
I NTERNAL F R I CTI ON 371

hypothesis is entirely too simple a picture. The
rapid fluctuation in the curve just at the critical
temperature is due to the previously discussed
dip in the curve of Fig. 3. The same remarks as
to its genuineness would apply. Just beyond the
critical temperature, the anisotropy begins to
decrease with increasing temperature just as it
does in the neighborhood of room temperature.
A qualitative picture of the temperature de-
pendence of this anisotropy can be obtained by
considering the behavior of the lower line of
I" ig. 1, as temperature is increased. The curve
rotates counterclockwise about the value of
F(l,m, n), which corresponds to the [110]direc-
tion in the crystal lattice, until the temperature
at which disorder begins to set in is reached, i.e. ,

150'C. As disordering proceeds, the rotation
becomes clockwise and, in addition, the whole
curve shifts upward until finally at the critical
temperature it has risen considerably above its
position at room temperature and possesses a
much greater. slope. Curve A, in Fig. 1, is a plot
at a temperature just below the critical tem-
perature, where the anisotropy is a maximum.

In conclusion, the writer gratefully acknowl-
edges his indebtedness to Professor E. P. T.
Tyndall for much helpful advice and many
valuable suggestions throughout the work; to
the Physics Department of the State University
of Iowa for the facilities generously placed at his
disposal; and to others who assisted him in this
work.
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The Internal Friction of Single Metal Crystals*
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The internal friction of crystalline copper, tin, lead, and zinc has been measured by the
composite piezoelectric oscillator method. It is found that the decrement of an unannealed
crystal may be as large as that of the polycrystalline material, that annealing reduces the
decrement to a value of the order 10 4 to 10 ', and that both Young's modulus and the decre-
ment vary with the vibrational strain amplitude at strain amplitudes as low as 10 '. In the case
of zinc crystals, a detailed study has been made of the way in which the elastic modulus and
internal friction depend on the previous history of the specimen, on the vibration frequency and
amplitude, and on the orientation of the vibration axis with respect to the crystal slip planes.
The results suggest that the mechanism involved is a propagated "dislocation" of the sort
proposed by Taylor, Polanyi and Orowan to account for macroscopic plastic flow, and that the
application of a stress is accompanied by a plastic strain, together with an associated strain
hardening in consequence of which the stress-strain relation on removal of the applied stress is
nearly elastic.

INTRQDUcTIQN

' 'iNTERNAL friction is a property of matter in
~ ~ virtue of which organized energy of imper-
fectly elastic stress is rendered irrecoverable, or
unavailable for mechanical work. Thus a speci-
men body which is carried adiabatically through
a complete stress cycle can be restored to its
initial state only by the removal of a certain
amount of heat, and this heat, called the "energy

dissipated per cycle, " affords a lneasure of the
internal friction.

The "coefficient of internal friction, "
&, of a

substance is defined by the formula'

W" = (S', (1)
where W" is the energy dissipated per cycle per
unit volume, and S is the stress amplitude. The
internal friction of solid materials is usually
studied by observing the behavior of a properly

* Publication assisted by the Ernest Kempton Adams
Fund for Physical Research of Colunxbia University.

' A. L. Kimball and D. E, Lovell, Phys. Rev. 30, 948
(1927).
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shaped specimen body which is vibrating in one
of its normal modes. Such experiments show that
the value of f depends on the type of stress; on
the frequency, and possibly the amplitude, of
vibration; and, in ferromagnetic substances, on
the magnetization. '

Considerable progress has been made toward
an understanding of the processes responsible for
the dissipation of vibrational energy in solids.
Thus an adequate account has been given of the
magnetization-dependent part of the internal
friction in ferromagnetic materials, ' and of the
greater part of the internal friction in non-
ferromagnetic polycrystalline metals. The latter
is largely the work of Zener and his collaborators. '
According to Zener's theory, microscopic stress
inhomogeneities due to occluded impurities, cold
working, or simply microcrystalline anisotropy,
give rise to local temperature fiuctuations in the
vibrating material, and hence to heat How, with a
consequent irreversibility in the stress-stra. in

relation. However, the experiments reveal that
this is not the only dissipative mechanisns opera-
tive in the medium, but that a supplementary
process must be invoked to account for a residual
internal friction which, though small, is still
many times larger than that of crystalline quartz. '
The present study of the internal friction in large
single crystals of metals contains a clue to the
nature of this process. For it is found that both
plastic How and strain hardening occur in these
crystals at vibration frequencies as high as 70
kilocycles per second, and vibrational strain
amplitudes as low as 10 ' cm jcm.

