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From our ionization chanlber measurements with
the target replaced by a clean aluminum plate
we conclude that the only source of neutrons in
the accelerating tube was the target itself. It is
conceivable, however, that with some experi-
mental arrangements the scattering from the .

walls of the room might play an important role.
It is also weil known that in certain accelerating
tubes an appreciable number of neutroris may
be created at points other than the target. We
feel that a low energy group of neutrons whose
intensity amounts to as much as 10 percent of the
main group should be evident in Fig. 2 if it exists.

We do not believe that the data presented
here are sufficient to warrant a precise determina-
tion of the energy evolved in the d —d reaction.
We have, however, plotted an integral number-
energy curve in Fig. 3. The extrapolation of this
curve gives an energy of about 2.8 Mev for the
neutron energy, corresponding to an extrapo-
lated range of about 10.9 cm for the recoil
protons. This agreement with Bonner's extrapo-
lated range of 10.6 cm is satisfactory.

We wish to express our appreciation for the
generous cooperation of various members of the
staff in this work.
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An interaction between nuclear particles and a field of light particles which obey Fermi-Dirac
statistics is considered. It is shown that the energy of interaction between heavy and light
particles can be calculated without resorting to perturbation theory in an approximation which
neglects electric forces and the kinetic reaction of the heavy particles. Results which contain
the effect of the rest mass of the field particles are presented for one heavy particle and for
two heavy particles.

' 'T is the purpose of this note to extend the
& ~ method which has been applied to the elec-
tron-positron-field theory of nuclear forces' to
take account of effects dependent on the rest
mass of the field particles. In the previous
theory, the rest mass of the light particles was
negligible. If the light particle field be that of
mesons which obey Fermi-Dirac statistics, how-
ever, it is necessary to take the rest mass ( 180
electron masses) into account, even in the
approximation which neglects electric forces and
the recoil of the heavy particles. The method
which we present may then be used, for example,
to derive the nuclear forces due to the meson-
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'Wigner, Critchfield and Teller, Phys. Rev. 56, 530
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field introduced by Marshak, ' without the use
of perturbation theory.

The fundamental assumptions of the present
method are (I) a heavy particle (neutron or
proton) interacts strongly with a light particle
(meson) if the light particle occupies a state of
one particular space-dependence, u(x), but does
not influence the energy of mesons in any
orthogonal state; (II) the state of the heavy
particle is not changed by the interaction. Both
assumptions require a nonrelativistic treatment
of the heavy particle and permit the simplified
device of fixing a heavy particle at the origin
of the coordinate system and investigating its
effect on the light particle states. Condition (II)
must be changed to exclude spin direction if

~ R. E. Marshak, Phys. Rcv. 57, 1101 (1940).
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spin-dependence of nuclear forces is to be ex-
plained but the niodification is easily made' and
will not be considered here. It is furthermore
assumed for simplicity that the spatial depend-
ence of N(x) is spherically symmetrical about the
position of the heavy particle.

Let P(x) be the operator of the meson state
as customarily defined in the formulism of
quantized wave functions. 4 P(x) has four spin-
components which will be transformed by e and

P in the way required by their use in the rela-
tivistic wave equation of Dirac. With a heavy
particle remaining stationary at the origin ex-
plicit reference to its state need not be made
and the operator of' the proposed addition to the
Hamiltonian of the mesons is

P
J= —q I dx dx'p(x)tpp(x')n(x)*u(x'), (1)

-I= v —dp) dp'4 (P)'p4 (P')v(p)*v(p') (2)

and v(p) is normalized so that

p

v(p)'4m. p'-dp = 1.

If II'@~& be the usual relativistic Hamiltonian
(in quantized form) the Hamiltonian II&t @
=II'p~@+J in which Coulomb interactions
have been disregarded leads to a wave equation
for the single light particles:

where q is the constant giving the strength of
t.he interaction. We shall take pc2 as the unit of
energy; p is the mass of the meson. Making a
Fourier transformation u(x) may be replaced by
v(p) and P(x) by 4(p)

LF-—(~ P) —K4(p)+W(p) p "v(p')*4(p')dp'=o. (4)

p is also measured in units of pc . Although we follow the main lines of the method used for electron-
positron pairs we shall, however, omit the transformation to eigenstates of kinetic energy. This step
was useful in the former paper to get a description of the interaction (1) in the language of pair-
emission but it is not essential to the solution of (4).

&+(~, p)+p
e(p) = — nv(p)p~~v(p')*4(p')dp'

B2—1 —p2

Multiply (5) by v(p)*dp and integrate over all angles and over all values of
~ p ~.

g+p
v(P)*0(p)dp= — — vv(P)'4vP'df p~ v(Y)*@(p')dP'.

B2—1 —p2
(6)

v(p) is equivalent to v(p) because of the assumed spherical symmetry. The integral equation (6) can
be satisfied only if

&+p
v(f)'I 'dP = —1.

J P2 ] p2
(7)

Let q
—=

~

(2' —1) '*

~; the integral in (7) is then of the form which was evaluated in the former paper. '

The method of evaluation is one by which the integral is replaced by a sum over momentum states
quantized in a sphere of radius, I, so that p =n.pc hn/L As a result .of the interaction with the
heavy particle the (F.' 1) '* of an eigensta—te with energy 2, determined by Eq. (7), is changed by an
amount x7rpc'II/I. , ~

x
~
(1.The x for a given 8 is determined by

(0&+1)n I 2~'av(v)' cot ~x+f(a) I = —1, f(q) =4~ Lf 'v(—f )' V'v(V)'3(q' I ') '4— . —-
Jp

' C. L. Critchfield, Phys. Rev. 56, 540 (1939).
4 P. Jordan and E.Wigner, Zeits. f. Physik 47, 631 (1928).
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The factor P can take either of two values, +1 or —1. Let x be the fractional shift of (E2 —1)l when

P = 1 and let x' be that for P = —1

tan «x=27r'q(E+1)v(g)'/[ —g
' —(E+1)f(q)],

tan «x'=2m'q(E —1)v(q)'/[g —' —(E—1)f(q)].

