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The constant @ can always be chosen so that %
is positive. When thus defined, 6 is called the
absolute temperature and % the entropy (per
gram) of the substance.

Returning to Eq. (10), we may write it

m(Dn/Dt)+V-(q/6)
=—[q-V61/6>+[(p-V)-V]/8

or, using Eq. (3) and the divergence theorem

(d/dz)ffLmndT+fL(1/o)q-¢a

=fffs{ﬁk(vo)2]/92+t(p.v).V]/g}dr_ (15)

The first term on the left is the rate of increase
of the entropy of the matter inside S; the surface
integral is the familiar ratio of heat loss to tem-
perature. Thus, if VV=0 and V=0, this equa-
tion expresses the ordinary relation between
entropy, temperature and heat in reversible
processes. :

Furthermore, if p=0 (nonviscous fluid), the
right side is never negative—as is asserted by
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the second law of thermodynamics. It remains to
consider the case of a viscous fluid ; the commonly
accepted expressions for the components of p are?

Poo=(20/3)[2(3V./0x) — (8V,/3y) — (8V./d2) ],
Poy=Pya= )\[(3 Va/8y)+ (0 Vy/ax)]: etc.,

where A(2 0) is the coefficient of viscosity. Hence

(0-V)-V=022/3){[(8V./3x) — (80 V,/dy) 4+ -}
+M(0V/3y)+(0V,/dx) P+ -} 2 0.

If, now 6>0, it follows that the right side of
Eq. (15) is never negative even for a viscous
fluid. If this be accepted as an empirical fact, or
included in Kelvin’s hypothesis, the latter and
Eq. (15) have the inequality

(d/d;)fffsmndﬂrfﬁu/é)q.da;o (16)

as consequence. As has been remarked, this
inequality is a partial expression of the second
law of thermodynamics.

2 H. Lamb, Hydrodynamics (Cambridge, 1924), fifth edi-
tion, p. 544.
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The possibility of constructing a systematic theory of irreversible processes is surveyed in

general terms, by utilizing some of the results established in later parts of the paper.

Three

assumptions underlying Gibbs’ application of the second law to equilibrium problems are
formulated in explicit but general mathematical form. It is shown that they restrict the equa-
tions governing irreversible changes. The theory of a general fluid mixture is developed in some
detail, and is then applied to mixtures of ideal gases. It is shown that the usual equations for
the velocity of chemical reactions are consistent with the second law provided that the de-

parture from equilibrium is not too great.

Mathematical complexities make it difficult to de-

cide whether this is the case for larger deviations also. A somewhat general theory of diffusion
and heat flow is considered and the requirements of the second law are formulated as the positive
definiteness of a certain matrix whose elements depend on the diffusion coefficients, thermal

conductivity, etc.

SURVEY
N the preceding paper, the rate of increase of
the entropy of a simple fluid was calculated
and found to be in accord with the second law of

thermodynamics. Before proceeding to more
complicated cases, it is well to consider what may
be accomplished.

In the case of the simple fluid, it was possible
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to establish the existence of entropy and tem-
perature functions. This depended on mathe-
matical properties that are peculiar to Pfaffian
forms in two variables (p, v), and it is not to be
expected that the discussion can be extended to
the case of more variables.! It will therefore be
advisable to follow Gibbs and suppose that the
concepts of temperature and entropy are not in
need of definition or existence proof.

It was also possible to deduce the usual incom-
plete form of the second law from Kelvin's
hypothesis, the positiveness of the absolute tem-
perature, and the usual expression for the viscous
stresses. This may seem of doubtful interest,
since these hypotheses are all less general than
the second law itself. Thus the object of the con-
siderations will not be the derivation of the
entropy law from other laws.

It will rather be to derive equations of the
form?

