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Impact Broadening of Spectral Lines
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An evaluation is made of the error introduced into cur-

rent impact broadening theory by the two incorrect as-

sumptions usually made, —the adiabatic approximation,
and the neglect of the rotation of the adiabatic electron
states in the computation of the interaction between these

states and the radiation field. A simple case of resonance
broadening is examined, with the aid of wave functions in a
nonrotating coordinate system, and the emitted intensity is

shown to be reduced by a factor of two in the first ap-
proximation from the value given by the usual impact
formula. This discrepancy is no greater than other errors
in the present theory of line broadening, and will be less

for dispersion, van der Waals, and other second-order
forces since these forces do not vanish on the average and

will show little tendency to do so in a single encounter. The
Weisskopf formula, despite its theoretical imperfections,

may therefore be used to give approximate results for
impact broadening. A criterion is also given for the transi-
tion between impact and statistical broadening; for
resonance forces under normal conditions the impact
broadening formulas are shown to be irrelevant, since they
apply only within a distance of 10 ' angstrom from the
line center, and outside this range the statistical formulas
must be applied. Although this is substantially the range
of Doppler broadening, accurate measurements of line
centers at low pressures should provide a qualitative test
of the present theory in the case of resonance broadening.
The influence of the previously neglected "rotation effect"
on the interaction between a hydrogen atom perturbed
by a passing ion and the radiation field is calculated with
relative exactness for the first excited state.

A different approach to the problem has been
given by H. Kuhn, ' who uses the first derivative
of the adiabatic v(t) to compute the time T corre-
sponding to a phase shift ~. The use of phase
shifts to give line broadening directly is an ap-
proximation which may lead to serious error. ' In
any case, however, this method of calculating
phase shifts is legitimate only when the total
phase shift in the course of the encounter is much
greater than m and the statistical theory is ap-
proximately valid. Hence this aspect of Kuhn's
analysis is designed to give a minor correction to
the statistical result and refers to a different
region of line broadening from that of the Weiss-
kopf impact formula in which we are primarily
interested here.

Assumptions of both a mathematical and a
physical nature are included in the Weisskopf
analysis. From a mathematical standpoint the
choice of the critical phase shift is rather arbi-
trary. More accurately one should compute the
broadening produced by a single encounter be-
tween the radiating atom and a perturbing one;
the true profile would then be given by the ap-
propriate integration over all types of binary
encounters.

While this sum could be calculated in the

HE broadening of a spectral line by per-
turbing atoms in a gaseous assembly has

been treated in two limiting cases. ' ' When the
atomic velocities are sufficiently small the line

profile is given by the familiar statistical for-
mulas. ' When these velocities are large, however,
the impact method of Lorentz as modified by
Weisskopf4 and others' is usually applied. For
this analysis one computes the phase shift p
produced in the emitted radiation by the passing
perturbing atom; if this is greater than some
critical value, —unity in the Weisskopf treat-
ment, ~/2 in the Kallmann and London analysis,—the wave train before the encounter is assumed
to be incoherent with that emitted after the
encounter. If there are 0 such encounters per
second, the line profile is then given by the
usual dispersion formula 0/x-x', where x equals
2~(v —vo) and is simply the distance from the line

center in angular. frequency units. The term line
profile is used throughout to denote J(x), the
profile of the line emitted by a thin film of atoms;
J(x) is directly proportional to the atomic ab-
sorption coefficient.

~ H. Kuhn, Phil. Mag. $7j 18, 987 (1934).' H. Margenau and W. W, Watson, Rev. Mod. Phys.
8, 22 (1936).' J. Holtsmark, Ann. d. Physik 58, 577 (1919); Physik.
Zeits. 20, 162 (1919);25, 73 (1924).

4 V. Weisskopf, Physik. Zeits. 34, 1 (1933).
~ W. Lenz, Zeits. f. Physik 80, 423 (1933);H. Kallman

and F. London, Zeits. f. physik. Chemic B2, 207 (1929).

