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The Thermodynamics of Irreversible Processes

I. The Simple Fluid
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The rate of increase of the entropy of a simple viscous Huid, capable of conducting heat, is
investigated in greater detail than has hitherto been customary. It is shown that, if Kelvin's
hypothesis concerning the absolute temperature be adopted, and the usual law of viscosity be
assumed, the requirements of the second law are satisfied.

s INCE the publication of Gibbs' "Equilibrium
of heterogeneous substances, " it has been

obvious that the greater part of the existing
thermodynamic theory would more appropriately
be called thermostatics, the term thermodynamics
being reserved for the rather unorganized lot of
equations that govern irreversible changes in
which heat plays a part. Examples of such
equations are Fourier's law of heat conduction,
ohm's law, Fick's law of diffusion, etc. , etc.
Although this usage is dictated by the close
analogy to mechanics, there has been no tendency
to adopt it. This reluctance has been partly due
to the chaotic state of thermodynamics proper,
and partly to the belief that the laws mentioned
above are much less fundamental than Newton's
laws of motion or than the energy and entropy
laws, and require derivation from kinetic theory.
The purpose of the present investigation has
been to find the general equation of which the
foregoing are special cases. The problem of
providing a kinetic theory derivation has not
been considered. The major part of the discussion
will be presented in such a manner as to bring
out the connection with Gibbs' work, but by
way of introduction, the case of a simple viscous
Auid, conducting heat, will be discussed from a
pre-Gibbsian standpoint.

Let nz be the mass density of the Huid, V its
velocity, so that the conservation of mass leads
to the equation of continuity

Bm/Bt+v (mV) =0. (1)
Defining the specific volume v=1/m and the
operator

D/Dt, =8/Bt+V V
' J.W. Gibbs, Scientific, c Papers (I.ongmans, 1906), Vol. I.,

p. SS.

we may also write

mDv/Dt= V' V.

Let S be any closed surface moving with the
Huid, so that an element of its area, de, sweeps
out the volume V dedt in time dt If f is. any
function of position and time

(d/dt) J~Jt Jl mfdr
8

= JI J J
[B(mf)/Bt]dr+ JI JI mfV da

8 8

=
Jl Jl'JI'(a(mf)/Bt+v (mfV) }dr

=Jt t', t (Df/D~)d, .
J~

In the absence of external volume forces, the
motion of the Quid will be governed by the
hydrodynamic equation

mDV/Dt= —Vp+V p, (4)

where p is the hydrostatic pressure, and p is the
tensor of the viscous stresses. The precise ex-
pression for the latter will not be needed until
later.

The kinetic energy of the Huid enclosed by S is

K= "" -', V'd

and by Eq. (3)

dK/dt= t t itmV ~ (DV/Dt)dr
a J J,

= JI Jt Jl'V ( Vp+V p)dr-
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or, on using the divergence theorem

dK/dt= —Jt t(PV —p V) do
S

The surface integral is the rate at which the
fiuid inside S does work on the fiuid outside S.

The energy law as applied to this simple
fluid, states that there is a function w(P, v) (the
internal energy per gram) and a vector q (the
heat flow) such that

(d/dt) J"Jt J {', m V'-+mw}d7.
8

q da —
~

(PV —
P V) do. (6)

8 "~s
The first integral on the right is the rate at which
heat enters S and the other has already been
identified. Subtracting Eq. (5) from Eq. (6)
gives

+V q}d7=0, (7)

and since this must be true for all dosed surfaces,
it follows that the integrand itself must vanish.

Since m is a function of p and v only, and
because of Eq. (2), the first two terms may be
transformed:

of Eq. (9) with respect to P and the second with
respect to v, and subtracting gives:

(a8/aP)(as/av) —(a8/av)(an't/aP) =1.
Elimination of it by means of Eq. (9) results in

(a log 8/aP) [(awlav)+P7
—(a log 8/av)(aw/aP) =1, (11)

which can be solved for log H, since m is supposed
known. If 8=80(P, v) is one solution of Eq. (11)
and P(P, v) is any solution of

(a&/aP) [(au/av) +Pj—(ag/av) (aw/ap) =0, (12)

then the most general solution of Eq. (11) is

8 =80f(4),

where f is arbitrary. To complete the definition
of H, this function must be determined in
some way.

