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On the Value of the Electric Quadrupole Moment of the Deuteron*

A. NQRDsIEcK

Columbia University, ¹mYork, ¹mYork

(Received May 17, 1940)

The gradient of the electric field at the nucleus in the hydrogen molecule is calculated from a
new electronic wave function which gives a simple but accurate formula for the electron density.
The wave function is found by a generalization of the procedure first used by S. C. Wang. The
calculated field gradient, together with the molecular beam measurements of Kellogg, Rabi,
Ramsey and Zacharias, determines the value of the electric quadrupole moment of the deuteron.
As stated by the latter authors, the quadrupole moment is 2.73 X 10 "cm'. The writer estimates
the limits of error of this value to be +2 percent.

I. INTRODUCTION

' N a paper on the radiofrequency spectra of the
~ ~ molecules HD and D2 in a magnetic field,

Kellogg, Rabi, Ramsey and Zacharias' have
pointed out that the evaluation of the electric
quadrupole moment of the deuteron requires the
knowledge, in addition to the experimentally
measured energy differences, of the quantity

q= QL(3 cos' 8 —1)ir']Ay ~ (1)

The sum is taken over all of the molecular
charges except that of the nucleus under dis-
cussion, electrons contributing with negative
sign. In this expression r is the radius vector from
the nucleus under discussion to the individual
molecular charge; 8 is the angle between r and
the direction of the constant applied magnetic
field. The average is to be taken over the normal
electronic state, the normal vibrational state, and
the rotational state J, Sf'= J, that is, the rota-
tional state for which the projection of the
rotational angular momentum on the field direc-
tion is a maximum. Casimir' has developed the
theory of the interaction of a nuclear electric
quadrupole moment with extranuclear charges
for atoms; except for the actual evaluation of q
his theory is immediately applicable to molecules
as well.

For an atom the quantity q can be related to
another quantity which depends on r in the same
way and determines the magnitude of the hyper-
fine-structure separation; in this way q can be
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1 J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey and J. R.
Zacharias, Phys. Rev. 57, 677 (1940).See pp. 678, 691, 692.' H. B. G. Casimir, "On the interaction between atomic
nuclei and electrons, " Teyter's Tmeede Genootsckap (1936).
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found for the atom from the measured hyperfine
structure. In the case of a molecule it is not
possible, on account of the lack of spherical
symmetry, to make use of such a relation, and
we must fall back on a direct calculation of q
from the theoretical charge distribution in the
molecule. The direct calculation of q for HD
and D2 is the subject of the present paper.
A preliminary report of this work was made in
February, 1940.'

In Eq. (1) g is expressed in terms of coordi-
nates relative to axes with a fixed orientation in
space. The theoretical electron distribution, on
the other hand, is given relative to axes fixed in
and rotating with the molecule. The transforma-
tion from the former to the latter axes may be
made as follows. Let O~, C be the spherical polar
coordinates of the internuclear line relative to
the field direction. Let 8' be the angle made by
the radius vector r with the internuclear line.
Then according to the addition theorem for
spherical harmonics

3 cos' 8 —1 = (3 cos' O~ —1) (-', cos' 9' —-')

+terms involving e'~. (2)

The average over the rotational state, i.e. , over
O~ and C, may now be found by multiplying by
the absolute square of the rotational wave
function

~
Yqg(O, C) ~' and integrating over 0

and C. The terms involving e'~ contribute
nothing since

~
Yqq~' does not depend upon C,

and the result is
—2J

13 cos' 8—1]A,—— (2 cos' 0' —-', ).
2J+3

(3)

'A. Nordsieck, Phys. Rev. 57, 556A (1940). (The quan-
tity called g in this abstract is called q' in reference 1 and
in the pr~ent paper. )

io



QUADRUPOLE MOMENT OF DEUTERON

Thus if we call the electron density p(r, 8'), we
have

—2J
g= — g,

2J+3
(4)

4 In the definition of q' in reference 1 (end of p. 691 and
beginning of p. 692) a factor —,

' was accidentally omitted
from before the integral sign, and the average over R is
not indicated.