H. Kuhn, Phil. Mag. (7j 18, 983 (1934).
n 7 L. Spitzer, Jr. , Phys. Rev. 55, 699 (1939), referred to

hereafter as L
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limiting impact case, if the adiabatic approxima-
tion were assumed, such an analysis would not
be very useful since the physical assumptions
wouM not correspond to fact. In the first place
the adiabatic approximation is definitely incor-
rect when the phase shift p is as small as unity.
For the adiabatic approximation breaks down
when transitions between the various atomic
states become appreciable. These electronic states
are taken in a rotating coordinate system such
that the s axis always points towards the moving
perturbing atom. Transitions between atomic
levels with different unperturbed energies may
be neglected, except for the extremely close en-
counters. In the case of degenerate states of the
same level, however, —states differing only in
their magnetic quantum number 2IIE,—this is not
true. In fact it is for the most distant encounters
(the smallest values of p) that such nonadiabatic
transitions become important. When p is large
these transitions become inappreciable.

This may be shown in general by a simple
dimensional argument. The change of + with
time will be completely determined by the
time-dependent Hamiltonian. If we consider only
transitions between the states of a particular
atomic level, the only dimensional quantities
entering the analysis are v, the velocity of the
perturbing particle relative to the radiating
atom; R, the distance of closest approach;
rj,/r", the energy perturbation of state s when the
perturber is stationary and at a distance r; and
of course Planck's constant h. Whether or not
the encounter is adiabatic must depend on the
value of some dimensionless constant, and the
only available one is g, /hvR" ', which except for
numerical factors of unit order of magnitude, is
equal to the adiabatic phase shift p, for the state
s. When v is infinite, the adiabatic treatment
obviously fails, and one may conclude that an
encounter will be adiabatic only if p, is large
compared to unity. A more specific and quanti-
tatively more precise argument is presented in
Section 1 below. Since the Weisskopf encounter
radius is the value of 8 when p, equals unity, it
is clear that the adiabatic approximation is not
well suited to the determination of this radius or
to the treatment of impact broadening in general.

The second assumption involved in the usual
analysis of impact broadening is that the inter-

action between the radiation field and the adia-
batically rotating electronic quantum states may
be determined as though the states were not
rotating. Since the radiation emitted is observed
in a stationary coordinate system, one must take
the matrix elements not of the electronic co-
ordinates x, y, and 2',—which are rotating about
the y axis—but rather of x sin 8+@cos 0, y, and
csin 0 —xcos 0, where 0 is the angle which the
moving s axis makes with its direction at the time
fp, when the perturbing atom is at its distance of
closest approach R. It is readily shown that if the
time-dependent matrix elements of these quan-
tities are used, the perturbation produces a phase
shift equal to x even when AB is zero or the
collision is infinitely rapid. This effect is perhaps
most easily seen in the light of its classical analog.
A linear oscillator which is rotated through 180'
will subsequently emit radiation which is out of
phase by the same 180' with the previously
emitted wave train, despite the absence of any
perturbation to the frequency during the rota-
tion, and despite an arbitrarily fast rotation.

This effect can obviously be taken into account
only if departures from the adiabatic assumption
are considered, since otherwise all encounters
would be said to produce phase shifts greater
than m. and an enormous line broadening would
be predicted. Fortunately these two deviations
from the standard treatment of impact broaden-
ing tend to offset each other.

We may conclude that current pressure-
broadening theory is open to serious criticism on
the grounds that it assumes the adiabatic ap-
proximation, and that furthermore it does not
consider the rotation effect, which should form
an integral part of the adiabatic treatment. This
neglect would have introduced serious error into
the standard impact-broadening analyses, were
it not for the fact that the adiabatic approxima-
tion was incorrect to begin with. This combina-
tion of two separate errors has happily led to
results which are not far from the truth.

The simplest approach to a correct treatment
of these effects is apparently to take as electronic
states the eigenfunctions in a nonrotating, sta-
tionary coordinate system. Such a procedure has
two advantages. In the first place it eliminates
the "rotation effect"; i.e., one need consider only
the usual matrix elements of the electronic co-
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ordinates x, y, and z to compute the interaction
with radiation. Secondly, the nonrotating unper-
turbed states afford a much better approxima-
tion for the case of high velocities and low phase
shifts than do the rotating adiabatic states. In
other words, if p is as low as unity a Born-type
approximation is preferable to the adiabatic one.

When the analysis is carried out for a simple
case, the resultant intensity differs from the
usual Weisskopf formula by a factor of two,
which is scarcely more than the mathematical
inaccuracy involved. But the theoretical ap-
proach required is rather different, an important
fact in the theory of line broadening. While these
results justify the use of the Weisskopf model for
an order-of-magnitude calculation, it must be
emphasized that such a model is not only mathe-
matically approximate but is physically incorrect.