Thereafter, the function q is determined except
for an additive constant. From Eq. (9)

v(P, v) = v(Po »)
P~&

+ " (1/8){[(aw/av)+Pgdv+(aw/aP)dP}
&0 "0

and Eq. (11) is the condition that the integral
be independent of the path.

The definition of H is completed on the basis
of what may be called the Kelvin hypothesis:

The arbitrary function f may be chosen so that

the heat flow q is related to 8 by Fourier's equation

m(Dw/Dt)+PV V
=m {[(aw/av) +P](Dv/Dt)

+ (aw/aP) (DP/Dt) }.
Now, there are always two functions H and g
such that

q = —kV'H,

8
where h is a function of P and v that does not

change sign.
When f is so chosen, 8 is unique except for

sign and unit. For, let 80 also satisfy the equation

(aw/»)+P = 8(anlav) (aw/aP) = 8(av/aP), (9)

so that finally

q = —koV'Ho

then it follows that

whence

m(Du/Dt)+PV V= m8(D&/Dt),

m8(Drt/Dt)+V q=(}i V') V. (10)

or
8= F(8o)

f(y) = F(80)/80

Before making use of this equation, it is worth
while to consider this definition of H and
despite the fact that it is discussed in all standard
texts on thermostatics. Differentiating the first

But, because of Eqs. (11) a,nd (12), P cannot be
a proper function of Ho, so that both sides of
the equality must be constants; hence

H =aHp.



The constant u can always be chosen so that k
is positive. When thus de6ned, 8 is called the
absolute temperature and g the entropy (per
gram) of the substance.

Returning to Eq. (10), we may write it

the second law of thermodynamics. It remains to
consider the case of a viscous Quid; the commonly
accepted expressions for the components of p are'

y„= (2l~/3) [2(B V./Bx) —(B V„/By) (—B V,/Bs) j,
y,„=&„,=X[(BV,/By)+(B V„/Bx) j, etc

m(Drl/Dt)+V (q/8)
j/, +[(„)&jj&

where X(&~ 0) is the coeScient of viscosity. Hence

or, using Eq. (3) and the divergence theorem (y V) V=(2X/3) I[(BU./Bx) —(BU„/By)g'+ ~ ~

+l I [(BV*/»)+(B V,/B )j'+
(d&dh))"j")t mgdr+) ) (1/B)q do. If, now 8&0, it follows that the right side of

Eq. (15) is never negative even for a viscous
Quid. If this be accepted as an empirical fact, or

I jtJt IL&(VB)'j/B'+[(O'V)'Vj/BIdr (13) included in Kelvin's hypothesis, the latter and
Eq. (15) have the inequality

The first term on the left is the rate of increase
of the entropy of the matter inside 5; the surface
integral is the familiar ratio of heat loss to tem-
perature. Thus, if VV=0 and V'g=o, this equa-
tion expresses the ordinary relation between
entropy, temperature and heat in reversible
processes.

Furthermore, if &=0 (nonviscous fluid), the
right side is never negative —as is asserted by

"(1/B)q d &0 (16)
J J ds J dq

as consequence. As has been remarked, this
inequality is a partial expression of the second
law of thermodynamics.

' H. Lamb, Hydrodynamics I'Cambridge, 1924), fifth edi-
tion, p. $44.
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The possibility of constructing a systematic theory of irreversible processes is surveyed in

general terms, by utilizing some of the results established in later pa'rts of the paper. Three
assumptions underlying Gibbs' application of the second law to equilibrium problems are
formulated in explicit but general mathematical form. It is shown that they restrict the equa-
tions governing irreversible changes. The theory of a general Quid mixture is developed in some
detail, and is then applied to mixtures of ideal gases. It is shown that the usual equations for
the velocity of chemical reactions are consistent with the second law provided that the de-

parture from equilibrium is not too great. Mathematical complexities make it dificult to de-
cide whether this is the case for larger deviations also. A somewhat general theory of di8'usion

and heat Bow is considered and the requirements of the second law are formulated as the positive
definiteness of a certain matrix whose elements depend on the diffusion coefficients, thermal
conductivity, etc.

SURVEV
' 'N the preceding paper, the rate of increase of
& ~ the entropy of a simple Quid was calculated
and found to be in accord with the second law of

thermodynamics. Before proceeding to more
complicated cases, it is well to consider what may
be accomplished.

In the case of the simple Quid, it was possible


