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K are not the same, so that the two calculations
will give the same result only if f is independent
of k,. This condition is satisfied for allowed
transitions with the three couplings commonly
employed, although not for forbidden transitions.
A detailed study of the radiative beta-activity

and radiative capture might thus give further
information on the actual form of the beta-
coupling.

The authors are very grateful to Professor J.
R. Oppenheimer for suggesting this calculation
and for much helpful discussion.
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The cross section for the scattering of very slow neutrons

by deuterons is calculated by numerical methods. Polar-
ization is completely neglected and the wave equation for
the process is set up in such a form as to take correctly
into account exchange effects between the incident neutron
and the neutron initially in the deuteron. This wave
equation is then replaced by an integral equation the
solution of which is correctly symmetrized and has the
right asymptotic value to describe the scattering process.
The numerical integration is performed by replacing the
integral equation by a finite set of simultaneous linear
algebraic equations. The work is greatly simplified by the
use of a sum of two. Gauss functions to approximate the

ground state deuteron wave function. It is assumed
throughout this paper that the interactions between like
and unlike particles are equal and are of the general form

~'~ = —L(1—g —g~ —gg)~'~+8"~Q'~+g~+g2Q'~1~(r'~),

where the symbols have their usual meanings and where

J(r;;) is a Gauss function. The calculation is carried out
for two sets of g's, For the first set, gl. =g2=0, g=0.2,
the cross section is found to be equal to 4.57&10 '4 cm',
and for the second set of g's, g2=2, g=0.22 —g2, go=0.25
—0.8g&, the value of the cross section is found to be equal
to 6.91&(10 " cm~. The experimental value is at least
20 percent smaller than the first of these values.

INTRODUCTION

INCE the scattering of neutrons by deuterons
~

~

involves a fundamental process in which only
three particles take part, the solution of this
problem can be expected to throw a great deal
more light on the nature of the forces between
elementary particles than is now available. This,
coupled with the fact that an exact theoretical
treatment is impossible because of the com-
plexity of the equations, must justify a step-by-
step attack on the problem in which various
simplified models are considered in some detail.
A complete treatment must take into account
polarization as well as exchange effects. If polar-
ization is entirely neglected, as has been done in

the present calculation, it is possible to set the

problem up in such a form that one can obtain a
numerical solution without an undue amount of
work. Calculations in which polarization has
been neglected have already been carried out by
Schiff' and by Yukawa and Sakata' who pro-
ceeded somewhat indirectly by introducing aux-
iliary potentials which enabled them to simplify
their equations considerably. The present paper
differs from the aforementioned ones in two
respects: the calculations are carried through
using the most general type of interaction be-
tween the particles (we assume only that the
forces between like and unlike particles are
equal); exchange effects are accurately taken
account of to the order of approximation
employed.

~ Publication assisted by the Ernest Kempton Adams
Fund for Physical Research of Columbia University.

t National Research Fellow.

' L. I. SchifT, Phys. Rev. 52, 149 (1937).
'H. Yukawa and S. Sakata, Proc. Phys. -Math. Soc.

Japan 19, 542 (1937).



SCATTERI NG OF NEUTRONS

THE INTEGRAL EQUATIQN oF THE

COLLISION PROCESS

The general form of the wave equation for a
system consisting of three particles of equal mass
and having a total spin S is

(~ /2~) (+1++2++3)+ U12+ U13+ U23

X%'s(rl, r2, r,) =0, (1)

where rI, r2, and r3 are the vector coordinates of
the three particles, 3/I is the common mass and
V;; are the interaction energies. In the present
calculation we have taken the most general form
for the potential'

l" = —L(1 —a —al —a )F'+O'' Q*

+gl+g2Q'1]~(r'1). (2)

I';; is the operator which exchanges the
positions of particles 2 and j, and Q;; is the spin
exchange operator, which we write in the form
2(1+6,"0;), where the d;, 6; are Pauli spin
matrices of unit amplitude.

We now transform the wave equation to the
center of mass coordinate system, which is
defined by the equations (see Fig. 1)

1 rl (r2+r3) tl Z2 r3
(3)

R = 3 (rl+ r2+ r3) .

I If;. 1.