In Section 1 below the general equations for
nonadiabatic transitions are examined and the
region of validity for the adiabatic approximation
is determined. The impact broadening formula
is derived in Section 2 from the general Fourier-
integral formula for J(x); the conditions under
which this derivation is valid lead to a simple
criterion for the appearance of impact rather
than statistical broadening. Section 3 presents
the analysis for the broadening by resonance
forces of the line from the level L=O to the level
L= j. ; the implications to be drawn for other
cases are brieHy discussed. In Section 4 a more
complete treatment of the Ln line of atomic
hydrogen is given when this is perturbed by
passing ions. This section provides the appro-
priate modifications —which ",: qualitatively are
not great —to the author's previous results, ' in
which the breakdown of the adiabatic approxi-
mation was considered, but in which the "rota-
tion effect" was not taken into account.

The general equation for the change of state
of a system is

ikae(t)/at =H(t)e(t). (1)

The state function +(t) may be expressed in

terms of any complete set of eigenfunctions. Such
a set is provided by the solutions of the adiabatic

8 L. Spitzer, Jr. , reference 7; Phys. Rev. 56, 39 (1939),
referred to here as I I.

equation,
II(t)4..(t) =&.(t)4.(t), (2)

where t is simply taken as a parameter. We shall
assume here and throughout that E,(t), deter-
mined by (2), is given by

&, (t) =a /Lr(t) j"
where r(t) is the distance between the atom in
question and the perturber. We shall assume for
convenience that g, is positive. Since all particles
are assumed to move in straight lines, we have

Lr(t) ]'=R'+v'(t —to) ' y

t p is the time of closest approach.
If we let

e(t) =Z, a(t)P, (t),

then for a single encounter we find from (1), (2),
and (5),

where

da, Z, (t)+i—a,+g„k,,„„a= ,0
dt

l3

k,„=J~p,* d7.
Bt

(6)

Let us introduce the variable 0, defined by

vdt/R
de=—

1+v't'/R'

from (4) we see that tt is simply the angle which
the electronic z axis makes with its position at
the time of closest approach tp.

With this change of variable (6) assumes the
form

da, /dft+iÃ, $ cos" ' 0 ,a, +Z,E.,a„=0, (9)

where

and

de
+$7' ~ $T

dt

Q$ ='A$q)

8 =q/kvR" '.

(10)

(12)

The quantity g is chosen so that
~
X.—l~,

~
(sWr)

has unity as its lowest value. For most cases of
importance X, will assume values of unit order of
magnitude.

Values of Z,,„ for a rotating system have been
calculated by J. Schwinger' for the case in which

' J. Schwinger, Phys. Rev. 51, 648 (1937).
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the total angular momentum J is quantized.
Only the rotation is relevant in the present con-
nection, since the change in E,(t) with time gives
rise only to matrix elements connecting a.(/) with
states of the same M but of different unperturbed
energies. As long as AB, the difference in unper-
turbed energies, is greater than hv/R, such
matrix elements lead to negligible transition
probabilities, and may therefore be disregarded.
Since this criterion will be satisfied for most of
the cases in which we are interested, we may use
Schwinger's values, derived on the assumption
that E,(t) is constant; from his formula (26),
with p set equal to zero, we find

Zii=-,'-l(J —M)(1+M+1) l'/1M, M+g

——,
' I(1+M)(J—M+1) l *f/M//r, , , (13)

provided that (3) is used for E,(t). Carrying out.
the integration, we find

gas =&a~so, (17)

where X, and 8 are defined in (11) and (12), and

(18)

Combining (17) with the results derived from

(15), we see that the adiabatic approximation is
valid if

The adiabatic phase shift for the state s,
which we shall denote by p„, is given by the
relationship

/
+" 27rE, (/) , I7,. /

+" dt
(16)

(g2+p2/2) n/2

where 8„„ is zero or unity as p, is different from or
equal to v. Hence lZ, „l lies between 2 l and
(1+1)/2.

