BOUNDARY CONDITIONS FOR SUPERCONDUCTOR

exist. The application of the argument to higher
and higher orders shows that solutions V, H, E
exist for which all terms are static. Thus steady
currents do not encounter even the smallest
resistance.

A slight modification of this argument shows
that the resistance is rigorously zero for non-
steady currents as well. Equations (29-32) have
simple harmonic solutions,

Vo(x, t) =Vo(x)eit;

for such solutions the inhomogeneous parts of
(33-36) have factors e?®!, so that they have
solutions

Vilx, t) =Vi(x)etict
and in general

Vn(x, t) = Vn(x)e(n'Fl)iwt'
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Thus an alternating current or field excites only
harmonics of the fundamental frequency and
there are periodic solutions of the equations,
which would not be the case under the working
of an irreversible resistance.

The conditions upon the #nth correction,
Vu, H., E,, differ from the conditions (29-32)
upon the zeroth approximation only in the
inhomogeneous terms. Consequently, a unique-
ness theorem, once established for the solutions
of the London theory, is equally valid for the
rigorous solutions of the present theory. This
becomes important in view of the results of the
following paper (cf. reference 8).

It is a pleasure to acknowledge the assistance
of Professor Eckart, who also suggested the
application of the wvariation principle to the
problem of the superconductor.
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When the applied fields and the total charge on each conductor are known, the solution of the
London equations for a superconductor in the steady state is completely determined by re-
quiring the continuity of the magnetic field and of the tangential components of the electric
field. This result is incompatible with the somewhat prevalent notion that the lines of current
flow rotate with the conductor. The solution for a nonsteady state is uniquely determined by the
additional specification of E, H, J throughout the system at some particular time.

THE STEADY STATE

HE purpose of the present paper is to arrive

at a set of data and boundary conditions
for the London theory which is at the same time
mathematically complete and physically mean-
ingful. The existence of such a set is of more
than mere mathematical interest; it has the
following important physical implication.

An experiment has been described! in which a
superconducting, hollow sphere in an applied
magnetic field experienced a torque when turned
out of its equilibrium position. This is inter-
preted to mean that the currents turn with the
conductor. More precisely, it means that the

K. H. Onnes, Comm. Leiden Suppl., No. 50a, 8-10
(1924).

fields and currents in the initial and final
positions are different. But if this experiment is
taken at its face value, it is contrary to the
present theory, for it was performed in such a
manner that the fields at infinity (i.e. the applied
fields) are the same in the two positions. It
follows from the uniqueness theorem that the
fields should therefore have been the same
everywhere. The experiment thus rules out, not
only this theory, but every theory which has a
similar uniqueness theorem.? In the absence of
confirmation for the experiment, it appears
reasonable to assume that the sphere was not
homogeneously superconducting, but had non-

2 In particular, it is contrary to even the rigorous form

of the theory resulting from the variation principle (cf. the
previous paper, Section 4).
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Fic. 1. A superconducting region 7, surrounded by free
space 7o, the entire system enclosed by a surface So.

spherical regions of ordinary conductivity in its
interior.

Experience with electrodynamic theories of
other types suggests that the boundary condi-
tions across the air-metal interface are the con-
tinuity of H and vXE (v is the unit normal).
The continuity of H is the physical assumption
of unit permeability and zero surface density
both of electric current and magnetic charge.
The continuity of vXE assumes unit dielectric
constant and zero surface magnetic current but
admits a surface electrical charge.

The imposition of these boundary conditions
still leaves many solutions corresponding to the
diversity of the possible physical situations.
The physical situation is completely determined
by the applied fields and the total charge on
each conductor.? It is very satisfactory that the
above boundary conditions, together with the
values of the charge parameters (the data) and
the behavior of the solutions at infinity (the
boundary data), determine the mathematical
solution uniquely. In all probability these various
physical conditions are mathematically inde-
pendent ; their independence has been established
in detailed calculations for an infinite cylinder.*

The procedure is to express the volume integral
of E4H?+4NJ? in terms® of integrals over a
surface S, surrounding the system and over the
air-metal interface S across which discontinuities
may occur (Fig. 1). These surface integrals
vanish for E, H, J which satisfy the boundary
conditions and have zero data and boundary, so
such E, H, J are everywhere zero. The uniqueness
theorem is then immediate, for the linearity of

3 Only simply connected conductors are considered here.
The permanent magnetic moment of a ring-like conductor
will be discussed in a future paper.