(d/(‘it)ffﬁmﬁr—{—fﬁ(l/ﬁ)q-du
=ffLwﬂ(n

which, when combined with the second law,
yields the inequality

G20 (2)

At this stage of the considerations, it will be
shown that G is always the sum of a number of
terms, each of which is the product of two
factors:

G=3X.Ye. 3)

This decomposition of G, and more particularly,
the classification of the factors into X’s and Y’s,
is to a great extent arbitrary. However, it will
then be shown that it can be done so that

1 In this connection, the work of C. Carathéodory should
be mentioned: Math. Ann. 67, 355 (1909), Berl. Ber. p. 39
(1925) ; also T. Ehrenfest Afanassjewa, Zeits. f. Physik 33,
933 (1925), and S. Chandrasekhar, Introduction to the
Study of Stellar Structure (Chicago, 1939), Chap. I.

There is' reason to believe that Carathéodory’s theory
affords a better basis for a theory of irreversible processes
than-does that of Gibbs. The author has chosen the latter
because of its greater familiarity.

2 The notation is the same as that of the previous paper;
m, 7, 6, g are the mass density, entropy per gram, tempera-
ture and heat flow, respectively. .S is any closed surface
moving with the matter.
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A. the definition of thermostatic equilibrium is
Xo=0
together with the vector equation
aV/at=0.

For example, the X's are the components of the
heat flow q, of the velocity gradients, of the diffu-
sion velocity, the rates of production of chemical
compounds, etc., etc.

The Y’s are determined by this choice of the
X’s, and it will then be shown that
B. the Gibbsian criteria of thermostatic equilibrium
are equivalent to the equations

Y,=0
together with the vector equation
Vp=0.

The Y’s corresponding to the X's enumerated
above are proportional to the components of the
temperature gradient, of a stress tensor, of the
gradients of chemical potential, and the differ-
ences of chemical potential, in the same order as
above.

It is desirable to have an inclusive terminology
for the X’s and Y’s; because of the diverse na-
tures of the quantities thus combined into
classes, it is difficult to find a terminology that
is free from serious objections. The most satis-
factory that has occurred to the author is D-
factor for the X's, (D for definition) and C-factor
for the Y’s (C for criterion). The components of
the acceleration and pressure gradient should be
considered D- and C-factors, respectively.

It remains to give an explanation of these
observations. This is to be found in, tacit as-
sumptions that enter into all discussions of
thermodynamics and thermostatics, but are
rarely or never formulated clearly:

a. The irreversible changes of thermodynamic
state are governed by equations expressing the
D-factors as functions of the C-factors and certain
other variables (say §):

Xa=Fa(Y1 E) (4)

These may be called the thermodynamic equa-
tions of motion; it should be noted that the C-
and D-factors have been defined without refer-
ence to the equations of motion. The definition
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of thermostatic equilibrium then leads immedi-
ately to the equations ‘

Fu(Y, £)=0, (5

but it must be assumed that

b. The Eq. (5) are equivalent to the equations
under B, i.e., to the vanishing of the C-factors.

¢. The inequality

2eXo V20 (6)

s a consequence of the thermodynamic equations of
motion.

Unless a, b, and ¢ are true, it is not true that
“For the equilibrium of any isolated system it is
necessary and sufficient that in all possible varia-
tions of the state of the system which do not
alter its energy, the variation of its entropy shall
either vanish or be negative’’® which is the prin-
ciple on which Gibbs based his theory of thermo-

statics. In order that this principle follow from

a, b, ¢, it is further necessary that B be true.

In the next section, the results that have been
anticipated in this survey will be established for
the case of a fluid mixture.

FLuip MIXTURES

For the sake of formal simplicity, it is essential
to consider the possibility that the mixture may
contain all of its chemical elements in the free
monatomic form;let ¢, a=1, 2, - - -n be the con-
centrations of the free elements in moles/gram
of mixture. Let the other possible components of
the mixture be molecular compounds, the ith
containing »;, atoms of element « in each of its
molecules. For simplicity, the numbering may be
such that 7 runs from #+1 to NV, and let ¢; be the
concentration of compound 4. The word substance
will be used to designate either free elements or
compounds.

