C. H. SHAW

The Johns Hopkins University, Baltimore, Maryland
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A study of the M-series lines of tungsten and of the X-absorption edges of magnesium and
aluminum has been made by means of a double crystal x-ray spectrometer. The extension of the
double crystal technique to these long x-ray wave-lengths has been made possible by thorough
evacuation of the spectrograph and a windowless x-ray tube, The crystals were the aquamarine
form of beryl in which the 1010 planes have a grating constant of 8.06A. The detector was a
Geiger-Muller counter with an aluminum window of 2.5X10 cm thickness. The width and
relative intensities of the prominent M-series tungsten'lines were measured. Accompanying the
diagram lines are some 33 satellite lines. In the study of the K-absorption edges of magnesium
and aluminum, structure not heretofore resolved photographically has been recorded. A quali-
tative comparison of the intensity of the continuous radiation from tungsten to that from
aluminum at 10A indicates that the ratio is less than one, whereas theory predicts about six.

INTRQDUcTIoN

' /RECISION measurements with the double
crystal x-ray spectrometer have shown the

effectiveness of the x-ray method in checking
experimentally the theoretical calculations on the
electronic conduction bands of solids. ' Ruled
grating methods for the longer wave-lengths have
given valuable information on the conduction

'W. W. Beeman and H. Friedman, Phys. Rev. 50, 392
(1939); H. Friedman and J. A. Bearden, Phys. Rev. 5'7,
1085A (1940); T. M. Snyder and J. A. Hearden, Phys.
Rev. SV, 1085A (1940); W. W. Beeman and J. A. Bearden,
Phys. Rev. 5'7, 1085A (1940).

bands of the light elements. ' Photographic meas-
urements in the intermediate range have not
yielded results of definitive accuracy because of
low resolving power and inaccuracies of intensity
measurements. This region, however, is one of
considerable theoretical interest, because here
the present theory of metals makes sufficiently
accurate predictions that their comparison with
experiment may be expected to be significant. '

'See, for example, Reports on Progressin Physics, Vol. 5
(Physical Society, London, 1939).

3 M. F. Manning and H. M. Krutter, Phys. Rev. 51,
761 (1937);J. C. Slater, Phys. Rev. 45, 794 (1934).