The subscript 1 refers to the incoming neutron
and 2 to the neutron initially in the deuteron, so
that y is the coordinate of the deuteron system.
On factoring out the motion of the center of mass,
we obtain the wave equation in the coordinates

g andr

[ (5 /23/I) (2Dp+ 26r) + U12+ U13+ U2tl

X +s(p r) =0, (4)

where the V; s are now functions of y and r only.
If $3(p) and p(tl, «) are the deuteron ground

state and continuum wave functions, respec-
tively, then +s(y, r) can be written as the
following expansion:

4's(y, r) =F«(r)43(tl)Zs(123)+Xs(123) I F(r, «)p(p, «)d«,

where xs(123) is the spin wave function for a definite value S of the total spin of the system. In order
to take exchange eifects into account, we set down a similar expansion for P»Q1211fs(p 1)

&12Q12+s(tl, r) =Go(r)po(g)xs(123)+Xs(123)J G(r, «)p(p, «)d«.
0

(6)

Substituting (5) and (6), both of which are solutions, into the wave equation, we obtain the two
equations

—(&'/2&&)(2&, +-'~ ) t Fo(r)4o(p)xs(123)+Fs(r g)]+[ 2 U '+ U ]LF (r)4'o(e)xs(123)
i 2 3

+F.(r, e)]=Fr F.(r)0.(e)x.(123)+F.(r, e)]
—(f'3 /2M) (2D,+$42) t Go(r)go(y) ps(123)+Gs(r p) ]+[ Z Ul + U23]

22 3

X LGo(r)go(y) xs(123)+Gs(r, y) 7 =&LG«(r)fo(p)xs(123)+Gs(r, y)],
where

F2(r, p) =—Xs(123) F(r, «)p(y, «)d«, Gs(r, tl) =—Xs(123) G(r, «)p(p, «)d«
p dp

~ G. Breit and F. Feenberp. , Phys. Rev. SO, 850 (1936).
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These equations can now be reduced to simpler form by making use of the deuteron wave equation.
If the binding energy of the deuteron is Ep, then fp(p) satisfies the following equation:

—(&'/~&) ~A o(e)+ V»A(e) =EoA(e)

Multiplying (7) by Po*(p)xs*(123), integrating over the configuration space of p, and summing

over spins, we obtain with the aid of the deuteron equation

3 A2

g,F (or—)+ Q Q xs*(123)Vg;Fo(r)xs(123)
sptns t=2, 3

+ Q Q tdr~xs*(123)4o*(y) Ui'Fs(r, y) = (I' —Eo) Fo(r),
spins i=2, 3 aJ

3 52
Ar—Gp(r)+ g 2 xs'(123) Vi Go(r)xs(123)

4M spins i=2, 3

+ Q Q I dr xs"(123)go*(g)Vi Gs(r, g) =(E—Eo)Go(r).
spins i=2, 3 4

If in these equations we replace Fs(r, p) and Gs(r, p) by the equivalent expressions obtained from

(5) and (6), and then take the difference of the resulting equations, we have left the equation

3 k2 f——&r[Fp(r) —Go(r)]+ Q P
~

dr, xs*tl'o""(p) Vli[+s(r, p) P12Q12+s(r, p)]
4M spins i-2, 3 sJ

= (E Eo) r Fo(r) Go(r) ] (9)

This equation is exact, but before we can proceed further, we must introduce an approximation
which is equivalent to neglecting polarization effects. We place

+s(r, p) —PipQip+s(r, p) = Fo(r) —Go(r) —PipQn[Fo(r) —Go(r)]=—4(r) —PipQipb(r).

With the aid of (10) we can now obtain an equation for @(r),

352———Ag(r)+ P P dr, xs'Po" (p) V„[g(r)fo(g)xs(123) —P, Q~2&(pr)P (po) (x1s23)]=E'p(r), (11)
4M spins x=2, 3 aJ

where we have placed E—Lo ——E, . If polarization is neglected, then p(r) is the correctly symmetrized
wave function of the system.