Let V;, be the velocity of the substance £ and
m the density of the mixture in g/cm?; then

defines TI', the rate of production of substance %
in moles/g/sec. Since the atoms of the elements
are not created or destroyed by the chemical
reactions, the I'; are not independent, but re-

3 J. W. Gibbs, Scientific Papers (Longmans Green & Co.,
New York), Vol. I, p. 56.
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lated by
Fot2ZinpVriali=0, (8)

If M is the molecular (atomic) weight of
substance k, the concentrations are related by

SV Mic=1, )

a=1:-n.

and the M}, by

Jlli=2a=1"ViQMa, 1,=ﬂ+1, .. N (10)

Equations (8) and (10) combine to give the
equation of conservation of mass

E}c:lNMkPk:O. (11)

The momentum density of the mixture is mV,
where

V=Ek=1NMk5ka, (12)
and the Egs. (7), (9), (11), (12) combine to give
the equation of continuity:

am/ot+V- (mV) =0
or (13)
mDy/Dt=V-V.

The diffusion velocities of the various substances
are

U,=V,—V, (14)
and Egs. (7), (13), (14) combine to give
mDcy/Di=mT,— V- (mc,U}). (15)

The hydrodynamic equation will be assumed
in the form

mDV/Dt=V-p, (16)

the stress tensor p now including the hydrostatic
pressure as well as the viscous stresses. There is
now the possibility that ) may also depend on the
U, but this complication may be ignored. In any
case, the kinetic energy equation in the form

(d/dt)ffj;%mlfzdr:fffsv-(v-p)dr (17)

will still be valid. Following Gibbs, it will be
assumed that the internal energy (per gram of
mixture), ¢, is a function only of v, of the ¢;, and
of the entropy ». The possibility that ¢ may de-
pend on the U, will be ignored, but this consti-
tutes an approximation.

Because of the arbitrary zero of energy, and
of Eq. (9), all equations must be invariant when
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e is replaced by e+f(Z.Micr), where f is arbi-
trary. This will be called an e-substitution.
An application of the energy law to the volume

whose boundary S moves with the mass of the
fluid yields

(d/dt)fff{%mw—i—mddr
=~ [ Jairt [ [ v-iw

—Ek=1fo(6e/ack)mckUk-do. (18)
s

The first integral on the right is the rate at which
heat enters the volume; the second is the rate
at which the fluid outside S does work on the
fluid inside S; the remainder is the rate at which
energy enters the volume due to the diffusion
processes. It is readily verified that this equation
is invariant under an e-substitution.
Subtracting Eq. (17) from (18), transforming
the surface integrals into volume integrals, and
recalling that .S is arbitrary, one obtains:

mDe/Dt—(p-V)-V+V-q
+Ekz1NV' [:m(ac/ack)ckUk] =0. (19)

Following Gibbs, the temperature is defined by

6=29¢/9n, (20)
the chemical potentials® by
=3¢/ 0cr, 1)
and the hydrostatic pressure by
p=—0d¢/0v. (22)

(Under an e-substitution, u; is replaced by
we+ Mif'(1), so that Vyy is invariant.) Then

De/Dt=0Dn/Dt— pDv/Dt+ iV ueDer/ Dt,

4 It will be noted that the theory of e-substitutions is not
used to prove any equation, but only as a check and guide.
Because of the equivalence of mass and energy, the status
of the e-substitutions in a fundamental theory is not clear,
and it has seemed preferable to restrict the use of these
methods. Other types of invariance are also associated with
Eq. (9) and can presumably be used in a similar manner.

5 Gibbs calls the u; simply ‘“‘the potential of the sub-
stance 2.”” Other writers call them ‘‘partial molal thermo-
dynamic potentials.”
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which combines with Egs. (13), (15), and (19)
into

mODn/Dt—pV-V—(p-V)-V4+V-q

+ Zpat¥m{ s 40U Vir} =0, (23)
From Eq. (8), it follows that
DVl =2tV ATy, (24)
where
A,'=,U.i"2a=1nVia,ua (25)

is the difference in chemical potential between
the compound ¢ and its equivalent in free ele-
ments. Because of Eq. (10) the A; and therefore
also the Eq. (23) are invariant under an e-
substitution.

