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auxiliary anode decreases, the current as a whole
increases as another spot is forming elsewhere.
At high pressures, because of frequent collisions,
the spot can extract electrons from a relatively
small region of the plasma resulting in many
spots close together while at low pressure this
region from which electrons are drawn is large
and the spot correspondingly large.
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Anode spots will play an important role in those
devices in which the currents are large and the
anode areas small.. They should occur at the
anode when the transition from glow to arc is
approached and in gaseous discharge devices
employing thermionic emitters or cathode spot
emitters where the discharge current may become
large.
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The purpose of this paper is to show in greater detail the construction and use of a certain
type of consistency chart already briefly described by the author in a previous paper, and by
means of it to exhibit, with a few minor changes and some important new additional data, the
present status of the dilemma regarding the values of e, m and % which grows out of the dis-
crepancy between various results of careful measurements of functions of these variables. The
discrepancy itself remains practically as glaring and just as unexplained as ever. Scales have
been added permitting the values of e, m and % corresponding to any intersection point to be

read off directly.

THREE-DIMENSIONAL REPRESENTATION

ERY few experiments have been performed

which measure any one of the three atomic
constants alone without involving one or both
of the others. Thus the values of ¢, m and % are
usually obtained by combining the results of
several types of experiment and solving a system
of simultaneous equations. There are, however,
a great number of ways in which this can be done
and these lead to different results so that it
becomes desirable to find some graphic repre-
sentation to exhibit as impartially as possible
the inconsistency situation.

In a recent article! on the natural constants
which will here be referred to as I NC the
question of the interconsistency of measurements
of functions of the atomic constants ¢, m and %
was discussed by means of a graphic chart which
was essentially an isometric? projection of a

1J. W. M. DuMond, Phys. Rev. 56, 153 (1939).

2 Since several different methods of plotting the inter-
consistency of determinations of functions of e, m and %
have been proposed and R. T. Birge (Phys. Rev. 57, 250A

(1940)) has recently even discussed ‘‘an indefinitely large
number of variations of such types of chart” it seems

three-dimensional plot of the situation. If one
thinks of the values of ¢, m and % as plotted along
the three axes of a three-dimensional rectangular
Cartesian coordinate system, then each function
of e, m and % for which some physical experiment
yields a numerical value is represented by a
surface in this three-dimensional space. Since the
functions of e, m and & determined by experiment
are essentially product functions the general
equation for such a surface is

erhom=A (1)

in which certain of the exponents may, of course,
be zero; e.g. the case of the direct determination
of e independent of # and m (¢=0, r=0). At
least three of these surfaces are required to
determine a point (e, m, k) in this three-dimen-
sional space. With more than three surfaces
over-determination may exist and this may be
coupled with inconsistency so that various dif-
advisable to adopt suitable descriptive names for some of
the outstandingly interesting ones. The present author
wishes to take such a responsibility only in the case of the

type of chart which he originated and he suggests for it
the name isometric chart.
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ferent points may be determined by the mutual
intersection of different triplets of surfaces. The
pattern of variously tilted intersecting surfaces
in the small region in three-dimensional space in
the vicinity of these intersections therefore tells
the entire story as to the consistency of the
determinations. If all determinations are com-
pletely consistent, all the surfaces will intersect
in a common point whose coordinates are the
values of e, m and &.

We have said that at least three surfaces are
necessary to determine a point in this three-
dimensional space. It is tmportant to realize,
however, that three such independent surfaces may
not be sufficient to determine a point of intersection,
for these surfaces may intersect in a common
line rather than in a common point. It is of
primary importance therefore to classify the
equations corresponding to each type of experi-
ment into groups having common lines of inter-
section for two reasons: first, in order to get a
clear picture of what various combinations of the
experiments do or'do not determine and second,
to select, if possible, a most advantageous
direction in which to project the entire situation
on a plane for the purpose of constructing a two-
dimensional chart. It is evident that the way in
which a system of equations permits of classi-
fication into such groups is a very fundamental
absolute property of the system quite inde-
pendent of any particular geometrical method of
representation. The importance of these con-
siderations in connection with the atomic
constants seems to have been overlooked in
published work up to its recognition in I NC.

The orientation of each surface in space
depends on the nature of the function e?hum”
which it represents, while the numerical value 4;
determined by an experiment fixes the position
or location of the surface (its origin distance if it
is a plane). To give symmetry of treatment and
freedom from an arbitrary choice of the scales of
e, m and & the author has plotted along the three
Cartesian axes not e, m and & directly but

(e—eo)/eo, (m—1mq)/mo, (h—ho)/ho, where eo, m,,.

ho are values of e, m and & chosen as an arbitrary
reference or origin point for the new chart. So
long as this choice of e, m,, ko is judicious so
that for the entire region of interest where inter-
sections occur none of the three wvariables,
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x.=(e—eo)/es, Xm=(m—my)/mo, x1,=_h—ho)/ho
ever exceeds, say, 0.5 percent it is obviously
possible, by dropping higher order terms, to
replace each of the curved surfaces by a plane
which will nowhere in the region of interest
deviate from the curved surface by an amount
appreciable for our purposes.? The numerical
constants A4; determined by some particular
experiment, ¢, are replaced by pure numbers
a;=(A:;—Aw)/Aw where Aig=eoPhom," and it
is then easy to show that Eq. (1) becomes, with
neglect of higher order terms

pretqentran=a. (2)

Nine such equations which cover all the func-
tions of e, m and & which to date have been
determined by experiments are listed in Table I
of I NC.