The relation (4) was stated without derivation in
reference 1, page 692. In Eq. (5), R sta, nds for
the internuclear distance. The first term is the
contribution of the second nucleus; the second
comes from the electrons and enters with a
negative sign as mentioned above. The average
must be taken over the zero-point vibration of
the molecule. ' We shall use the symbol g'(R) for
the quantity inside the square bracket.

The integral in (5) is not absolutely con-
vergent, but the theory of a quadrupole moment
interaction' shows that the integration must be
performed in a definite way, which then leads
to a unique result in spite of the nonabsolute
convergence. One must exclude a small sphere
with r =0 as center, integrate over the remaining
space, and then put the radius of the sphere
equal to zero. In practice, therefore, the integra-
tion is to be performed in the spherical polar
coordinates r and 8', the integration over 8' to
be carried out first. This point is mentioned
because some proposed electron distributions p

are not conveniently handled in the coordinates
r and 0'.

The physical meaning of q' is the following:
—2eq' is the derivative, taken outward along the
internuclear line, of the electric field component
outward along this line due to all charges outside
the small sphere spoken of above.

The chief problem was to find an accurate and
convenient approximation for the function p.
Rather fair accuracy is needed in p because of
the mutual cancellation of various contributions
to q'. The writer has found a simple formula
which approximates p well for our purposes, by
the methods indicated in the following section.

II. CALcULATIQN oF ELEcTRoN DENsITY

Two approximate electronic wave functions
for the norma1 state were already available for
calculating p. one found by Wang, ' another by
James and Coolidge. ' Both were found unsuit-
able, the first for reasons of accuracy, the second
because of its form. The Wang function was
found by inserting an effective nuclear charge Z
into the first Heitler-London approximation for
the wave function and minimizing the electronic
energy as a function of Z. The function is very
simple:

g
—Z(Fl+r2 ) +g—Z(T1 +~2) (6)

5 S. C. Wang, Phys. Rev. 31, 579 (1928).' H. M. James and A. S. Coolidge, J. Chem. Phys. 1,
825 (1933).

7 Atomic units (D. R. Hartree, Proc. Camb. Phil. Soc.
24, 89 (1928)), were used throughout in the calculation
of q. The value of the atomic unit of length (Bohr radius),
upon which the final result for the quadrupole moment
depends, was taken to be 0.5292)&10 cm.

r~ and r2 being the distances of electrons 1 and 2
from the one nucleus, r~' and rg' the distances
from the other nucleus, all in atomic units. '
The electron density is readily found analytically
for any value of R. But the density found from
this function is in error by as much as 16 percent,
as we shall see below. The function of James and
Coolidge is in the form of an exponential times a
multiple power series with coeScients deter-
mined by the Ritz method. It is accurate, but,
for our purposes, very unwieldy. In order to
calculate q with this function, the density would
have to be tabulated numerically for several
values of R (a very laborious procedure) and
g'(R) found by numerical integration. The fact
that the James-Coolidge function is expressed in

elliptic coordinates and is not conveniently
handled in the coordinates r and 0' contributes
to the difficulty. The writer, therefore, decided
to use the James-Coolidge function as a standard
of accuracy in finding a simple but reliable
analytical expression for p rather than to calcu-
late with the James-Coolidge function directly.

The errors in the Wang electron density and in
the newly found electron density, relative to the
James-Coolidge density taken as standard, were
estimated as follows. For R=1.40 atomic units
(the equilibrium distance) the numerical values
of the James-Coolidge wave function and of the
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+)jr,„=s 3&(tr+h)—
r s '*&(~i a2&+-s'2&—(nm ni& j (6')—

where A =ZR, it becomes clear how such a long

TABLE I. Values of electron density in atomic units
{electrons/{Bohr radius}'} at R =1.40 atomic units.

POINT IN
MOI.E-
CULE
(SEE

FIG. 1)

JAMES-
COOL-
IDGE,
ESTI-

MATED

WANG,
ESTI-

MATED
ERROR

(%)

NEW'
FUNC-
TION,
ESTI-

MATED
ERROR

(%)

NEw
FUNC-
TION,

EXACT
VALUES

a
b, b'

c, c

e, e'

0.2668 0.2248
0.4477 0.4495
0.06756 0.07734
0.1067 0.0942
0.04747 0.04686
0.00596 0.00606