Dividing Eq. (23) through by 6, integrating
the result over the volume bounded by .S, and
comparing with Eq. (1), show clearly that

G=q-v(1/6)+(1/0){pV-V+(p-V)-V

—2i=n4;1NmAiI‘i—2k=1chkUk'Vl-tk} . (26)

The derivation of Eq. (26) completes the first
stage of the program outlined in the survey (cf.
Eq. (3)). It remains to verify the propositions
A and B.

It will be obvious that when the mixture
reaches thermodynamic equilibrium, the follow-
ing quantities will vanish: (1) the heat flow, q;
(2) the velocity gradient, VV (and therefore also
V-V); (3) the rates of production of the various
substances, mT;; (4) the diffusion currents,
mcyUy; (5) the acceleration, 0V/ds. The first four
of these quantities appear as factors in the vari-
ous terms of G, thus verifying 4. The correspond-
ing C-factors are

(1) v/e; () —(1/0)As;
)¢ (1/6)(pi+1); 4 —1/0)Vpx;

while the Gibbs criteria for thermostatic equi-
librium are

(1) V6=0; () 2:i=0;

(S) Vp=0;

(2) p=-—pi;
4) Vu=0;

thus verifying B.

However several remarks are called for in this
connection: the second criterion is not found
explicitly in Gibbs’ paper, but is implicitly as-

6 Here t is the unit tensor.
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sumed at an early stage of the calculations. The
criterion (5) follows from criterion (2), the hydro-
dynamic equation (Eq. (16)), and dV/d:=0. The
exceptional character of the fifth criterion is thus
seen to be related to the exceptional position
accorded the hydrodynamic equation as com-
pared to the other equations of motion.

ELIMINATION OF THE ENTROPY FROM
THE EQUATIONS

The equations just derived involve functions
of v, the ¢;, and the entropy, 5. This proves to
be inconvenient, for it is an empirical fact that
these functions are very complicated. The equa-
tions are very much simplified by eliminating the
entropy and replacing it by the temperature,
using Eq. (20) to accomplish this. This is an
algebraic process, but can be very laborious, so
that it deserves some consideration.

It appears that the process can be much
simplified by introducing the function

lp(?/, Ciy 0) = G(U, Ciy 7’) - 07’1 (27)

the entropy being eliminated from the right side.
The function ¢ is one of those introduced by
Massieu under the name characteristic function,
and is usually called the free energy, or work
function (per g of the mixture). Once ¢ has been
determined, the quantities p, u; and % can be
expressed as functions of v, ¢; and 6 by means of
the equations

p=—0y/dv, (28)
Ki=0y/dc;, (29)
= —3ay/a8, (30)

which follow from Egs. (20), (21), (22) and (27).

GENERAL CONSEQUENCES OF @, b, ¢

The assumptions a, b, ¢ have important conse-
quences for the theory of irreversible processes,
inasmuch as &, and ¢ impose marked restrictions
on the equations of motion. From b it follows
that ‘

(0Fa/38)0=0, (31)
the subscript zero indicating that the Y,=0
while the #'s have general values.” Equation (6)

" 1If the quantities dX./dt are among the £'s, this gener-
ality must be restricted, since these derivatives vanish at
equilibrium.
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imposes further restrictions on the F,; it can be
given another form if the F, are linear functions
of the Y,, which is probably the case whenever
the departure from equilibrium is not very
great. In this case, Eq. (4) becomes

Xe=ZvAn Vs, (32)

where

Aab = (aFa/a Yb)O) (33)

is in general a function of the §¢’s. Equation (6) is
then

21121514 ab Ya Yb 2 0’ (34)

which hlust be true for all values of the Y, and
the ¢'s. Therefore the matrix

Bab= %(A-ab"{"Aba)

must be positive definite. This implies such
inequalities as

(35)

Ba2 0,
Baa-Bbb— (Bab)2> 0-

(36)
@37

Mi1xTURES OF IDEAL GASES

In order to work out special cases of the general
principles, it is convenient to consider a mixture
of ideal gases, for which the work function is

¢<U, Ciy 0)
=Z;1¥ci{u,(6)+Ro[log (ci/v) —1]},

the u; being functions characteristic of the sub-
stances and R the gas constant per mole.?
Equation (29) then yields

,u,~=u,-(0) +R0 IOg (ci/v),

and Dalton’s law of partial pressures, etc., can
also be derived.