In INC experiments 8 (As=e/h*) and 9
(Ay=¢e?/h) (the Stefan-Boltzmann radiation con-
stant ¢ and the fine structure constant «) were
left out of the discussion because they are much
less reliable and accurate than the rest. One of
the purposes of this paper, however, is to show
a chart provided with scales for including also
these determinations if at some later date it
should become desirable to do so. Figure 1 of
I NC is a perspective view of a three-dimensional
model showing six of the nine planes correspond-
ing to determinations 1 to 6 inclusive of Table I
of I NC (determination 1 is represented in Fig. 1
of INC by the base plane). In this model the
planes have all been made to pass through the
origin to simplify the figure since the purpose at
this stage is to discuss merely the orientations of
the planes. In reality each experimental deter-
mination yields a different numerical value a;

3 R. A. Beth, Phys. Rev. 54, 865 (1938) and C. G. Dar-
win (reference 8) have each proposed plotting logarithms
of ¢, m and & instead of their natural values, the advantage
in doing so being that then the product functions become
not approximately but exactly linear functions represented
by plane surfaces. I have refrained from following this
more elegant procedure for practical reasons. The percent
or relative deviations of ¢, m and %k from the arbitrary
values eomoho are easily understood at a glance. Scales
identical to relative deviation could indeed be obtained
by the use of natural logarithms but the great convenience
of denary logarithms would then be sacrificed. In practice
the relative deviations (e—eo)/eo are very easy to trans-
form into the numerical values ¢ and vice versa. This can
be done very rapidly with ample accuracy on a slide rule,
for (e—eq)/eq, of the order 0.5 percent or less, need itself
only be known to 0.5 percent accuracy to give an accuracy
of 1/40,000 in e.
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F1c. 1. Graphical representations of cozonal groups. Imagine a three-dimensional

rectangular Cartesian coordinate system in which relative deviations of e, m and % from
nearly correct conventional values are plotted to the same scale on the three axes.
There are eleven variously orientated planes in this three-dimensional space, nine of
which represent the nine functions of ¢, m and h which have been determined experi-
mentally, including e itself. The other two planes (which do not correspond to experi-
mental determinations) are those of m and & themselves. For our purpose here only the
orientations of the planes concern us, hence they are plotted through a common origin
point. This diagram is a cross section taken at some arbitrary origin distance through
this complex of planes by an ‘‘isometric”’ cutting plane (one making equal angles with
the axes of e, m and k). Every line on this diagram is the trace of some plane which cuts
the isometric plane and the intersection points are the points at which axes common to
two or more planes cut the isometric plane. All possible intersection points are shown
and this diagram gives, therefore, an exhaustive enumeration of all possible cozonal

groups of planes. This diagram is obviously not a consistency diagram.

and its plane must pass not through the origin
but at a distance proportional to a; therefrom.
A scale of a;, the percent or relative deviation of
the particular experimental result, 4;, from the
origin value, 4, may be thought of as provided
on the three-dimensional model to facilitate
plotting planes representing the individual ex-
perimental results.

In the three-dimensional model all planes
which pass through a common point represent
consistent determinations of functions of e, m
and % and the coordinates of this common point
fix the values (e, m, &) upon which these:deter-
minations agree.

CozoNAL GROUPS ENUMERATED

A striking fact, brought out for the first time
in I NC, is that five out of the seven most im-

portant and accurate types of determinations
have planes which are all parallel to a common line
(the space diagonal making equal angles with the
axes x,, x; and x,) and which are all, therefore,
seen on edge in an isometric projection (projec-
tion on a plane normal to the line just referred to,
the plane of the hexagon in the prespective view
of Fig. 1 of I NC). Any group of planes parallel
to a common line we shall call a cozonal group.
Planes corresponding to experiments 7, 8 and 9
have not been shown in Fig. 1 of I NC, to avoid
complication. In the present article, Fig. 1, we
wish however, in order to effect an exhaustive
enumeration of cozonal groups, to show the
traces of all nine planes* where these would inter-