Let dq = 7rpc'II/I; then the combined displacement of the value of q for levels of essentially the same
E is (x+x')dg and the corresponding net change in energy for these levels is (x+x')d~E~
= (x+x')qdq/

~

E ~. The total change in the energy of all states of negative energy, AE, is then

2 t /de 4~'a'~(C)'[Vf(C) —(~V) 'j
AE = ——

~

-- arctg
(V'+1)' n

' rf'f(r—f)'+4~'rI'~(rI)'+2f(rI)/~
(10)

The factor 2 represents the sum over spin directions of the mesons and hE is understood to be in

units of pc'.
Equation (10) gives the total interaction energy between one heavy particle and the field of all

mesons in negative energy states. When two heavy particles are considered ~E will depend upon
their separation and forces will arise which might be identified with the forces in nuclei. The de-

pendence of AB on the distance between heavy particles may be obtained by the same method which

led to Eq. (10). The outlines of this application will now be sketched.
We modify the assumptions made above when considering one heavy particle only by considering

two heavy particles of equal mass with their center of gravity at the origin of coordinates. Let the
position vector of one be ckX and of the other —ckX. An addition to the Hamiltonian of the type (2)
must now be made for each heavy particle. This may be done by translating rt(p) from the origin to
cfiX so that it becomes e'" «'s(p) in one case and from the origin to —clX in the other The .wave

equation for mesons then becomes:

We define the spinors:

+ '"' ' (P)PJ (P )* '"' 'P(P )dP =0 (11)

(12)

and solve (11) for g(p)

E+(~ p)+P
y(P) = —— — ~p{e'& «&v(p) g~+ e-'&'»s(P) ~2I.

E2 p2
(13)

X is simply a set of three numbers so that the exponentials and other functions of p commute. By
multiplying (13) by e ""«'v(p) dp a,nd integrating we get one equation in g& and $2 a,nd by multi-

plying (13) with e'" «'v(p)*dp and integrating we get another. These equations may be written

formally:

$~= —Qki —Rb, h= —R*h —Q$2 (14)

The energy levels of (11) are then determined by the secular equation:

(1+Q) ' —R~R = 0 (1S)
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and with the same notation as in Eq. (8)

Q= (PE+1)n {2ir'qv(q)' cot irx+ f(q) I,

t' E+P sin Pr f 2gP
nP41rP' v(P)' dP+i(e, I) 41rP' v(P)'

Pr «'(q' —P')

sin Pr

Pr
—cos pr dp, (17)

where r= 2{X—{, is 1/Sc times the separation of the heavy particles. It is evident that the integrals
in (17) may be calculated by the same method by which Eqs. (8) and (16) were obtained if v(p)' be
replaced by v(p)' sin pr/pr for the first integral and by v(p)'[(sin pr/pr) —cos pr) for the second.
In this way R may be represented by

2P
R = —n(pE+1) {2w'qvi(q)

'-' cot irx+ fi(q) I +i (e, X)—n {2ir'qvi(q) ' cot irx+ fi(q) I
r2

(18)

v, (q) ' =v(q)
'-' sin qr/qr, f (q) =4 "[P' (f)' —q' (q)'j/(q. ' —f')df,

v2(q) ' =v(q) '[sin qr/qr —cos qr j, fi(q) 41l
J [P v2(P) -'—q'vg(q) 'j/(q' —P')dq.

The secular equation then becomes:

n~[(PE+1) (v4 vi4) —v2% ](2m' q cot vx) +2[n(PE+1)v +n (PE+1) (v f vi fi) ——n v2 f2/r j
)& (2ir'q cot v x) +1+2n(PE+1)f+n'(PE+1)'(f' fi') —n'f—'/r' =0. (19)

This quadratic equation has the roots cot vrx& and cot xx2 corresponding to changes in q for two
orthogonal eigenstates of energy B. Since we are interested only in the sum of all changes in energy
we add x~ and x2

tan ir(xi+x2) =4m'q[n(PE+1)v2+n2(PE+1) (v2f —vi fi) —n'v2'f2/r'7

X {4~'q'n'[(ffE+ 1)'(v' »') »'/—r' j —1+n'f2'/—r' 2n(PE+—1)f n'(ffE+—1)'(f' fi') ' ' —(2o)

Let xi and x& represent the changes in q when P = 1 and xi', xi' represent those when P = —1. Further-
more, we define K, L, M, and N in such a way that the tangent in Eq. (20) becomes (K+PL)/
(M+PN); then

tan m(xi+xi) = (K+L)/(M+N), tan ir(xi'+xi') = (K L)/(M N'), — —

xi+xi +xi +x2' ——(1 /ir) arctg 2 (KM LN) / (M'+L' —N' —K2)—
2(xi+x2+xi'+xi')qdq/(q'+1) l.

(21)

(22)

For a particular function v(p), therefore, it is possible to express AE as an integra, l analogous to
expression (10) but the explicit form of the one for two particles is necessarily complicated and is
not presented.

The method presented above is an alternative to the usual perturbation method of calculating
forces between heavy particles. In practice the integral (22) will be discouraging except perhaps for
certain particular assumptions for v(p).

'

The authors are indebted to Professor Kigner of Princeton University for many helpful discussions
on this approach to a theory of nuclear forces. It is a pleasure to acknowledge Professor Wigner's
interest and help.