2 Norma/: A. L. Kimball and D. E. I.ovell, Phys. Rev.
30, 948 (1927); R. L. Wegel and H. Walther, Physics 6,
141 (1935); F. Forster and W. Koster, Zeits. f. Metal-
kunde 29, 116 (1937), Naturwiss. 25, 436 (1937). Ferro-
magnetic: In iron, W. T. Cooke and W. F. Brown, Phys.
Rev. 50, 1158 and 1165 (1936); in nickel, S. Sicgel and
S. L. Quimby, Phys. Rev. 49, 663 (1936); in crystalline
nickel, J. R. Zacharias, Phys. Rev, 44, 116 (1933); in
permalloy, S. Siegel and S. Rosin, Phys. Rev. 49, 863
(1936).Of crystalline quarts: K. S. Van Dyke, Proc. I. R. E.
23, 386 (1935). During the Lambda-Point transition in
ammonium chloride; A. W. Lawson, Phys. Rev. 57, 417
(1940).

3 W. F. Brown, reference 2.
4 C. Zener, Phys. Rev. 52, 230 (1937); 53, 90 (1938);

53, 100 (1938); 53, 582 (1938); 53, 1010 (1938); Am.
Inst. Mining and Metallurgical Eng. , Tcchnical Publica-
tion No. 1146.

' K. S. Van Dyke, reference 2.

OUTPUT

$0000&

S.P. D,T.

OSCILLATOR
I I

FIG. 1. Diagran& of the alternating-current bridge,
showing the vacuum thermocouple, T, in one arm of the
Wagner ground connection.

I' XPERIMENTAL M FTHOD

It has been remarked that the value of the
internal friction coefficient depends in the first
instance upon the nature of the stress to which
the medium is subjected. The type of stress here
dealt with is the stretch associated with the
longitudinal vibration of a slender rod of speci-
men material, and the experimental method
permits the measurement of both & and the
Young's modulus, Z. This method is essentially
that used by Cooke and Brown, ' so modified as to
permit the investigation of nonhomogeneous
specimens. The nonhomogeneity results from the
fact that, in the materials here studied, the
values of both ( and B depend on the strain

amplitude, and the latter varies sinusoidally
along the vibrating rod. The method applicable
to homogeneous materials will be described first,
and then its extension to meet the demands of the
present problem.

Homogeneous specimen

The specimen, in the form of a right circular
cylinder 5.38 mm in diameter and a few cm long,
forms one part of a composite piezoelectric
oscillator constructed by cementing to one end of
the specimen an X cut cylinder of crystalline
quartz of identical cross section. The oscillator
forms one arm of an alternating-current bridge
(I'ig. 1), which is excited by a very stable
vacuum tube oscillator whose frequency is vari-
able between 30 kc and 80 kc. The electric
impedance of the composite oscillator varies
critically with frequency in the neighborhood of
certain "resonance frequencies, " and the elastic
and dissipative properties of the specimen ma-
terial are deduced from the observed nature of
this variation.
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3';=mass of a cylinder,
f = (~~/p )'(21')
2,=Young's modulus,

p, =density of a cylinder,
L;=length of a cylinder,

(3)

and the subscripts 1 and 2 refer to the specimen
and quartz cylinders, respectively. In consequence
of the piezoelectric stress which accompanies the
electric field in the quartz, a stationary state of
forced longitudinal vibration is established in the
composite oscillator, and the amplitude of this
elastic vibration is a maximum at a resonance
frequency.

The inductance, 2, and the capacity, C, of the
equivalent series resonant circuit are given by the
formulae

2= p'K(My+31. ) (4)

C = 2/[vr pfp'K(DER+ iVp) ], (5)

where X is a quantity whose value depends only
on the appropriate piezoelectric constant of the
quartz and the geometry of the electrodes. ' "I he
resistance, R, of this circuit, which is also the
resistance of the composite oscillator as measured
with the bridge, is conveniently evaluated with
the aid of two auxiliary quantities, 6& and 62,
associated with the specimen and quartz cylinders
respectively and defined by the formula

6;= W /2W, ', (6)

where S"„" denotes the energy dissipated per
cycle, and lV;" the total vibrational energy, in a
cylinder. The 2 s are called the "decrements" of

6 K=1/(b2e'), in an example with idealized geometry,
where ~ is the piezoelectric constant and b is the width
of an electrode on the quartz, The value of X for the
present experimental arrangement is 10,300 at 38 kc,
where R is in ohms, 2 in henries, and C in farads.