¢ Here also since we are only interested at this point
of the discussion in the orientations of the planes they are
all plotted as though they passed through the origin of the
three-dimensional coordinate system.
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sect the plane of the hexagon of Fig. 1 of I NC. In
the same diagram we also show (with dotted lines
because they do not stand for experimental
determinations) the traces of the planes x;,=0
and x, =0 where they intersect the plane of the
hexagon. We thus obtain a diagram with eleven
intersecting lines presenting twenty-five points
of intersection. Each of these points of inter-
section is the point where an axis common to
two or more planes in three-space pierces the
plane of the hexagon. One sees immediately from
Fig. 1 that most of the axes in three-space (inter-
section points in Fig. 1) have only two or three
planes passing through them (lines in Fig. 1).
Thereare two exceptional axes, however, indicated
by points marked 4 and B, respectively. Five
planes pass through each of these. In the case of
axis A these five planes correspond to experi-
ments 2 to 6, inclusive, all of which are capable
of excellent precision® and many of which have
already received extensive and careful attention
from many experimenters. In the case of axis B,
one of the five planes (%) does not represent an
experiment at all and two others are very inac-
curate experiments corresponding, respectively,
to the determination of the Stefan-Boltzmann
radiation constant, ¢, and to the fine structure®
constant, a. Thus for practical purposes axis B
has only two interesting planes passing through
it, the plane of #/e and the plane of e. It is evident
that Fig. 1 enumerates exhaustively all possible
cozonal groups of planes and these are seen to be
twenty-five in number, most of which, however,
consist of more or less trivial groups of two or
three members each. The group 4 is outstatnding
in that it has five interesting members. While the
cross section Fig. 1 is of no use as a chart for
indicating the consistency of the determinations,
the classification’ of the equations into cozonal
groups is of great value in indicating the exact
properties of the system of equations with which
we must deal. For example, this chart tells us at
a glance that a combination of the measurements
of R, e¢/mh and h/(em)? can be solved simul-
taneously for e, m and h, while a combination of

5 This statement is somewhat less true of experiments
4(a) and (b) than of the rest but these experiments are
capable of improvement with further work.

6 There is some hope through recent theoretical work
of J. R. Oppenheimer and his students that the accuracy
of the experimental determination of & may be improved.
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the measurements of R, «, and k/m cannot be
used to obtain these constants. The determinant
formed of the exponents of e, m and % vanishes
for the second case but not for the first. The lines
on the diagram corresponding to the first three
functions named have no common intersection
point, therefore the planes they stand for are not
cozonal and hence they determine a point in
space whose coordinates are e, m and k. The lines
standing for the last three functions named are
seen to be cozonal since they pass through a
common intersection point on the diagram and
hence they cannot determine a point in space,
but on the contrary they determine only a line.
In particular the system of five equations repre-
sented by the five lines e/m, h/e, h/m, €*/mh,
h/(em)*, which pass through the common point
A, is insufficient to determine the constants e,
m and k. Only. ratios between these constants
can be determined by this system. Obviously the
properties of any set of equations expressed by

the cozonal groups into which they fall are

absolute properties of the system independent of
any choice of geometrical representation.

METHOD OF PROJECTING THE THREE-
DIMENSIONAL SITUATION ON A PLANE
10 EXHIBIT CONSISTENCY

Each axis represented by the points of Fig. 1
may be considered as a candidate for the direc-
tion along which to project the three-dimensional
plot for two-dimensional representation. For
reasons which will soon be clear, I choose the
axis A of Fig. 1 for this purpose. Whichever axis
is so chosen it is evident that the planes which
intersect in, or are parallel to, that axis when
projected on a picture plane normal to that axis
will be seen on edge and will appear as lines, the
traces of the plane in question on the picture
plane. From here on for brevity let us call the
axis selected for projection simply ‘‘the cozonal
axis.”” Now ‘the planes not parallel to this axis
(which for brevity we shall call simply the non-
cozonal planes) must be treated differently since
they are not seen on edge. It so happens with the
projection we have just selected that the R,
plane is a noncozonal plane. The author has
adopted the procedure of selecting the R, plane
(partly because of the very superior accuracy of
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this determination) as a standard plane to serve

the following very special purpose. Other non-

cozonal planes are represented on our consistency
diagram by plotting the projection on the picture
plane of the line of iniersection in space of each
noncozonal plane with the R, plane. If we assume
an axis in space fixed as to position by a con-
sistent set of cozonal planes, obviously the
question of consistency or inconsistency of
noncozonal planes with the cozonal set can-
not arise wunless there are lwo or more non-
cozonal planes which may or may not intersect
this axis in the same point. The necessary and
sufficient condition that any two noncozonal
planes shall be consistent with any group of two
or more consistent cozonal planes is that the line
of intersection of the first two shall pass through
the line of intersection of the second set. From
this it follows that, on our consistency chart, the
necessary and sufficient condition that any two
noncozonal planes shall be consistent with any
self-consistent group of cozonal planes is simply
that the projection of the line of intersection of
the two noncozonal planes shall pass through the
intersection of the traces of the consistent cozonal
group.