On the adiabatic approximation we neglect
X„and solve (9) for the probability amplitude
of state s; this becomes

Qgg )&a+sr

and is wholly invalid if

(19a)

(19b)

re(f) Since c„ is of unit order of magnitude, we see that

(14) when g„ is unity (19a) will not be satisfied and
the adiabatic approximation definitely fails.

where A. is a constant. If we set A, equal to
unity and use (14) to calculate the first-order
transition probability to another state, for which
the probability amplitude was initially zero, we
have from (9)

l~ (")l =2&-
(Iw/2 pI/

X J
d8cos (lI„—X,)8 I cos"—' pdq . (15)

0 0

It is obvious from (15) that when l(k„—X,)/1l is
less than unity the argument of the cosine is
always smaller than s. ; la, (~) l may therefore
be of unit order of magnitude and for such a
case the adiabatic approximation is clearly in-
valid. When l(X„—),)8l is greater than E„, on
the other hand, the cosine term oscillates
rapidly, la, (~)

l
is small, transitions are negli-

gible, and the adiabatic approximation is more
nearly correct. The fact that A„or /4(to), is
actually less than unity does not affect these
conclusions.

2.

The frequency distribution of quanta emitted
by an atom in a certain excited level may be
expressed as the square of a sum of the Fourier
integrals of each b, (t), the probability amplitude
of state s of that level;" one must stipulate, how-
ever, that state s is an eigenstate in a stationary
coordinate system, and that the lower level of the
radiative transition is undegenerate. The prob-
lem of line broadening is the evaluation of these
Fourier integrals when the radiating atom is per-
turbed in various ways. This problem in the
general case is one of great complexity and
several approximations are necessary if an
analysis is to be carried through.

The first simplification made in the impact
case is to assume that the perturbations are very

"See H. Margenau and W. W. Watson, reference 2,
V. Weisskopf, reference 4, and the author, I, reference 7,
for proofs of this procedure under various diferent simpli-
fying conditions. A general analysis for the case where both
upper and lower levels are degenerate and perturbed has
apparently. not been given.
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rapid compared to the mean life of each atomic
state. Then each b, (t) may be expressed as the
product of a.(t) and the radiation damping factor,
where a, (t) is given by the solution of the pertur-
bation equations, neglecting the interaction with
radiation. The second approximation is to neglect
all but binary encounters; this will be valid for
frequencies far in the wings of the line. On this
approximation the change in a,.(t) at any one
time is always produced by a single binary en-
counter; the values of a, at the end of each en-
counter are taken as the initial values of u, for
the next encounter. Since the Fourier integral of
b, (t) may be reduced to one of da, /dt, this integral
may be regarded as the sum of Fourier integrals,
one for each separate encounter.

With these approximations, then, there are
three distinct steps involved in the computation
of line broadening by moving atoms. First one
must set up and solve the general quantum-
mechanical equation of state for the atom in the
field of some passing perturber, —ion, atom, or
molecule. If the state function + is expanded in
terms of P„a complete set of eigenfunctions, the
coefficients a, (t) in the expansion will represent
the solution to this first problem.

Next one must compute the Fourier integral
or transform of each da, /dt. The squared sum of
these Fourier integrals over different values of

s yields the broadening of the line profile for a
single encounter. Finally the third step consists
of integrating such profiles over encounters at a11

velocities and at all relevant distances of closest
approach to yield the final profile J(x).

If we assume, then, that the lower state is an
undegenerate S state, and norma. lize J(x) to
unity for a single component of the spectral line,
we have, accordingly,

"f

J(x) =—P, b, (t)e'"dt,
27l p

(2o)

where F is the damping constant for the upper
level (the same for all the states in a given level).
The summation sign has been taken outside the
brackets since the transitions from the different
upper states to the lower S state will give quanta
with different polarization vectors, and will
therefore not interfere with each other. Following
the assumption made above, we may set

b, (t) = e l ' ra(t) . (21)

a.(t) is the coefficient of P, found from the per-
turbation equations for the encounters without
regard for the interaction with the radiation
field. Any perturbation to the energy of the lower
state may be taken into account by a simple
change in the equation for a, (t). If we substitute
(21) into (20) and integrate by parts we find

r dCs
J(x) =— P, a, (0)+ e-l" e"*'dt'

2x x'+-,'r' ~ o dt
('-2)

The integral in (22) may be regarded as the sum of separate integrals, one for each encounter. If
t p represents the midpoint in time of each encounter and if we let v = t —t p and neglect the damping
factor inside the integral, we have