It can be shown that, near a resonance fre-
quency, the composite oscillator is electrically
equivalent to a fixed capacity shunted by a series
resonant electric circuit. If the vector impedance
of the latter be denoted by R+iX, then the
resonance frequencies, fp, are, by definition, those
for which X=0, and these are the solutions for fp
of the equation

cVI,f, tan (~fp/f i) +M pfp tan (~fp/f p) = 0, (2)

where

the cylinders, and it. can easily be shown that if,
and only if, ( is independent of the stress
amplitude then

(7)

and hence that, in this event, A~ is a measure of a
property both of the specimen and the specimen
material. The resistance is given. by the formula

R = ', K(IVY-hg+ Mph p)fp,

and it follows from Eqs. (4) and (8) that

R/2fp&= (~z&a+W&p)/(Mi+Mp). (9)

It will be noted that the left-hand member of this
equation is, by definition, the electric decrement,
4„of the equivalent series resonant circuit, and
so is a quantity which, like R, is directly meas-
ureable with the bridge. Thus

A. =R/2fpd, (10)

Inhomogeneous specimen

It has been remarked that the inhomogeneity
of the present specimens arises from the fact that
the values of both & and 2 depend upon the local
vibrational strain amplitude, which, in turn,
varies sinusoidally along the rod. The following
treatment is based upon two important con-
siderations: first, that while, over the hundred-fold
range of variation of strain amplitude here
explored, the variation of ( may be a hundred-fold,
that of B is only of the order 0.04 percent; and
second, that the lengths of the quartz and speci-
men rods are so adjusted that at resonance there
are, with a discrepancy not greater than one
percent, integral numbers of half-waves of vibra-

and the value of 2, if desired, follows immedi-
ately from measurements of R and A..

The foregoing formulae, with M& set equal to
zero, describe the behavior of the quartz cylinder
alone, without the specimen attached. Thus, by
Eqs. (2), (9) and (10), f& is the frequency
corresponding to zero reactance, and A2 the
decrement, of the single quartz crystal oscillator,
When these have been measured, the only
additional data necessary to obtain a complete
description of the behavior of the composite
oscillator are fp and A. . For f& then follows from
Eq. (2), Z~ from (3), Aq from (9) and (10), and
&q from (7).
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tion in the quartz and specimen rods. In other
v ords, under the conditions of measurement both
the quartz and specimen cylinders are vibrating
almost exactly in one of their respective normal
modes.

The first question which will be considered
concerns the measurement of the equivalent
ioductance Z. When the specimen is homogene-
nus, 2 is calculated with Eq. (10), from the
measured resistance at resonance and electric
decrement. The latter quantity is evaluated by
observing the frequency departure from reso-
nance, 8f, at which the scalar impedance is
increased in the ratio W2: 1. Then 6,=27r8f/fo,
but this relation no longer holds when A~, and
hence R, depends on the amplitude of vibration.
Fortunately the materials here studied are of
such nature that it is possible to find a range of
vibration amplitudes suAiciently small that the
variation of $ with amplitude over the range is
negligible. It remains only to note, (Eq. (4)),
that 2 depends on the properties of the specimen
only through the mass, and hence that a single
valid measurement of 2 suffices at all amplitudes.
This conclusion has been verified experimentally.

The second question concerns the relation of
&& to 6&, and of A~ to R. 6I remains a property of
the specimen, but is no longer a property of the
material. However, a quantity, 6, which is a
property of the material can be defined by the
formula

6= $F.

It then follows from Eqs. (1) and (6) that

~I
& I
6 Ug'-'dx —:

) Ug'dx,
0 0

(12)

where U~(= S~/B~) denotes the local strain
amplitude, dx an element of length on the
cylinder axis, and the vibrational energy density
in the specimen has been equated to -', E&UP. In
accordance with prevalent practice, 6 rather than

( will hereafter be used to describe the dissipative
property of a substance.

The resistance of the oscillator is given by the
formula (8), whether the specimen is homogene-
ous or not. This assertion can best be understood

by observing that energy dissipation of whatever

sort which occurs in the specimen, is manifested

only through a dissipative stress acting on the
quartz at the quartz-specimen interface. By
dissipative stress is meant one in phase with the
particle velocity. Accordingly, the question may
be phrased thus: If one end of a quartz oscillator
be subjected to a stress which dissipates energy at
the rate (Eq. (6)) W&d ——26&W&' per cycle, will the
resistance of the oscillator be increased by the
amount ~E3fjh& in consequence of this stress?
The afhrmative result then follows by direct
calculation.