Our chart thus has two kinds of traces on it.
(I) Projections of lines in three-space on the
plane of the chart. These lines in three-space are
the intersections of the R, plane with any other
noncozonal plane. The position of such lines on
the chart depends on two variables, the numerical
value of R, and the numerical value of the other
noncozonal function which is involved. Such
lines on the chart should therefore be provided
with double scales showing the displacements
they suffer for changes in either of the two
variables while the other is held constant. (II)
Lines which are simply the projections of cozonal
planes seen on edge but which may, if we wish,
also be regarded in the same way as class I,
namely as the projections of the line of intersec-
tion in space of each cozonal plane with the R,
plane. It is because the cozonal planes are seen
on edge that their traces may be regarded as
belonging either to class I or II. The position on
the chart of such traces of cozonal planes does
not vary, however, with variations in R, and
hence only single scales need be attached to
represent the displacement which each such line
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will suffer when the numerical value associated
with its determination is changed. It is well
worth noting that the chart of I NC which
represented all seven of the most interesting
types of determinations only needed to have one
of these provided with a double scale because of
the judicious choice of 4 as the axis of projection.

By adhering to one standard noncozonal plane
(the R, plane) as the common cutting plane for
the remaining noncozonal planes a necessary and
sufficient criterion for consistency of a group of
noncozonal planes among themselves is obtained
directly on the two-dimensional chart. If the
projections on the picture plane of the respective
lines of intersection in space of each member of a
group of noncozonal planes with the R, plane
all pass through some cozonal axis (seen pro-
jected as a point in the diagram) then these lines
in space must not only intersect that axis but
must intersect it at the same point in space, namely
the point where that axis pierces the R, plane.

It is to be noted that the R, plane could not
serve as the standard cutting plane for the above
described purpose if it were parallel to our chosen
axis of projection 4.

It may also be added, of course, that only
practical considerations of simplicity dictate the
choice of the axis 4 or indeed of any axis repre-
sented by any intersection point in Fig. 1 at all,
as. the axis of our projection. In principle, any
arbitrary direction could have been chosen for
the axis of projection but then obviously all
planes might be noncozonal and all of them
should be supplied with double scales on the
chart.” The great simplification obtained by the
choice of axis 4 is thus clear. .

C. G. Darwin?® plots a diagram similar to the
author’s in which, however, e, /e and e¢/m are
selected as the three-dimensional rectangular
coordinates, and logarithms are used rather than
relative deviations. The axis of projection is
normal to the e plane and on account of the
choice of variables this is also the axis cozonal to
the principal group of five members which we

7The chart devised by R. A, Beth (Phys. Rev. 53, 681
(1938)) is such a projection, the axis of projection being
normal to the R, plane. No planes are cozonal with this
axis. Beth's chart, however, was not provided with double
scales so that the effect of the change in R, could not
readily be seen.

8 C. G. Darwin, Proc. Phys. Soc. London 52, 202 (1940).
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F16. 2. Complete isometric consistency chart for the nine functions of e, m and % determined by experiment. The scales
for displacement of the lines are expressed in percent deviation from the standard conventional values adopted for the
construction of the chart, an intersection in the exact center of the chart indicating that the conventional values egmoho
are the true ones. In the more interesting cases scales reading directly in terms of these quantities are also attached.
Certain of the scales are ‘‘double scales,” that is, the position of the trace depends on two variables one of which is Re.
Each member of the pair in a double scale shows the displacement that the projected line of intersection of the e and R,
planes would suffer if the variable of the one scale alone is changed while the other variable is held at its conventional
value. A change in both variables then calls for the algebraic sum of the displacements indicated on each scale.

The conventional or “‘origin” values of this chart as well as the experimental values with reference numbers corre-

sponding to those on the chart are listed in Table I.

have here called the cozonal group. Darwin
claims that a simplification is obtained by this
procedure though it would seem that no greater
number of planes are seen on edge by this
method than by the more symmetrical isometric
' projection of the author. Thus if scales of vari-
ation were attached to the various lines on
Darwin’s diagram the same number of double
scales would be required as in the isometric chart.

Darwin, in plotting his chart, has followed the
procedure of Birge, Dunnington and others of
presenting weighted average values for the

various plotted functions of e, m and h. The
author much prefers to exhibit the situation
graphically in order fo show separately all the
reliable independent determinations of each func-
tion. Admittedly, this introduces more lines on
the graph but it also conveys much more infor-
mation and permits the reader to use his own
judgment more freely. The fact that a point of
intersection is the thing to be selected by the
reader rather than a line through a number of
points .(as in the case of the nomographic dia-
grams of Birge and Bond for example) seems to
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the author a distinct advantage if the reader is
to be permitted this freedom of choice.