I' 1 ~+ d+s
J(x) =— -g, a(0) +P~ eoxp ( ', I'to+ixto) X—-(r)e'*'dr

2' x'+-',-I'
(23)

the sum over tp is a sum over all collisions. Since the cross-product terms vanish on the average if
x is not too small, we have, finally, neglecting the radiation damping term, and integrating over tp,

1 r+" da,
J(x) = g,P', I e"*'dr

27rX oo d7'
(24)

where Z' denotes the sum over all encounters within an interval of one second.
One may now see the conditions under which the Weisskopf treatment is legitimate. If R represents

the distance of closest approach and v the velocity of the perturbing particle relative to the atom
under consideration, the encounter will last roughly 2R/v seconds; i.e. , the value of the integral in



I M PACT 8 ROAD EN I N('

(24) will come largely from this range. If Rx/v is less than unity t.he exponential in (24) may therefore
be neglected and the integral becomes simply the total change in a, produced by the encounter.

The error introduced by this pr ocedure may be evaluated. We introduce the dimensionless variables
u and P, defined by

Then we find that
+" diesS

re' "dt =
dr

u =vr/R

$ =Rx/v.

f'+ dC s f'+ C4 g

du+ ~l (e'&"—1)—du.
du

(25)

(26)

(27)

=Aa.+Q.

du (1+u') "~'
(28)

Taking absolute values we see from (27) that

ding

IQI ~
]

te''&" —1I du.
,
dl

(29)

If we take for Ida, /duI the expression in (28)
and equate Ia. I &o unity, (29) becomes

From the principle 0f spectroscopic stability it
follows that the sum over s of

I
dc, /du I' must

equal the corresponding sum in the adiabatic
case; hence we may set Ida, /duI equal to its
adiabatic counterpart in finding an approximate
upper limit for Q.

From (9) we have in the adiabatic case

I'+ dCg

J
d7. =ha, , =2 sin p, ;

dT
(33)

the p. so defined will clearly vanish for very dis-
tant encounters, and will become large for close
encounters, when it will in fact equal the adia-
batic phase shift p, . From (24) and (33) we have

statistical broadening is automatically satisfied,
and the usual statistical formulas may be used in

place of the Fourier integral in (24). We shall
neglect Q entirely in the determination of J(x)
and investigate later the error introduced by this
approximation.

Returning, then, to (24) we see that since the
maximum change in a, is two, we may define a
phase shift p, by the relationship

sin g Q

I Q I
—4).,S, du.

J„(1+u2)n/2
(30)

2
J(x) = g,Q' sin' y, .

7rX'
(34)

The numerator of (30) is always less than ~$u.
With this substitution (30) may be integrated
at once, provided that n is greater than 2. Sub-
stituting from (17) for 8 and from (18) for c„,
we find

where
I Ql «.4-I &I (31)

Z„=r (-', u —1)/~-:r [-', (n —1)]; (32)

X„decreases steadily from 1.00 for n =3 to 0.424
for n =6. The case n = 2, in which we are not
interested here, must be treated separately.

Formula (31) gives a useful limit on Q when
is less than unity. When @„is sufficiently

large the Lenz" criterion for the appearance of
' W. Lenz, reference 5; also Zeits. f. Physik 83, 139

(1933).

(~ q ~ 1/( —1)

Q~=&.
I I
&av" &

(36)

Following the mathematics of the Weisskopf
analysis, we may replace sin'Q, by its average
value —,', and set

J(x) = (1/~x') Z.n. , (35)

where 0, is the number of encounters per second
for which p, is greater than unity. This approxi-
mation is possible only when n is greater than
two, since otherwise the more distant encounters
become more important than the closer ones.

As a rough indication of the amount by which

(35) is in error we may take Q&, the upper limit
on Q given by (31) when p . equals unity. From
(12), (17), and (26) we find that
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More accurately we should a.verage
~

Aa. +Q
~

'
over all encounters to find a rigorous upper limit
for the error in (35). Although the upper limit
given by (31) becomes infinite as R approaches
zero, it is possible to show that as R decreases, the
adiabatic approximation becomes more nearly
correct, and if Qi is less than unity the left-hand
side of (27) becomes small; Q can therefore not
become greater than two. Hence if we replace Q
by its upper limit in (31) or by two, which ever
is the smaller, the appropriate average cari be
roughly carried out.