The third question concerns the meaning of the
quantity fq which appears in Eq. (2), a,nd its
relation to the elasticity of the specimen. Here f&

is defined as the solution of Eq. (2) which
corresponds to a given (observed) value of fo, and
is also, by Eq. (3), the fundamental frequency of
free longitudinal vibration of a homogeneous

specimen. It will now be shown that, under the
aforementioned-conditions of measurement, fq is
very nearly the fundamental frequency of
free vibration of an elastically inhomogeneous
specimen.

Equation (2) is usually obtained by a straight-
forward mathematical development in which the
behavior of the composite oscillator is regarded as
a problem in the theory of elasticity. The same
result may be derived more easily from the
following significant observation concerning the
factors which determine the resonant frequency
of a composite oscillator, vis. :The fundamental
resonant frequency of a composite oscillator
composed of lengths LI of homogeneous specimen
material and L2 of quartz is the common funda-
mental resonant frequency of lengths L&" of
specimen material and L2' of quartz so chosen
that, when both rods are vibrating in their
respective fundamental modes, the stress and
displacement amplitudes at distances L~ from
one end of LI' and L2 from one end of L2' are
respectively equal to each other and to the stress
and displacement amplitude at the quartz-
specimen interface of the composite oscillator.
For under these circumstances lengths LI and L~
of the rods, resonating at the common frequency

fo, can be imagined to be cut off and cemented
together without disturbing the vibrational state,
since the boundary conditions of continuity of
stress a»d displacement at the interface are met.
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The continuity of stress at the interface yields the negligible. For under these conditions
equation tan (7rfo/f i) = 7r(fo fi—)/fi,
(E&7ruP/L~) sin (~L~/LP) tan &f0/f2) = &(fo f~)lf~

+(E2mu2/L2) sin (mLq/L ') =0, (13) and f is given from Fq (2) hy the formula

and the continuity of displacement the equation

uP cos (7rLi/LP) = u2' cos (7rL2/L2'), (14)

in which u denotes the amplitude of vibration of
a, rod. Accordingly

(E,/L, ') tan (7rL,/LP)
+(Eg/L2') tan (7rL2/Lg") =0. (15)

Now L&; = p, U;2, where V, = 2foL o = 2f L;, hence

folf' =L /L", (16)

and Eq. (2) follows immediately from Eq. (15).
This form of development is particularly suited
to reveal the effect of specimen inhomogeneity on
the significance of fq

It has been remarked before that the type of
inhomogeneity encountered in the present re-
search is a small variation of B~ with the local
strain amplitude, and also that, under the con-
ditions of measurement, the specimen is vibrating
very nearly in a normal mode. Thus the space
variation of the particle displacement near the
interface, where the strain is nearly zero, is
practically unaltered by the inhomogeneity and
Eq. (15) holds, with E j interpreted as the
Young's modulus for zero strain. Now it is shown

in the next paragraph, and is also intuitionally
evident, that the resonant frequency of a rod
depends chiefly on its elasticity at the displace-
ment nodes of vibration and the mass per unit
length at the displacement loops. Hence Eq. (16)
likewise holds very nearly, with fo and f& inter-

preted as the resonant frequencies of inhomogene-
ous rods of lengths L&' and L&, respectively. '
However, 8& can no longer be set equal to
4pzfPLP exactly, and consequently the value of
M& in Eq. (2) is uncertain to the extent of the
entire variation in E~, i.e. about 0.04 percent.
Nevertheless, the experimental conditions that
L&=I&' and I2 ——L2 very nearly imply thnt the
resulting error in the calculated value of f& is

fr=f0+(~2/~x)(fo f2) (1&)

In a typical example, f0 40 ——kilocycles and

(fo—f2) 200 cycles. Hence an uncertainty of 0.04
percent in 3f& produces an uncertainty of 0.08
cycles in the absolute value of f&, and an uncer-
tainty of 0.04 percent in the calculated value of
the change in f~ associated with a change in the
amplitude of vibration. It is only the latter
quantity that is of special interest in the present
investigation.

It remains to relate fq to the elasticity of the
inhomogeneous rod. This is accomplished by
applying the usual approximation method' to
integrate the differential equation 8 (EBu/Bx)/Bx
=p8'u/Bt', with the result that

LI

b f, !f,= (1/I.,)J (6E,/E, ) sin'-' (~x/L, )dx, (18)

where f& is the resonant frequency of a homogene-
ous rod of elasticity E&, and bf& is the change in f&

associated with the change bEI in E'j.

Measurement of the maximum strain amplitude

The calculation of the maximum strain ampli-
tude in the specimen is based on the observation
that the electric decrement of the equivalent
electric circuit, as measured on the bridge, is
equal to the ratio of the energy dissipated per
cycle in the composite oscillator, Wp", to twice
the total vibrational energy at resonance, Wp".