THE CoOMPLETE ISOMETRIC CHART AND SOME
oF Its ADVANTAGES AND USEs

Figure 2 shows such a diagram. On it are given
scales for all nine classes of functions of e, m and
h so far determined by experiment. The double
scales are easily recognized. They have been
drawn with two parallel lines running lengthwise
along them to attract the eye. Direct reading
scales for each of the variables and functions
have been provided as well as the scales of rela-
tive or percent deviation from the standard or
origin values. In Table I the origin values are
given as well as the numerical values for the
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different determinations. To use such a chart it
is not even necessary to remember the principle
of its construction. Each trace is merely to be
plotted between its two parallel scales at the
percent deviation (plus or minus) from the origin
value called for by the experimental value ob-
tained. (Or it may be plotted directly by means
of the direct reading scales.) Those traces which
intersect in the same point represent mutually
consistent determinations. The values of e, m
and % upon which such mutually consistent
traces agree can be read off immediately on the
scales of e, m and & either directly or in terms of
percent deviation from the origin values eymoh,.
This operation is slightly facilitated by drawing
the origin traces through the zeros of the percent

eo?/ (homo) = 3.81921 X 103, hy/(eomo)t =1.00216 X 1078, Ry, =2n2%22(h/e)"3(e/m)=109,737 cm™

TABLE 1. Conventional or origin values used in isometric chart.

€0=4.80650X 10710 e.s.u., m=9.11780X 10728 gram, ho=06.63428 X107%7 erg sec. and in consequence:
eo/mo=1.75850X 10" e.m.u./gram, ho/eo=1.38028 X 10717 e.s.u., ho/mo="7.27621

¢=2.99776 X101 cm/sec., a="7.29870X 1073, 0o=>5.67122X 1075 erg cm™2 deg.™ sec.™®

Experimental values used in isometric chart

QUANTITY SYMBOLS
DETERMINED VALUE ON CHART METHOD OBSERVER REFERENCE RECOMPUTED BY
€ 4.8016 X10710 1 a1 Ruledgratingandcrys- E. Bicklin Zeits. f. Physik 93, 450 (1935) Birge (1939 letter)
tal x-ray diffraction
4.8022 1a2 J. Bearden Phys. Rev. 37, 1210 (1931); 47, Birge (1939 letter)
883; 48, 385 (1935)
4.8026 1a3 M. Séderman Nature 135, 67 (1935) Birge (1939 letter)
h/e 1.37494 X10717 2 ¢ 1  Continuous x-ray spec- Duane, Palmer and  J. Opt. Soc. Am. 5, 376 (1921) DuMon
trum limit Yeh
1.37541 2a?2 P. Kirkplz{itrick and Phys. Rev. 45, 454 (1934) ‘
A. Ross
1.37588 2a3 1. Feder Ann. d. Physik 51, 497 (1929) ¢
1.37646 2 a 4 Continuous x-ray spec- J. W. M. DuMond  Phys. Rev. 51, 400 (1937) “
trum limit and V. Bollman
1.3772 2 a5 - c¢2optical pyrometry H. T. Wensel J. Research Nat. Bur. Stand. 22, Wensel
386, 387 (1939)
1.3775 2a6 G. Schaitberger Ann. d. Physik 24, 84 (1935) DuMond
1.3715 2 ¢ 1 = Photoelectric effect P. Lukirsky and Zeits. . Physik 49, 238 (1928) ‘
S. Prilezaev
1.372 2 ¢ 2 Photoelectric effect A. R. Olpin Phys. Rev. 36, 251 (1930) “
1.3736 2 b 3 Critical potentials R. Whiddingtonand  Phil. Mag. 20, 1109 (1935) ¢
E. G. Woodroofe
1.375 2 ¢ 4 Photoelectric effect R. A. Millikan Electrons (+ and =), Protons, “
Photons, Neutrons, and Cosmic
Rays (U. of Chicago), p. 242
(1934)
1.3752 2 b5  Critical potentials E. O. Lawrence Phys. Rev. 28, 947 (1926) “
1.3752 2 b 6  Critical potentials L. C. Van Atta Ph)asl. I({ev. 338, 876 (1931); 39, “
1012 (1932
h/(em)}  1.00079 X10-3 3 Electron \ and voltage S. von Friesen Proc. Roy. Soc. A160, 424 (1937) ¢
algsg) Inaugural Diss. Uppsala
1936
h/m 7.267 4a Electron A and velocity  J. Gnan Ann. d. Physik [5] 20, 361 (1934) Kirchner
7.255 40 Compton shift P,PKi[ika%trick and Phys. Rev. 45, 223 (1934) o
. A. Ross
e/m 1.7602 X107 S5s1 X~5?.y reh&action in J. A. Bearden Phys. Rev. 54, 698 (1938) Birge (1939 letter)
iamon
1.7600 5 s 2 Spectroscopic H! Het W. Houston Phys. Rev. 30, 608 (1927) ‘
1.7598 5d3 Magnetic deflection F. Dunnington Phys. Rev. 52, 498 (1937) ‘e
1.7590 5 s 4 Spectroscopic Ht H? W. Houston Phys. Re;/é)sl, 446 (1937); 55, ”
423 (19
1.7590 5d 5 Direct velocity F. Kirchner Ann. d. Physik 8, 975 (1931); 12, ‘
503 (1932)
1.7582 d 6 Crossed fields A. E. Shaw Phys. Rev. 54, 193 (1938) “
1.7580 5 s 7  Spectroscopic H! H? C. D. Shane and Phys. Rev. 47, 33 (1935) “
F. H. Spedding
1.7578 5 s 8 Spectroscopic H! H2 R. C. Williams Phys. Rev. 54, 568 (1938) “
1.7570 55 9 Zeeman effect L. E. Kinsler and Phys. Rev. 45, 104; 46, 533 (1934) “
‘W. V. Houston
e2/(mh)  3.82155 X103 6 Magnetic deflection of  H. R. Robinson Phil. Mag. 22, 1129 (1936) Robinson
x-ray photoelectrons
3.8194 6 G. G. Kretschmar Phys. Rev. 43, 417 (1933) Kretschmar
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scales of e, m and 4 with a dot and dash line as
in Fig. 2 to avoid confusion. For any desired
point in the diagram about which two or more
traces are consistent one may quickly read off
the values of eg, mq and %o by scaling with dividers
the distance from the point in question to each
of the three dot-and-dash origin traces. The
distance so scaled is then transferred with the
dividers to its appropriate scale and read off
immediately.