—16
+0.4

+14—12—1
+2

0.2694
0.4320
0.06849
0.1085
0.04848
0.00615

+1.0—3.5
+1.4
+1.7
+2.1
+3.2

0.2699
0.4304
0.06825
0.1087
0.04849
0.00616

wave functions to be tested were computed at
42 chosen points in the configuration space of
the two electrons. By squaring these values and
averaging, with appropriately chosen weights,
over the positions of one of the electrons, com-
parable values of the electron density were
found for the three functions at 9 points in the
molecule. These values of the density are called
estimated values and are given in the second,
third and fifth columns of Table I. In the
fourth column are given the errors in the Wang
density, in the sixth column those in the new
density, both relative to the James-Coolidge
density. It should be emphasized that the
numbers given are reliable not in an absolute
sense but only for purposes of comparison, each
wave function having been handled in identically
the same way to arrive at the numbers given
for it. The values of the density given by the
exact formula derived from the new function are
also given in the last column, and a comparison
of the "estimated" and exact values shows that
the points chosen in configuration space and the
weights assigned in averaging over the, positions
of one electron were reasonable.

The table, together with the accompanying
scale diagram (Fig. I) of the positions of the 9
exploratory points in the molecule, shows that
the error in the Wang density varies, roughly
speaking, in a long range fashion along the
length of the molecule, the density being too
low in the plane r=r' and too high at the ends
of the molecule. If we introduce the elliptic
coordinates g = (r+ r')/R and g = (r r')/R and-
write the Wang function in terms of these:

/
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FIG. 1.The circles a, b, b' ~ ~ ~ f indicate to scale the points
at which the density was estimated. b, b are the positions
of the nuclei. The molecule possesses axial symmetry about
the internuclear line. The dotted lines separate the two
regions in which the electrons contribute to q' with opposite
sign.

and minimizing the energy as a furiction of these
two parameters. By carrying out this procedure
the new function used in the present calculation
was found. '

The formula for the energy in terms of A, B
and R is given in the appendix, Section 1. The
energy can no longer be calculated in completely
closed form as was the case with the original
Wang function, for the term I/r&~ representing
the mutual potential energy of the two electrons
must be expanded by the method of von Neu-
mann' and its contribution calculated term by
term. Three terms, namely those involving har-
monics of the 0th, 1st and 2nd orders, were

Returning to the coordinates r and r', one may in-
terpret this improvement in the wave function from the
point of view of the Heitler-London approximation. The
present function is formed, not from pure atomic functions,
but from atomic functions distorted by the proximity of
the second atom. The amount of distortion is measured by
{A-B},and is determined by the Ritz variation method.

' F. von Neumann, Theoric des Potentials (Leipzig, 1887),
p. 341.

range error arises: The trial function has the
same coefficient in the g-exponents as in the
g-exponent, so that the variation of the function
in )) (variation lengthwise of the molecule) is
constrained by being related to the variation in $
(variation outward from the internuclear line).
It is furthermore evident that considerable im-

provement could be secured while still keeping
the very simple analytical form of this trial
function, by introducing independent coefficients
A and 8 in the P- and ))-exponents, respectively:

s—sA (c I+(2) fgkB (gl—02) +s sB(92—9 1 )]
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kept, terms beyond these contributing in order
of magnitude 0.0001 atomic unit (0.003 volt) to
the energy. Table II gives the calculated minimal
values of A and 8 and the energy for several
values of R. For the Dang function at R= 1.400,
A =8= 1.640 and the electmnic energy is —1.85'1;
the James-Coolidge energy at R = 1.400 is
—1.886. The modification of the Kang function
has thus reduced the error in the electronic
energy from 1.8 percent to 1.2 percent. " The
formula for the electron density calculated from
the new function appears in the appendix,
Section 2. It is hoped that this formula together
with the estimated errors in it (see Table I)
will prove useful in other problems connected
with the hydrogen molecule.

TABI.E II. Data for new electronic function, all in atomic
units. Energy does not include nuclear repulsive terrN.

1.300
1.400
1.500

1.613
1.706
1.793

1.265
1.344
1,420

ENERGV

—1.915—1.863—1.815

I' The root-mean-square error of any function relative to
the James-Coolidge function is easily estimated by the
exploratory method described above. For the Wang func-
tion we find 17 percent; for the new function 12 percent.
These are of the order (relative error in energy) &, as is to
be expected on the basis of general theorems. From the
present work it appears, however, that provided long range
errors in the trial function are sufficiently reduced, the
mean relative error in the density is of the same order as
that in the energy.' C. R. Jeppeson, Phys. Rev. 45, 480 (1934); 49, 797
(1936).