Then

Wo" = 10'8'/Rfo 2A. WO" ——I& WU'/f02, ——

where h denotes the root-mean-squared voltage
applied to the quartz. W'p is readily evaluated in

terms of the maximum strain amplitude in the
specimen, U~', and it follows that

UP = 6.325 X 10'(h/R) ( 2/ ViE i) *

X[1+(m/n)(E2p2/E~p~)&] ', (19)

where m and n denote the number of half-waves

7 The error is of the order (bf/f)', where bf is the change 8 See, for example, J. C. Slater, Introduction to Theoretical
in resonant frequency due to the inhomogeneity, Physics (McGraw-Hill, 1933), p. 154.
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FIG. 2. Showing the change in the decrement of an
isolated zinc crystal with time; Part A, before annealing;
Part B, after annealing.

SPECIMEN MATERIAL

The copper crystals are grown fronz com-
mercial copper wire. The analyses of the re-
maining materials, as supplied by the makers,
are as follows: tin (Eimer and Amend Co.)—
percent impurity, Fe 0.004, /n 0.004, Pb 0.001,
As 0.00001; lead (Eimer and Atnend Co. "test.
lead" ) silver, gold and bismuth free; zinc (New

' See S. L. Quimby, I hys. Rev. 39, 345 (1932).

of vibration in the quartz and specimen, re-
spectively.

Experimental details

The quartz is etched in the manner described
by Van Dyke' to minimize 6&, and cemented to
the specimen with a very thin film of beeswax
and rosin. The composite oscillator rests hori-
zontally on two fine silk threads placed at
displacement nodes of vibration, with the quartz
crystal between, but not touching, parallel plate
electrodes. The environment of the oscillator is
evacuated and temperature stabilized to 0.01'C
at 26'C.

The frequency of the voltage applied to the
oscillator is measured by comparison with the
output of a piezoelectric clock. ' The absolute
value of the frequency is known only to one part
in 10', but frequency changes can be measured
with an accuracy better than 0.01 cycle,

The voltage, b, applied to the quartz is meas-
ured with the aid of a calibrated vacuum thermo-
couple placed in one arm of the wagner ground
connection, as shown in Fig. 1. The bridge de-
tector is sufficiently sensitive to permit the use
of the bridge when 8 is as small as 0.001 volt. .

Jersey Zinc Co.)—percent impurity, Fe 0.0004
to 0.0009, Pb less than 0.0002, Cd less than.
0.00005.

The copper crystals are grown in a graphite
crucible, in the furnace described by Quimby. '

The tin, lead and zinc crystals are grown by
Miller's modification of Bridgman's method. '
The principal features of this method are the
following: The material is melted in a Pyrex
glass fiask, and thoroughly degassed in a vacuum.
It is then cast in cylindrical molds, made of
Pyrex glass tubing, which have been thoroughly
cleaned and coated inside with colloidal graphite
to prevent the material from sticking to the
walls. The loaded molds are packed in Sil-O-Cel,
in a large test tube, and lowered through an
electric furnace at the rate of a quarter of an
inch per hour.
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FIG. 3. Showing the change in the decrement of a con-
tinuously oscillating zinc crystal with time.

&0 P. W. Bridgrnan, Proc. Anl. Acad. 60, 305 (1925); R.
F. Miller, Trans, Inst. of Metals Div. Am. Inst. Min.
Eng. 122, 176 (1936)."A preliminary report of these measurements was given
in Phys. Rev, 54, 389 (1938).

RESUI.TS

The internal friction of well-annealed single
crystals is considerably less than that of the
corresponding polycrystal1 inc materials as re-
ported by other observers. ' Thus the values of
Dq at small amplitudes of vibration are, for
copper —3.6)(10 '; for tin —6.9)(10 '; for lead—2.8 &(10 '; and for zinc—1.0)(10 "' to 2.2
&&10 '." "I he decrements of unannealed single
crystals may be as large as those of polycrystal-
line specimens. For example, the decrement of a
freshly prepared copper crystal may decrease
from 3&(10 ' to the value given above, i.e. ,
almost a hundred-fold, after it is annealed for
two hours in hydrogen at 500'C.

But the most significant dissipative charac-
teristic of these crystals is an associated variation
of the decrement and elastic modulus with the
vibrational strain amplitude. It will later be
suggested that this phenomenon is due to
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FIG. 4. The decrements measured when the strain ampli-
tude is increased by steps are smaller than those when the
strain amplitude is subsequently decreased.

and the zinc crystal was annealed for 1 hr. at
250'C. The remainder of the curve shows the
variation of 6& with time after reassembly and
remounting.