The relationships between different types of
determination can be seen at a glance. For
example note that the directions of the scales of
e, m and & do not differ greatly on the chart, and
that the class of determination that comes
nearest to this same general direction (other than
the direct determination of e itself) is the class
h/e. Next to /e the class h/(em)? (so far studied
only by von Friesen) comes nearest to having
this general direction, while e¢/m possesses this
property perhaps least of all. This means that if
we accept the Bohr-Rydberg relationship and
the numerical value of the Rydberg as part of
our data to be used simultaneously along with
other experiments then the best or most crucial
type to choose for determining ¢, 2 and m is one
which measures k/e. Next to this comes k/(em)?
while e/m need be known with very little pre-
cision if it is to be used for this purpose in con-
junction with either of the two previous experi-
ments.

The above statement is only a rough way of
perceiving these relationships of course. In any
precise consideration of the degree of dependence
of e, m and h on the various types of determina-
tion the size of the scale units (relative variation)
for each function naturally plays a role as well
as the slopes of the lines.

An advantage of the isometric chart here
described is the relatively good independence of
the different traces from each other and the
resulting facility with which one can see the
effect of a change in any single measurement or
assumption including the value of R,. The choice
of the projection is such that even if the func-
tional form of the Bohr-Rydberg formula were
modified, only one really significant set of traces
(Backlin, Bearden and Séderman) would have
to be reorientated (for at the present the experi-
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mental values of o and ¢ cannot be regarded as
having much meaning).?

The values themselves depicted in Fig. 2 have
been modified and extended since the charts
published in I NC as follows: The values of e/m
from the different sources have been taken from
a letter dated August, 1939, privately circulated
by R. T. Birge who recomputed these values
with the latest auxiliary constants.’ The general
aspect of the e/m band remains, however, about
as before. The x-ray values of e (Bicklin, Bearden
and Soderman) are also modified very slightly
from Birge's recomputation with the new
auxiliary constants. No value of ¢ has been
plotted since it would fall in a region very far
off the chart.!t The %/e values have been recom-

9 The author is indebted to Professor Birge for pointing
out to him a misleading statement on page 155 of I NC.
It is stated that ‘“‘the well-known Birge-Bond diagram has
two disadvantages” . . . ‘(1) The data are treated in an
arbitrary asymmetrical way (certain of the determinations
are mixed with Eq. (7) while others are not) so that it
becomes difficult to foresee (without replotting) the result
of certain changes either from theory or experiment; (2)
Relative variations of the same magnitude appear to very
different scales on different ordinates.”” In an effort at
brevity two ideas were rather carelessly confused in onc
sentence here. The arbitrary asymmetry referred to in the
B-B diagram is really that one singles out one of the three
variables to plot as ordinate (e.g., ¢) while another one
(e.g., h) appears as the slope of a line on the graph and
the third variable (e.g., m) does not appear at all because
in all the determinations invoi ring that variable the Bohr-
Rydberg formula has been used to climinate it. The present
isometric chart lays no especial emphacis on any one of the
three variables e, # or k and they can all be made to appear
explicitly on scales in a precisely similar way. So much for
the “‘arbitrary asymmetry.” The fact that certain of the
determinations are mixed with the Bohr-Rydberg equation
while others are not is indeed strictly true on both types
of chart with the practical difference, however, that many
more points on the B-B chart (in -its present familiar
form) than lines on the isometric chart are so mixed in the
present state of what constitutes the interesting determina-
tions. The quoted sentence from I NC implies that the
mixture of certain determinations with Eq. (7) is a con-
sequence of the arbitrary asymmetrical treatment when
in fact it is a consequence of the effort to represent three
variables in two dimensions. The author regrets and
wishes to retract this incorrect implication.