I he results of this calculation show that when
n is equal to three, the average error in

~

Aa,
~

' is
not greater than five times Qi. Since (31) gives
an upper limit which is probably too great by. a
similar factor, we may take 2Qi as the approxi-
mate error. Since also the average value of
~Da. ~' equals two, Qi becomes the relative error
in J(x). This procedure is approximately valid
when n equals four, but will not be accurate
when n is equal to or greater than five, since in
such a case Q may increase very rapidly with
decreasing R and the actual error of (35) may be
quite large. This is particularly true if Qi is very
small. An order of magnitude result may, how-

ever, be obtained in this manner.
Thus (36) gives an upper limit of x for which

(35) is accurate to within some definite rela. tive
error. If we neglect the factor E, as this is of
unit order of magnitude, and set Qi less than
some preassigned relative error P, we find that
this upper limit becomes

(37)

This condition, which does not seem to have been
generally realized, must be satisfied for all s if
the impact broadening analysis is to have any
relevance. It should be pointed out that these
results depend on the assumption that p, is small
when R is equal to the average interionic or
interatomic distance, since otherwise p, will al-
ways be greater than unity and the limits for the
sum in (35) must be changed.

Another condition which must be satisfied if
(35) is to be valid is that x must be greater than
0,. It is evident that 0, plays the role of a collision
damping factor, and for values of 2x less than

the half-width 20,„(35) is clearly an incorrect:
approximation for J(x). Also 1/0,. is the differ-
ence in to between encounters producing a phase
shift of unity; i.e. , the time elapsed between the
midpoints of such encounters. If x/0, is less than
unity the cross products of successive integrals
in (23) will include a phase factor less than unity
and will not cancel out when an average is taken
over neighboring values of this phase factor. This
lower limit 0, for x will be less than the upper
limit in (37) provided that sts, is again less than
unity when R is equal to the average distance of
the nearest perturber. Hence if p, is greater than
unity at this point, not only is the derivation of
(35) incorrect, but there is no region of x to which
it applies; in such a case J(x) is in fact given by
the usual statistical formula.

[&Axa+y, iya 2sAsa j—
rAB

(38)

provided that the coordinates are taken rotating
about the y axis so that the s axis lies along the
line connecting the two atoms. In stationary
coordinates (38) becomes

g2

V= [rA ra —3(sAsa sin'8+xAxa cos'0
~AS

+ (sAxa+xAsa) sin 8 cos 8I]; (39)

0, defined in (8), is identical with the quantity
w used in I.

Let A, Xi, X2, and X3 denote the wave funct:ions
for the ground state (L =0), and the three states
of the upper level; each x, is an eigenfunction in

a nonrotating, stationary coordinate system.
Then for the P, functions we have the usual
combinations

4 s ~AXsa+~BXsA (40)

The choice of sign in (40) affects this and the
adiabatic analyses in the same manner, and is

'"" H. Margenau, Rev. Mod. Phys. 11, 1 (1939).

3.

We consider next the approximate determina-
tion of p, in the simplest case of resonance
broadening, that of the L= 1 level. Let A and 8
denote the two atoms in question, and 1, 2, and 3
the states with 3EI=1, 0, and —1, respectively.
The interaction potential V is given" by the
formula

tsar

2
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therefore immaterial in this connection. If we
assume that

e(r) =z,a, (t)p

and make the substitutions

(41)

a„= (a& —ag)/v'2,

a6 ——(ai+a3)/v2,

then Eq. (1) yields the formulas

da;
+2i6a„== 0,

cos 0 d8
(43)

da2
i8n—,(l —3 cos 28)+isa, sin 29=0, (45)

cos8 do

where
8 = e't'/AvR' (46)

f is the matrix. element of r between the L=O
and the L = 1 quantum states.

The state represented by a„ follows the adia-
batic equation rigorously. For states a2 and a6
we may find a first approximation for the change
in a(t) as tl increases from —~/2 to +~/2. Let
a p denote the initial value of a, ; remembering
(33), we see that when the change in a, is small,
sin p, may be replaced by p, . A simple integration
yields

p; = 2iba;p, p6
——2iba6p, pg ——0. (47)

Since the number of encounters per second closer
than a fixed R is proportional to R' it is also pro-
portional to 1/8, as we see from (46). Hence if
we substitute for 6 from (47), setting each p,,
equal to unity, and equating a;p to a6p, we see
that

Z,O, = (2+2+0)X=4K', (48)

where X is a constant.
On the adiabatic approximation, however, one

finds to the same approximation

Z,Q, = (2+2+4)X= SX. (49)