Observations made with increasing strain am-
plitude cannot be repeated in reverse order
(Fig. 4), nor can they be repeated at all until
after an elapsed time which varies from several
hours to several days. Curve 8 of Fig. 5 was
obtained 4 hr. after curve A.

sporadic displacement;s of atoni~ or. groups of
atoms parallel to the slip planes of the crystal.
If this hypothesis is correct. , the effect. should be
closely correlated with the relative orientation
of the vibration axis and the slip planes. Now the
crystalline structure of zinc is hexagonal, with a
single slip plane perpendicular to the hexagonal
axis. Accordingly this substance is particularly
suited for the present investigation, and the
remainder of this research is concerned with a
study of the phenomenon as it appears in single
crystals of zinc.

Definitive observations are not easily made,
for the reason that almost anything that is
done to the crystal leaves an almost indelible
imprint on its subsequent behavior. The nature
of the difficulties encountered is illustrated by
the curves of Figs. 2 to 5.

The first portion of the curve of Fig. 2 shows
the variation of 6& with time at a very small
strain amplitude, for a crystal which was
mounted, without annealing, immediately after
removal from the crucible. During the indicated
time the oscillator remained isolated at the
temperature 26'C. After 4 days the oscillator
was removed from the app sratus, disassembled,

The curves of Fig. 6 show the variation of 6 ~

with maximum strain amplitude for an array of
zinc crystals whose cylinder axes make various
angles, 0, with the hexagonal axis of the crystal
lattice. The procedure by which the data here
plotted were obtained was as follows: After the
crystals were removed from the molds and sawed
to the proper length with a fine jeweler's saw,
they were annealed for 2 hr. at 2500C in a
vacuum, and then mounted. The measurements

-70 x 10 0 0

I-
X
LIJ

E
4J

~ —35
UJ
Cl

/
I

were made one or two days later, always after
1.0 minutes steady oscillation at each amplitude,
and always on increasing amplitude. The vibra-
tion frequency for all crystals was about 38 kc
per sec.

The decrement of the crystals is approxi-
rnately inversely proportional to the vibration
frequency, as is indicated by the typical set of
data plotted in Fig. 7. I hese observations were
made on the same crystal when vibrating, in
the first instance, at 38 kc with one half-wave in
the specimen, and in the second, at 76 kc with
two half-waves in the specimen.

The associated variation of the resonance
frequency, fb with maximum strain amplitude in
the four crystals is shown. in Fig. 8. A com-
parison of the data given in Figs. 6 and 8
reveals the significant fact that the ratio r = A~

—:(8f~/f&) is a constant independent pf the strain
amplitude. The experimental confirmation of
this is exhibited in Fig. 9, and the values of r
for the different crystals are recorded in Table I.

The value of Young's modulus for an arbitrary
direction in a hexagonal crystal is given in terms
of the principal elastic moduli by the formula"

1/8 = sqr sin' tI+s33cos' 8+ (2s]3+s44) sin' 0 cos' tI.

"W. Voigt, Lehrbuch der Kristallpkysik, p. 746.

50 IOOx 10

STRAIN AMPLITUDE

Fro. 5. Observations cannot be repeated until a con-
siderable time has elapsed. The data for curve 8 were
obtained 4 hours after those for curve A.
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Accordingly, the present measurements permit
the evaluation of the principal adiabatic moduli
sii and si3, and of the combination (2si;, +s44).
The corresponding isothermal quantities can be
calculated with the aid of the thermal expansion
coefficients measured by Gruneisen and Goens. "
The results of the present measurements, to-
gether with those reported by other observers,
are presented for comparison in Table II.

Before proceeding to a discussion of the fore-

going data, which deal with the properties Ay

and 6fi of the specimen rod, it is well to point
out the way in which these can, if desired, be
correlated with the properties of the specimen
material. Such correlation, which is based on
Eqs. (12) and (18), is greatly facilitated by the
experimental close matching of the frequencies

fo and fi. In this event the variation of the local
strain amplitude, U~, along the rod is given very
nearly by the formula

Ui= Ui' sin (7rx/I. i), (20)

and Eq. (12) may then be rewritten in the form

~-200 x 10
K
UJ
E
4J
K

o

—IO0 / s 0

0
0

(, ~o
-70 IO I5x IO

1 I

STRAIN AI4PllTUDE

Sf/fxio
0
20

20-
oe-ei. S'

74.5'

l0- o
(p

FIr. 7. The decrement is very nearly inversely propor-
tional to the vibration frequency at all strain amplitudes.
The vibration frequency for the data of curve A is 38 kc
and of curve 8 is 76 kc.