4 Unpublished.

5\ is the positive constant introduced by London.
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the equations enables us to consider the identi-
cally zero solution as the difference of two
solutions which satisfy the boundary conditions
and have the same data and boundary data.

In discussions of the steady state, the electric
and magnetic fields may be treated independ-
ently. Equation (11) of the previous paper
requires that E=0 in a superconductor just as in
a normal conductor; in free space the field E
satisfies the usual Maxwell equations. The
analysis for the interaction of an electrostatic
field and a system of conductors is well known®
and need not be discussed here. The result is
that the boundary data,

v-E/’ )

specified on Sy, and the total charge Q,

Q———f'v-EdS (2)

specified for each conductor, determine the field
E uniquely.

The usual proof of this uniqueness of the
electrostatic field depends upon the existence of
a scalar potential; but a generalization of the
method is applicable to the magnetic field which
has a vector potential. The equations governing
the magnetic field are:”

VXH=0, V-H=0 in 7, (3)
VXH=J, H=VXA, A+NJ=0 inr. (4)
Let the indices 1,2 designate different solutions
of these equations, and
H=H,—-H,, J=J,—J, A=A —A,
Putting P= Q= 4 in the identity?®

V- [PX(VXQ)]=(VXP)-(VXQ)
~P-VX(VXQ)

gives ,
V-[AXH]=H?

in free space 1, and
V- [AXH]=H*4\J]?

in the superconducting region 7. Now, since
J=0 iI’l T0y

6 Sir James Jeans, The Mathematical Theory of Electricity
and Magnetism, fifth edition (Macmillan Company, New
York), p. 163.

7 A differs from the usual Maxwellian potential which
London employs (cf. the previous paper, Section 3).

8J. A. Stratton and L. J. Chu, Phys. Rev. 56, 163
(1939), have emphasized the importance of this identity.
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f [H2+x12]dr:fv-A><Hds
e o) So

+fv-A><H]
s

where ],~ is used to designate the difference of
the values of the preceding function on the two
sides of the surface. If the surface integrals in
Eq. (5) vanish, then (E;, H,) = (E,, H,) through-
out 7+ 7o.

The integral over S, vanishes if either vXX A=0
or vXH=0. The latter is the more important
physical case since the absolute value of A has
no significance in free space. Thus the specifica-
tion of the boundary data, vXXH, corresponding
to the applied field, i.e.,

v XH;=vXH,,

as,
+

)

(6)
causes the first of the surface integrals to vanish.

The vanishing of the integral over S is not
obtained quite so simply. The following identity,
in which subscripts are used to denote the
evaluation of the function on the positive or
negative side of S,

_H X4 —A,)
' A vX(H —H), (7)

insures the vanishing of this integral, provided

(8)

But the continuity of v)XA has no immediate
physical interpretation ; it is necessary to investi-
gate the extent to which requirement (8) is
equivalent to the expected boundary condition:

©)

The continuity of vXA and vXH insures the

V‘AXH]

vXA, and vXH are continuous across S.

v-H and vXH are continuous across S.

F16. 2. A superconducting, hollow sphere 7, in free space 7o,
the entire system within a sphere of surface So.
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fv-AXH] dS=0

S +

result

(10)

through the vanishing of the integrand. The
question now is whether or not the continuity of
v-H and vXH also suffices. The answer is in
the affirmative provided there exists in 79 a
single valued and sufficiently continuous function
x such that

vXVx—'—'vXA] .
-
For the two relations, VXH=0 in 7, and
H,=H_ on S, together with the previously
assumed boundary data, vXH=0 on .S, then
permit the evaluation of the integral:

(11)

fv~AXH]_dS=fv-[(Vx)XH]dS
8 + 3

= —f V- [(Vx) XHdr

+f‘v~[(Vx) XH1dS=0. (12)

The question thus reduces to that of the existence
of the function x.