10 The principal change is in the value of g, the ratio
of the size of international and absolute units of current as
explained by Birge in his August, 1939, letter. This has been
changed from ¢=0.99993 to ¢=0.99986 (J. Research
Nat. Bur. Stand. 22, 485 (1939)). This affects the value of
the faraday, the value of pg (factor to change from inter-
national to absolute volts) and, of course, consequently
many other constants. The new value of ¢ ends a dis-
crepancy of long standing with the Nat. Phys. Lab.
(England) and is very satisfactory, Birge reports.

U For a critical review of determinations of ¢ sce F. G.
Dunnington's excellent article, Rev. Mod. Phys. 11, 72
(1939). That author obtains an average value 5.775X 1075
from six sources, a value which, as can easily be seen from
the scale of our Fig. 2, falls far off the diagram.
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puted by the author to take account of these
same slight changes and to correct a slight error
on the previous chart all of which, however, makes
no essential difference in the general aspect of
the #/e band. To this band has also been added
information from H. T. Wensel of the National
Bureau of Standards who has kindly supplied
the author in a private letter with a most inter-
esting computation of %/e based on measure-
ments of the constant ¢, by optical pyrometric
methods.!? Professor F. Kirchner of Cologne, who
has adopted the isometric chart to depict the
consistency situation in his recent survey of the
atomic constants,'® has been so kind as to point
out to the author the necessity for two modi-
fications, one in each of the &/m determinations.
The value of &/(em)? recomputed by the author
from von Friesen’s data given in his dissertation
remains practically as in I NC save for slight
modifications occasioned by the changed auxili-
ary constants. The same is true of Robinson’s
results on e2/(mh). To this function has also been
added the results of Kretschmar who has reex-
amined his plates and recomputed his results
which he kindly supplied in a recent letter to
the author. It is interesting to note the good
agreement between these two workers on this
last mentioned precision experiment. The much
less accurate work on %/e from the optical photo-
electric effect' and from ionization potentials'®

2 Wensel’s computations are essentially those described
in his paper ‘“International temperature scale and some
related physical constants,” (H. T. Wensel, J. Research
Nat. Bur. Stand. 22, 386-387 (1939)) save that a knowl-
edge of ¢, (see his Table 4) is used to compute k/e by his
Eq. (14). In his communication to the author Wensel has
computed a weighted mean ¢, with the same numerical
result as the unweighted mean of his Table 4. The pro-
cedure here of plotting an average value is admittedly
inconsistent with the author's policy of showing inde-
pendent determinations. It is necessitated in this case by
the already large number of lines in the /e band.

3 F. Kirchner, Die Atomaren Konstanten, Ergebnisse der
(E/x(ll.kten Naturwissenschaften. (Julius Springer, 1939),

ol. 18.

4 R. A. Millikan, Electrons (+ and —), Protons, Photons,
Neutrons and Cosmic Rays (University of Chicago Press,
1935), p. 242, also Phys. Rev. 7, 362 (1916); P. Lukirsky
and S. Prilezaev, Zeits. f. Physik 49, 248 (1928); A. R.
Olpin, Phys. Rev. 36, 284 (1930): From Fig. 34 it is certain
that Millikan used the conversion factor 300 instead of
299.776 to obtain the voltage in e.s.u. and it is highly likely
that the same was true of the other two authors, hence 1
have taken the liberty of correcting all three of the above
results for this. Each of these authors gives a value of &
rather than /e and from the dates of each work I have
therefore, in recomputing back to find k/e, used, respec-

tively, e=4.774, 4.774 and 4.770.
B E, O. Lawrence, Phys. Rev. 28, 947 (1926). L. C.
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is merely added to the continuous x-ray limit

“work to show how it supports the general trend

of the k/e results to be lower than one expects for
consistency with the remainder of the diagram.
Wensel's computed result which should have
very considerable reliability and which is ob-
tained by a- method quite radically different from
the short wave-length limit of the continuous
x-ray spectrum also supports the latter work in
giving & /e too low. The discrepancy thus remains
as baffling as ever. The conclusions in I NC re-
main unchanged.