We see that J(x) will be less than calculated on
the adiabatic approximation by a factor of two.
This error is not very large compared to the
other uncertainties in the analysis. This de-
creased value of J(x) arises directly from the fact

da6
isa—6(1+3cos 28) +i hc: sin 20 = 0, (44)

ros 0 dg

that resonance forces are zero on the average and
tend accordingly to cancel out even in a single
encounter. A similar effect of comparable mag-
nitude has been pointed out in II for the hy-
drogen lines, where again the perturbations occur
in the first approximation. The neglect of the
more distant collisions, which for hydrogen can
become very important, is not serious here.

Higher exponents in the perturbation formula

q./r" correspond primarily to second approxima-
tions, and give perturbations which do not
cancel out on the average. For such perturba-
tions, in fact, the average algebraic value of the
perturbation energy, taken over all states, should
be approximately equal to the root mean square
value. One may therefore expect the Weisskopf
formula to hold more accurately for dispersion
and van der Waals forces than for resonance ones.

A comparison of theory with experiment would
of course be desirable. A lack of accurate knowl-
edge of the matrix elements involved makes such
a check dificult for the most part. In the case
of resonance forces, however, a comparison is
ideally possible. It is well known that in such a
case the statistical and the adiabatic impact
formulas lead to essentially the same resu1 t,
independently of the velocity. " Hence the true
impact dispersion curve should lie somewhat
below the statistical one.

Unfortunately the statistical formula for this
case holds even when

~

v —
vo~ is very small, corre-

sponding to a wave-length difference of about
a tenth of an angstrom. If we set q equal to
e'kf/4~mvp in (37) and assume that v does not
e~ceed 10' cm/sec. , we find that

~

AX
~

must not
exceed 0 30Pf ' angs.trom unit or the X reso-
nance line, if the broadening is to follow the
impact laws with a relative error not greater
than P. Since the oscillator strength f is nearly
unity for such lines it is clear that impact
broadening is relevant only to the core of the
line; i.e. , roughly a tenth of an angstrom on each
side of the center. Since the width produced by
Doppler broadening is of the same order of mag-
nitude, an experimental test of the present theory
would be difficult but not impossible. Accurate
observations with high dispersion should show
significant deviations from the normal line con-

"H. Margenau and W. W. Watson, reference 2, pp.
4i, 43.
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In the hydrogenic case an exact solution may
be given for the profile of the line perturbed by a
single encounter between the atom and an ion.
The analysis has, therefore, considerable theo-
retical interest. In previous papers' 8 by the
author the "rotation effect" was not considered.
The results in I are correct for large and small p,
however, since when 8 is small the equations
derived for a stationary coordinate system in
Section 3-I provide a check on the formulas
used, while for large 8 the statistical theory is
valid. For intermediate values of 8, on the other
hand, the results must be slightly changed.

Let us consider as before the first excited state
of the hydrogen atom. Following the notation
of Section 2-I we may let Pi, fi, Pz, and $4
represent the states in which k1, k~, and m are
equal to 100, 001, 00—1, and 010, respectively.
These functions are taken in a rotating coordinate
system and are the eigenfunctions on the adia-
batic approximation. The solution of Eqs. (46-I)
is still valid, and shows that the u, have the form
exp io-8, exp —ia-o, and a constant, where

and
0~=1+2

e ~11 $1

AvR 7r

(50)

(51)

More specifically the complete 4' function may
be expressed in the form

+A a X2 '*

I6—4 z }

+A, X (2-'/a) Iz(lt, +&4) —6(if,+P,) }

+A 4X (e
—'"/2ii)

0 —6

z
+— $4+Pi+ Pz, (52)

0.+6

tour given by integrating a disper'sion curve over
a Doppler curve. The measurements would have
to be carried out at low pressures to eliminate the
effect of multiple encounters which would other-
wise be important in the line core.

where the A, are constants such that the sum of
the squares of their absolute values is unity. One
must next take the matrix components of
i(z+ix)e", i(z ix)—e *', and y, which equal z+ix,
s —ix, and y, respectively, in stationary coordi-
nates. The line profile may be computed in a
manner similar to that used in I, and in place of
(20-I) and (21-I), we find

r n(s, ~)
~(x) =—6+———~'I g.'(k)+g '( —k) },(53)