This ideal mixture may be the scene of
chemical reactions, proceeding at rates given by
the usual formulae. It is to be considered, whether
these formulae are consistent with &, b, ¢. Before
doing so, however, it will be shown that Eq. (39)
leads to the usual form of the law of mass
action.

Let M, stand for the chemical symbol of
substance k, as well as for its molecular weight.
Then the general form of a reaction may be

(38)

(39)

8 See, e.g., K. F. Herzfeld, Handbuch der Physik, Vol. 9,
p. 101, Eq. (1).
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written (the »’s are integers)
Ek=1NVklﬂ[kﬁzk=1N Vk”jl/[;;,. (40)
Since the reaction balances,
ZitV 0k Ve =Zpe itV Vi Vi = e, a=1---m, (41)

vie being the number of atoms of element a in
one molecule of substance k. (If a<#, vio=8a-)
The criteria for chemical equilibrium (A;=0)
yield

Ei=n+1N(Vi” —_ V/)Ai, = 0,

which may also be written

V(v = v Hui=0

(42)

because of Eq. (41). Substituting from Eq. (39)
gives

SV (v — v [/ RO+1og (ci/0)]=0, (43)

which is essentially the Arrhenius form of the
law of mass action.

The commonly accepted (and empirically veri-
fied) formulae for the rate of a chemical reaction
in the gaseous phase were first deduced by
Guldberg and Waage from rather vague kinetic
theory considerations. These have since been
made somewhat more specific and brought into
agreement with Eq. (42).° According to these
formulae, the net rate at which the reaction
proceeds to the right is the difference p’—p”,

where
p' =¢ exp (Ziz1Vvi'ui/RO),

(44)
o =¢ exp (Zi1V»i" us/RO),

¢ being a positive quantity. It is clear that
Eq. (42) follows from this and

(45)

but that Eq. (45) does not follow from the
definition of thermostatic equilibrium. It is
usually deduced from the principle of detailed
balancing, but also follows from the Gibbsian
criteria of equilibria.

If there are many possible reactions, these
must be distinguished by an index (¢s, ps’s #as
etc.). The rate of production of substance ¢ is
then

p'—p""=0,

Di=2(vis” —vis') (s —ps""), (46)

* R. H. Fowler, Statistical Mechanics (Cambridge Uni-
versity Press, 1936) second edition, p. 700.
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and the definition of equilibrium is I';=0. Eq.
(45) cannot follow directly from this and Eq. (46)
unless there are at least as many substances as
possible reactions. It may, however, follow in-
directly because of other considerations leading
to the Gibbsian criteria of equilibrium.

From Eq. (25),

ps' =as; exp (Ek=n+1NV/gslAk/R0),
ps" =a; exp (Zrent Vi Ar/RE),
=5 eXP (Zgu1asita/RO) 2 0.

(47)

where

Since p and A are invariant under an e-substitu-
tion, ¢ must also be; there is thus a presumption
that the interpretation of ¢ will be simpler than
that of ¢. Equation (46) then becomes

I'i=2(vi” — visas{exp (Spani1Vvws’ - Ar/RE)

—exp (2k=n+1NVks”Ak/R9) } . (48)

For sufficiently small values of A;,

I-‘i L 2:s. k(Vis” - Visl)as(yks” - Vksl)Ak/Rey

so that
i1V T(—A;/0)
=(1/R)Zs 1as{ (v’ — vis’) (Ar/ 0) } 2.

These last two equations are in complete accord
with the general considerations leading to Eq.
(34). The more general Eq. (48) is in accord with
Eq. (31), and the Gibbsian criteria A;=0 are a
sufficient condition for I';=0. It is not easy to
see whether they are also the necessary condition,
as Gibbs asserts, nor whether

2T —Ay/0) 20

for all values of A;, as is required by the present
assumption c.