PracTicAL METHODS OF CONSTRUCTION

The actual construction of the isometric chart
is very simple.'® From the symmetry of the space
diagram (Fig. 1, I NC) the scales of percent
variation of e/m, h/e and h/m forming the sides
of the hexagon are evidently of identical size.
The range of 0.5 percent for each side of the
hexagon seems to work out well in the present
state of precision. For the mere mechanics of
drafting alone it is, from this point on, unneces-
sary to think of the three-dimensional origin.
The remaining two cozonal scales are laid out as
follows. We may choose for example ¢/m and /e
(or more conveniently the relative deviations of
these variables) as two independent variables
whose specification fixes the position of any point
on the chart. Now since k/(em)*=(h/e)(e/m)* it
is evident that an increase of 0.5 percent in k/e
and a decrease of 1.0 percent in e/m leaves
h/(em)* unchanged and such a variation therefore
defines the direction of the trace #/(em)}
=ho/(eomo)* which passes through the zeros of
the percent scales for this function. But starting
from the origin in the center of the chart an
increase of 0.5 percent in /e and a decrease of

van Atta, Phys. Rev. 38, 876 (1931); 39, 1012 (1932). R.
Whiddington and E. G. Woodroofe, Phil. Mag. 20, 1109
(1935). Here I have adopted Dunnington’s recomputed
values Rev. Mod. Phys. 11, 72 (1939).

18 Since the appearance of the work of Beth and of
DuMond, R. T. Birge has developed, very elaborately,
tables giving analytic expressions for the relative sizes
of scale units and angles, etc., etc., which amount, as he
points out, to precise directions for constructing a variety
of charts both of the type here described and of the Birge-
Bond type. These analytic expressions, while interesting,
give the impression that such charts are rather tedious
and difficult to construct and that extensive computations
may be involved. In practice, however, the construction
of a chart can be done very simply and accurately by
graphical means as here explained.
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1.0 percent in e/m corresponds to a displacement
to the lower right-hand corner of the hexagon.
Thus the zero axis or trace for the percent scale
of i/(em)* must pass through the upper left and
lower right corners of the hexagon and the scale
of &/(em)* is most conveniently laid out normal
to this direction. Suppose we wish to have this
scale cover a range of 0.5 percent. Evidently
a displacement of the percent deviation of /e
from zero to +0.5 percent, with e/m maintained
at its origin value, will increase h/(em)* just
+0.5 percent. On the chart the point where the
percent variations of e/m and %/e have the
respective values 0 and 0.5 percent fixes the
distance of the +0.5 percent trace for %/(em)?
from the zero percent trace for that function. It
is elementary drafting procedure to construct
the point in question and project it on the scales
of &/(em)* which can then be divided and sub-
divided into the appropriate number of parts.
The procedure for e2/mh follows exactly the same
outline.

Now, however, for the noncozonal scales the
procedure differs only very slightly from the
preceding as was very briefly indicated in a
footnote in I NC (page 158). Each noncozonal
function F can always be made to satisfy an
identity of the form

(h/e)i(e/m)i=(c/2m?) R, F*.

Upon substituting the Bohr expression for R,
into this identity it is possible to solve for 7, j
and k. An example is F=h

(h/e)=%(e/m)t=(c/27*) R,h~2.

This calls for a double scale on which variations
of R, with % constant and of 2 with R, constant
are to appear. Evidently the zero axis for percent
variations of R,A~? corresponds to percent vari-
ations of %/e one-fifth as great and of opposite
sign as the variations in e¢/m. Thus the zero axis
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can be graphically constructed just as explained
before and the axis of the RoA~2 scale is laid out
normal to this direction. Here, evidently, we see
from the exponents in the above equation that
holding the percent value of e/m at zero a
decrease of 0.8 percent in %/e will produce an
increase of 4.0 percent in R, (k constant) or a
decrease of 2.0 percent in % (R, constant).
Thus the displacement and sense for the ranges
R,==+4.0 percent, h==+2.0 percent on this
scale are graphically constructed and the scale
is divided up accordingly. These procedures
suffice to construct scales for any type of function
of e, m and % desired.

The origin values should of course be computed
for all the functions with considerably greater
accuracy than any of the data of experiment.
These on the present chart differ slightly from
those in I NC. They have been computed to be
consistent with R,=109,737 cm™. Once the
origin value is known for any function it is a
simple matter to construct a direct-reading scale
for that function from the existing scale of
relative deviation. A slide rule is amply accurate
for computing the percent deviations correspond-
ing to the decimal figures of the direct scale. The
easiest procedure is to pick out two decimal
figures each occurring near one of the ends of
the direct-reading scale to be plotted, compute
their corresponding percent deviations and plot
them. Then by ordinary drafting technique
carefully divide up the intermediate interval into
the appropriate number of equal parts.’

17 The author has prepared a master blank chart, to
large scale, with considerable care, on tracing paper.
This carries all the scales shown in Fig. 2 of this article
but has no experimental results traced upon it. At a small
charge (50¢ each) for the cost of black line contact printing
and postage this chart will be supplied to anyone desiring
it. The dimensions are approximately 30X 35 inches. The
contact printing and developing process fortunately intro-
duces quite negligible distortion. All the prints are care-
fully checked as regards this point.