2vrx F

where $ equals xR/v and

~'I zf.+i'(t)+lf.-i'(&) }+fi'(&)
g. '($) = —;(54)

6'+ 1

and, as before,

+oo e't ()ic 0 tttll 1()

f (&) =„i~
1+0

Other symbols have the same meaning as in I.
.Formula (53) includes the eRect of all four com-
ponents of Iu; if (21-I), which applies to only a
single component, is summed over all four, a
formula identical with (53) is found, except that
g, (&) is replaced by f&(&) or, in accordance with
Section 2-I, by f, (P) The fun. ction f&(&) is shown

graphically in Fig. 1 of I.
The rotation effect manifests itself here in two

ways. In the first place it replaces f,'(P) by the
average of f,+P($) and f. P($) In the .second
place it introduces the terin fP(f)/o', arising
from the state function of which A3 is the co-
efficient in (52). This state is completely unper-
turbed in the rotating coordinate system. Yet it
is responsible for all the impact broadening when
8 is small, and for -', of it when 5 is greater than
unityt This case is unusual, however, and can
arise only when most of the transitions between
two levels are between such "unperturbed"
states, —in this case such transitions make up -',

the total number. Formulas (53) and (54) may
also be derived, of course, from a consideration
of the functions in a stationary coordinate
system.

The replacensent of f, ($) by g, (g) decreases the
contributions of states A1 and A4 to the line
profile, however, almost as much as it increases
that of state A 3 ', as a result the observable profiles
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I.(x, u) = p-u'/pic (56)

for large u,—the same as (22a-II),—and for
small zt,

(57)I.(x, u) =41n u/pi+3. 77.

This substitution of 3.77 for —0 69 in the
asymptotic form of L(x, u) changes somewhat
the final results for II'(x). In particular the
values of II(x) when yi is of unit order of magni-

given in II are changed only in detail. This result
arises from the fact that g ($) and gz(P) are equal
to f„(P) and fi($), respectively. For intermediate
values of o the difference between f,($) and g, (()
will not be very large, and we may as before take
for L(x, u) the two asymptotic forms; these now

become

tude or when y2 is only slightly less than unity
may differ considerably from those given in II.
The asymptotic results portrayed in Fig. 2—II,
however, should still be correct within at least
twenty percent.

These results are valid for the lowest Lyman
line. For higher lines a separate investigation
would be required for rigorous results. The main
features of Fig. 2-II depend primarily, however,
on the two asymptotic results, —for 8 large and
for 6 small, —which are known to be correct for
all the hydrogen lines. The results of II, summed
over all components of each line, ma, y therefore
be applied to all hydrogen or hydrogenic lines.

The author is much indebted to Dr. Henry
Margenau for several very valuable discussions.
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Proceeding from the idea that the superconducting electrons are free, classical particles under
the influence solely of the electric field, London found it necessary to make an integration
constant vanish arbitrarily in order to obtain agreement with the Meisner eEect. A variation
principle constructed from the same classical ideas gives the experimental result without re-
sorting to an additional assumption. The very precise, linear approximation results in London's
equations; the rigorous theory has the same qualitative character. Unlike Mie's theory, the
present theory has a satisfactory gauge invariance.

The summation of the Newtonian Eqs. (3) over
the N conduction electrons per unit volume gives
the macroscopic equation

THE LoNDoN THEoR.Y

~ 'HE first attempt to formulate a systeln of
equations for a superconducting medium

proceeded from the assumption that the con-
duction electrons are free, classical particles
under the influence solely of the electric field.
According to this idea, the Maxwell equations for
the fields are to be supplemented by the
Newtonian force equation for each electron. It is
assumed that the dielectric constant and the

magnetic susceptibility are unity since this is
very nearly true for the metals in their normally
conducting states. The equations are then:

1 m (10"p
E—XJ'=0, X=——=

~

—
~

10 "cin'-'. (4)Ne' EN)
This equation is in agreement with the experi-
mental finding that e.m. f.'s are required not to
maintain a current but only to change one. Its
substitution in the second Maxwell equation
results in

8—(H+)%VX J) =0 oi H+XVX J=Hp(x), (5)
(1) atVXH —E'= J, V E= p,

'I7XE+H'=0, V' H=0,

m(d Vi/dt) = eE—where Hp(x) is independent of the time. Now,

(3) since X is very small, H(x, t) —Hp(x) is practically