The function x will now be constructed for a
hollow sphere. The topological character of this
construction is such that it is possible for any
superconductor which can-be obtained from a
hollow sphere by continuous deformation, i.e. for
one which is simply connected.

The notation is defined in Fig. 2. .Sp is the
surface of the bounding sphere of radius 7.
S is the complete surface, inner and outer, of the
hollow sphere ; 74, 7, are its inner and outer radii.
7 is the superconducting region, 7, is free space.

Now if S is any part of .S, and C'is its contour,
then the continuity of  gives

()=fv-H] dSzf v~V><A] =fA] “dR.
S’ 8’ + ¢ s

+

This enables us to define functions of the
spherical coordinates (7, ¢, ¢):

J, 0
(9, o) =x(r1, 9, <p>=f (A_—A.,.,)%iR] ,

r=ri

3, 0
Pa(d, o) =x(ra 9, )= f (A_.—A+)-dR] ,
0,0

re=r2
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which are single valued, continuous, and have
the property (11).° There remains but to con-
tinue x throughout the intervals (0,7,) and
(rs, 7o) so that it is defined at each point of .
To this end a function f(r) is introduced which
is required merely to have continuous first and
second derivatives and to take on the prescribed
values

f(0)=0, f(r)=1,
The continuation

x(r, 9, @) =f(r)9:(9, ¢),

x(r, 9, @) =f(r)9:(d. ¢),

gives x all the desired properties in 7o and on S
and thus completes the proof that the conditions
(6) and (9) determine the field uniquely, at least
for a hollow sphere. But the spherical form of
the superconductor entered only in providing a
simple coordinate system for the definition of
the function x(7, ¢, ¢). If the sphere is con-
tinuously deformed into an arbitrary shape, x re-
tains its continuity properties as well as the
property (11), the only difference being that
the coordinates (7, ¢, ¢) are no longer the simple
spherical coordinates but are the parameters
along the curves into which the original coordi-
nate curves have been deformed. Thus conditions
(6), (9) form a complete set for all simply con-
nected superconductors.

flra)=1, f(ro) finite.
r<r,

7> 79,

THE NONSTEADY STATE
The general equations are
VXH—-E'=0, V-E=0,
VXE+H' =0, V-H=0,

in 7o

(13)
VX(VX])+62J+]"=0,
HAAVXJ=0, inr.
E—\J' =0,

* Up to this point no use had been made of the simple
connectivity of the conductor. But here it is needed to
obtain the single valuedness of the y's. In the case of a
ring-like conductor, a cut must be made to render its
surface simply connected. In the subsequent integral
transformations, this cut contributes an additional surface
integral which vanishes only when the two solutions have
the same total current around the ring. The mathematics
for this case has been worked out in detail and will be
presented in a future paper.
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The proof of the uniqueness theorem will be
based upon the energy Eq. (12) of the previous
paper. Terms of order higher than the second
must be discarded in the linear approximation
represented by Eqgs. (13). There results

(9/0n[3(H*+E*) +32]* ]+ V- [EXH]=0,

which is wvalid in the composite region 747,
with the understanding that J=0 in 7,. If script
letters are again used to denote the difference of
two solutions, then

t
f [3(H2+-8%)+INJ 1dtdr
10V
+

=—fv-8><HdS+fv~8><H] as,
S S —

"o

which gives immediately the result:

If two solutions, together with their first
derivatives, are continuous except possibly across
the air-metal interface S, satisfy the boundary
conditions:

vXE and vXH continuous for t20, (14)

v-H continuous at (=0,

and have the same values for the boundary

data,

vXE or vXH for t20, (15)

on the bounding surface Sy, as well as for the
initial data

E, H, J, in 7+ at £=0, (16)

then the solutions are identical in 747, for
t20 and v-H is continuous for each.

The continuity of v-H is not read out of the
above integral transformation as are the other
conclusions of the theorem ; but is a consequence
of the continuity of vXE and the initial con-
tinuity of v-H. For any part S’ of S,

9 1+ +
w—waJ d3=—f v~V><E] s
at Jg - S? —~
+
=—fE] dR=0,
C —

and so v-H]_*=0o0n S for £20.