Turning now to the conduction of heat and
the diffusion of matter in the mixture, it may be
supposed that the equations governing these

processes are
q=xooV(1/0) = Zi=iV (k0:/0) Visi,
(49)
ijsz K,oV(l/@) - Eile(Kji/e)V/.ti.

In order that these equations be consistent with
the general principles, it is necessary and
sufficient that the matrix 2(k;;+«;:) be positive
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definite. Insofar as the mixture is an idealized
one, there is no need to justify the assumption
of Eq. (49), but the question of its departure
from actual mixtures does arise.

The conduction of heat is usually supposed to
be given by Fourier’s law that ¢ is proportional
to V@; similarly, Fick's law that U; is proportional
to V(mec;) is supposed to govern diffusion. How-
ever, more general cases have been considered,
in which U; is a linear function of all the concen-
tration gradients. Such ‘‘diffusion-drag” forces
have been invoked to explain certain biophysical
phenomena, and it seems likely that they are
important in the separation of isotopes. Except
for a difference in notation, and the terms in
koi, the Eq. (49) are identical with those con-
sidered in the diffusion-drag theories.

To see this, note that because of Eq. (39) and
m=1/v

V=0 V04 (RO/mc;)V(mes), (50)
where
o= dul/da +R 105{ (mci) y
so that Eq. (49) becomes
—q=ko V0421V ko V(mces),
51)
—_ ijUj = kj0V0+Ei=1NkjiV(mCi) ’
with
kio=kjo/ 02+ D1V jicti,
(52)

kji'—:RKji/mCi.

The coefficient kg is the thermal conductivity,
the k;; (=1---N) are the diffusion coefficients,
while the k;; (i#j=1.--N) are the drag coeffi-
cients. If the coefficients k;>%0, this amounts to
assuming that a temperature gradient tends to
produce a diffusion of matter; similarly, if kq; 0
the concentration gradients tend to produce a
flow of heat. Both of these phenomena occur;
they are closely related to the various thermo-
electric effects.

Since the matrix k;; is positive definite, the
thermal conductivity and diffusion coefficients
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must be positive quantities, and
4eicikiiki; 2 (Rijei+kici)?,

etc. However, these particular inequalities are
based on Eq. (40) ; they may have different forms
for liquid mixtures. The general conclusion that
the numerical values of the drag coefficients are
restricted by the numerical values of the diffusion
coefficients is valid in all cases.

Finally, it would be possible to consider
generalizations of the usual formulae for the
viscous stresses, but this seems of slight interest
here.

SUMMARY

The restrictions imposed by the second law of
thermodynamics on the equations governing
irreversible changes have been investigated, first
somewhat generally, and then for the particular
case of a mixture of ideal gases. It was found
that they are automatically fulfilled by the usual
law of mass action for chemical reaction veloci-
ties. In the case of general diffusion processes,
the diffusion coefficients must be positive, and
certain other inequalities must be satisfied. The
general methods used can be applied to other
irreversible processes, and will always yield such
inequalities. The experience of the author sug-
gests that many of these inequalities have already
found their place in physical theories, having
been introduced on the basis of ‘‘physical
intuition,”’ but that the latter cannot deal with
the more elaborate cases.

Note added April 26, 1940. Since writing the above, my
attention has been called to the work of E. Lohr on similar
problems.* A first reading of his extensive papers shows
that some of his conclusions practically coincide with mine,
though there seem to be appreciable differences in our
points of view. The entropy law has also been formulated
as a differential equation by R. C. Tolman,}, independently
of the work of Lohr.

* E. Lohr, Wiener Denkschriften, 93, 339-421 (1917);
99, 11-37, 59-91 (1924). Vektor- und Dyadenrechnung,
p. 312 (Berlin, 1939).

1 Literature references in R. C. Tolman and H. P.
Robertson, Phys. Rev. 43, 564 (1933).