~Ll
Ai ——(2/I. i))~ 6 sin' (irx/L, )dx.

0

(21)

A, xlO'e. 8I.5'

IOO—
0
74.5

50- 0

/zo'

The variation of the decrement of the materiaL,
with /ocaL strain amplitude might now be

obtained with the aid of Eqs. (20) and (21), by
expanding D~ in a power series in U~', whose
coefficients are determined by the curves of
Fig. 6, and 6 in a power series in U~, whose
coeScients can then be obtained by equating
the coefficients of like powers of Ui' in Eq. (21).

50 IOO

UIX10

150

FK', 8. Showing the fractional variation of the funda-
niental resonant frequency, hf &/f &, with the maximum
strain amplitude, U1, in zinc crystals whose cylinder axes
make various angles, 0, with the hexagonal axis.

A similar procedure, applied to Eq. (18), would
reveal the relation between B~ and U~,

A detailed calculation of the sort just outlined
is not considered important in connection with
the present data, but the similarity in form of
Eqs. (18) and (21) is extremely significant. For
this result, together with the observed mutual
independence of the ratio r and U~, implies that
the relation between 2b, and 5F&/Ei is exactly
the same as the relation between Ai and 8fi/fi,
i.e. , that

50

88
o

U, x IO'

IOO

2n —: (bRi/Bi) = r (22)

FIG. 6. Showing the variation of the decrement, &1, with
strain amplitude, U&', in zinc crystals whose cylinder axes
make various angles, 8, with the hexagonal axis.

"%.Voigt, reference 13. E. Gruneisen and E. Goens,
Zeits. f. Physik 29, 141 (1924).

DISCUSSION

The fact, revealed by data of the sort plotted
in Fig. 7, that the decrement of single metal
crystals varies inversely with the frequency of



I NTERNAL FE ECTION 379

I- "5
W
~-200 x IO

x
4J
IL
O
UJ

0 0 0 0

0 0 0 0

P 0 0 0 0

0 0 0 0

0 0 0 0

-IOO (e) (c)

I'lc'. 10. Illustrating the formation and propagation of a
dislocation (after Taylor).
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FrG. 9. Combination of the data plotted in Figs. 6 and 8
shows that the ratio of the decrement to the fractional
change in resonant frequency is independent of the strain
amplitude.

gO

20.0
61.2
61.5
74.5
88.0

2.8
10.3
11.0
9.0
1,1

TAHLr II. The principal isothermal elastic moduli of crystal-
line zinc, as measured by various observers. '

OBSERVER
MQDULUs X101s cM~/DvNE

$11 S33 2S&3+S44

Read
Goens
Tyndall and Hanson

8.35
8.4
7.70

28.5 11.3
28.7 11.0
27.66 10.54

1 E. Goens, Ann. d. Physik 10, 793 (1933); E. P. T. Tyndall, Phys.
Rev. 4F, 398 (1935).

G. I. Taylor, Proc. Roy. Soc. A145, 362, 388, 405
(1934); M. Polanyi, Zeits, f. Physik 89, 660 (1934); E.
Orowan, Zeits. f. Physik 89, 605, 614, 634 (1934); 9'7, 573
(1935); 98, 382 (1936). For a complete bibliography see
R. Houwink, Elasticity, Plasticity, and Structure of Matter
(Cambridge, 1937).

vibration suggests that the origin of the internal
friction here studied is the same as that of the
observed macroscopic plastic flow. The latter
phenomenon has been ascribed by Taylor,
Polanyi, Orowan and others to the propagation
through the lattice of a specific type of "disloca-
tion" in the atomic arrangement. "The nature
of the process is illustrated in Fig. 10, which is

similar to a figure in one of Taylor's papers.
Fig. 10(A) represents a cross section through the
lattice of a perfect crystal, the slip plane being
supposed-parallel to a horizontal row of atoms in

TABLE I. Values of the ratio r = A1 —'. (bf1 /f1) for
diferent zinc crystals.

the figure. A dislocation occurs when, in conse-
quence of a weakening of the interatomic
binding force, and atom, for example at p,
"jumps" an atomic distance parallel to the slip
plane into a new equilibrium position at q. The
action of an applied shearing stress, S, on the
atoms above and below the slip plane causes the
dislocation thus formed to be propagated through
the lattice in the manner indicated in Fig. 10(B).
Thus the final configuration of the atomic group
is as shown in Fig. 10(C).