III. CALCULATION OF g

The integrations involved in finding q'(R) ai'e

straightforward and lead to the formula given in

the appendix, Section 3. To find the value of
the part called 352 it is best to use its expansion
in powers of fi/a, which is also given. The values
of q'(R) are given in Table III.

The.average value q' of q'(R) over the zero-

point vibration of the molecule, depends some-
what on the amount and character of the
anharmonicity in the molecular potential curve.
The average was calculated by fitting a formula
u/R+b/R'+c/R' to the values in Table III,
fitting a Morse potential curve to the vibrational
data for the molecule, " and. averaging over'the
lowest vibrational state in this potential. This
approximate procedure is justified because the
amplitude of the zero-point vibration is a small

fraction of the equilibrium distance between
nuclei (0.035 for HD, 0.028 for D2). The correc-
tion due to centrifugal force in the mtational
state J=1 is negligible (0.2 percent). For the
molecule HD the averaged q' was found to be
0.1768 atomic units = 1.193&10"cm '.~ For D2,
which has a slightly smaller amplitude of vibra-
tion, g'=0. 1763 atomic units= 1.190)&10"cm '.
It is accident;al that the average q' is nearly
equal to the value of q'(R) at the equilibrium
distance, for the form of q'(R) favors smaller
values of R, while the anharmonicity favors
larger R.

1.300
1.400
1.500

c'(&)

0.2462
0.1755
0.1257

IV. ESTIMATE OV ACCURACV OF g'

The accuracy of the values of q'(R) was esti-
mated as follows: For R=1.400 the integrand
for q'(R) was integrated separately over the two
angular ranges separated by the dotted. lines in
the figure. The two integrands in r (correspond-
ing to the contributions to q'(R) of opposite
sign) were then plotted and estimates made of
the errors in these integrands at several points,
based on the ermrs in p given. in Table I. In this
way it was found that the errors in p at the points
a, c and d caused an ermr of roughly +1 percent
in q'(R), while the error at the point b' caused
an error of roughly —1 percent in q'(R). The
other errors had negligible effect because of their
being weighted with 1/r'. The contribution of
the electrons to q'(R) is very nearly ——', the
contribution 1/R' of the second nucleus, so that
the fractional error in q'(R) is equal to the frac-
tional error in the electron contribution. Since
these estimates were necessarily rough, limits of
error of &1 percent were assigned to q'(R). The
process of ave1 agiIlg oveI' the ze1 o-po1nt v1b1 ation
may lead to an additional error of at most ~1
percent in the average q'. Hence the writer
considers 2 percent a safe estimate of the limits
of error of the final value of q'. Roughly the
same limits of error then hold for the value'
2.73+10 2~ cm2 of the quadrupole moment,
since the experimentally measured term differ-
ences are reliable to about —,

' percent.

TABLE III. Values of g'(R) in atomic units.



1. The electronic energy in atomic units, not including the energy of mutual repulsion of the
nuclei, as calculated from the approximate function (7), is given by

&here:
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4S
m2 = — (3yi —yo)' 54' log /2+25454'Z(2A) —54"Z(4A)

162

t 288 192 871 43 26 1
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y =Euler —Mascheroni constant = 0.5772,

or

2. The electron density in atomic units derived from the approximate function (7) is

2pAy~
p(&, g) =—

i
—

i
e "&[5+T-cosh Bg]

ir (R) S'+T'
2)Aq' 1 8

p(r, r') =—
(
—

(
e "&—"+"'&'s S+T cosh (r r') . ——

iZ) 5 yT R

g and 8 for various R are given in Table II. 5 and T are defined in Appendix 1.
3. g'(R), as calculated from the above formula for the electron density, is given by

I.S+MT
q'(R) =—1—
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M2 ——same as Mq with a and b interchanged and Fi(a —b) replaced by —Z(a —b).
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Ei(x) is defined in Jahnke-Emde, Iiunktionenfafeln (Leipzig, 1933), p. 79.