The dislocations are assumed to originate at,
and their propagation to be arrested by, micro-
scopic flaws in the crystal due to occluded im-

purity, to surfaces of misfit, or to a mosaic
superstructure. They occur spontaneously as a
result of thermal agitation, and are produced by
an applied stress. The propagation of each
dislocation is accompanied by a dissipation of
energy, associated with the atomic jumps, and
a local slip to the amount of one atomic distance.
The net contribution of such processes to the
internal friction and inelastic strain depends on

the number density of dislocations present in

the crystal.
The mechanism here described is adequate to

account qualitatively for the several phenomena
revealed in Figs. 2 to 7. Thus, since the presence
of the dislocations implies an internal potential
energy in excess of that characteristic of the
perfect lattice, the number density of dislocations
decreases in time at a rate which depends on

the material and the temperature (Fig. 2).
Again, the number density present in a vibrating
crystal is fixed when the rate of production of
dislocations by the applied stress is equal to
the natural rate of decrease, and the establish-
ment of this equilibrium number requires
finite time (Fig. 3). Similarly, a finite time is

required to establish the new equilibrium value
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I'&~. &j.. Suggested form of the stress-strain diagral» for
single metal crystals.

dS/dt =E(ds/dI) —pS, (23)

where s is the strain and p is a constant which is,
in the present experimental arrangement, related
to 6 by the formula p=2f~h. Hence the fre-
quency variation of 6 is as stated at the beginning
of this section. But it also follows from Eq. (23)
that the stress-strain diagram is an ellipse, the
slope of whose major axis, which is the effective
value of Young's modulus, does not vary with the

strain amp/itude. It is evident, therefore, that
the circumstances of pure plastic flow do not
subsist over the entire cycle, and that the de-
scription offered by the ideal stress-stra. in ellipse
must be modified.

It is suggested that plastic flow, associated
with the propagation of dislocations, accom-
panies the application of a stress but not its
rensova/, i.e. , that the application of a stress

' R. Houwink, reference 14, p. 7.

associated with a decreased vibrational stress
amplitude (Figs. 4 and 5). Lastly, the number
density of dislocations increases with the ampli-
tude of the component shearing stress parallel
to the slip plane (Fig. 6). It remains to consider
the variation of Young's modulus with the
vibration amplitude.

The variation of EI with UI, small though it is,
nevertheless definitely indicates that the stress-
strain relation is not that characteristic of pure
plastic flow. A substance is plastic if, for a given
strain, the stress decreases in time at a rate
proportional to its own value. Thus the time
variation of the stress in a plastic rod is given

by the equation"

produces what may properly be called "strain-
hardening" in the material. The nature of the
suggested stress-strain diagrams at very low and
at larger amplitudes are indicated in Fig. 11.
At very low amplitudes the strain is elastic, and
the half-loop is the line oe. At larger amplitudes
a plastic strain of amount 2(U& —U&') takes place
over the portion ab of the cycle, but, in conse-
quence of the concurrent strain hardening, the
portion bc is nearly elastic.

It must be remembered .that Fig. 11 is not
drawn to scale. Actually the plastic strain,
shown by the intercept ac, is not larger than
one-thousandth the strain amplitude, shown by
the abscissa UI. The stress-strain loop hugs its
major axis so closely that the effective Young's
modulus is always the slope of this axis. Accord-
ingly, the value of Bj at low amplitudes is
Sq/Uq', and at larger amplitudes is Sq/U~, and
it follows that

6E)/Eg ac/2Ug, —— (24)

where 6E~ is the change in BI with amplitude.
Considerable suppor t is lent the presen t

hypothesis by the fact that it is not only in
accord with the observed invariance of the ratio r
(Eq. (22)) to change in Uz, but it leads to a
value of this ratio which is in good agreement
with observation. The area of the stress-strain
diagram, which is the energy dissipated per unit
volume per cycle, S'", lies between S& ac and
2Sq ac, and it follows immediately from Eqs. (1),
(11), (22) and (24) that the value of r lies be-
tween 4 and 8, independently of UI, and in
agreement with the data of Table I. Larger
values of r may be assumed to be the result of a
state of affairs depicted by a downward flexure
of the line bc in Fig. 11, and smaller values of
that depicted by an upward flexure.

The origin of the variation of r with the angle
8, and the temperature dependence of the several
phenomena, remain subjects for future investiga-
tion. In conclusion, the writer desires to acknowl-
edge his indebtedness to the officers of the New
Jersey Zinc Company, for their courtesy in

supplying the extremely pure material from
which the zinc crystals were grown; to Dr. W. F.
Brown and Dr. Clarence Zener, for many helpful
conversations; and to Dr. S. L. Quimby, for his
guidance during the progress of the v ork.