We can simplify (11) by carrying out the summation over the spins. To do this we first introduce
the expression (2) for the potential functions, and thus obtain the equation

352———64(r) —P
~

dr, xs' Po"(p) I (g~+311P~p+gpQ~p+gP~pQ~p) J(r~p) [4 (r)f, (p)xs
4M spins

P12Q12(4(r) fo( p) xs) ]+(gi+ DltPip+gpQip+g»pQip)

X J(r)3) [@(r)po(y)Xs—P»Q»(p(r)ufo(y)Xs)] I =E'g(r), (12)

where we have placed OR=1 —g —g~ —g2.
On performing the multiplications indicated in the integrand, we see that the following terms are

present.
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(a) Three terms involving no exchange operators

g Q(r) tdr, go*(y)J(r )$o(l1),

—gg(r) dr, go*(y) J(r12)lto(g),

g,p(r) ~r dr, lt'0'(y) J(r13)$0(p).

(b) Three terms involving only spin exchange operators

,; 4(r) Q Xs*Q12Xs tdr 4'0 (y)J(r12)po(y),
spins

—&&0(r) p Xs*Q12Xs "dr,go*(y) J(r12)40(p),
spins

g24(r) p XS*Q13XSJ dr@'o*(t2)J(r»)po(y)
spins

(c) 'I hree terms involving only space exchange operators

J
"dr,J(r12)fo'(p) P»A(r) 4 0(y),

g2 t'dr„J(r12)go*(y)P124 (r)fo(y),

~~ dr, J(r13)40*(p)P134 (r)40(p).

(d) Seven terms involving both spin and space exchange operators

—g1 2 Xs 'Q12XS) drA'0*(e) J(r12)P124(r)00(t1)
spins

g 2 Xs"Q12XS)"dr0&0"(t1)J(r12)P124(r)4'0(p)
splns

—g1 2 xs"QloxBJ dr, go*(y) J(r13)P124(r)A(t),
spins

OZ 2 xs*Q»xs dr@'0*(y)J(r»)P»P»y(r)A(g),
splns J

g2 Q Xs Q13Q12XBJ dr 40 ( )t1(J1r3) P12$( )r$ (0g)
spins

g 2 Xs"Q13XB dry'0*(p) J(r13)Plots(r)4'0(e)
spins

g 2 XS*Q13Q»XSJ~drA'0*(g) J(r13)P»P124(r)4'0(t1)
spins
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To evaluate the sums over the spins, we need only consider the term gX s*Q12Xs, since
Q»=Q»Q12=Q12. This is immediately evident from the fact that the spins of the neutron and
proton in the. deuteron are parallel. We have in fact

Q12 2 (1+211' 212)

= i[1+~1 (~2+~8)/23

2 (1+811'~D) Q18i (17)

where dD is the spin matrix. for the deuteron. Also

Q18Q»xs(123) = Q18xs(213) =xs(231)
= Xs(213)

= Q12XS(123),

where the bar has been used to indicate the deuteron unit. We can now calculate the matrix element

PXs*Q12Xs by making use of (17). We have

Xs Q12XS 2 (Q Xs Xs+ 2 2 Xs 111' dDXs)
spins

=2(1+-.' 2 Xs"&1.&DXS).
(19)

We can evaluate t:he sum in (19) by noting that

~ ~1' AD j(dl+ AD) 8 111 4 itD

(20)

If we remember that the spin of the deuteron is one and denote by S the total spin of our system,
then we obtain from (20)

'; a, aD ——5(S+1)—(3/4) —2

=~(~+1)—(11/4).
Hence

2 Xs"Q12xs=g Xs*Q18XS=E Xs'Q»Q18Xs

= l [~(~+I)- (7/4) j
(21)

We must now consider the space exchange operators. From Fig. 1 and Eqs. (3) it can be seen that

P12r P12[rl (r8+r2)) r"- (rl+r8)
= r —(3/2) [r+-', (r8 —r2) j
= —l(r+(3/2) t),

12t2 P12(r8 r2) r8 rl t2 r= r18

P1,r=r8 —-', (r,.+r2) =2(3t2/2 —r),

P18g r1 r2 (r+ t2) = r12

(22)

P18P121 P12r = —-', (r+3t2/2),

P18P12p =P18(r8 —r1) = —(r1 —r8) P12t2

If we now introduce (21) and (22) into (14), (15), and (16) and collect terms, we obtain the follow-



SCA1 TERI NG OF NEUTRONS

ing integrals:

[g~ g—+2(g2 ~) I&'(~+&) —(&/4) I)@(r) "&r,A"(t)~(lr+lt l)A(e),

[go+kg. I ~(~+~) —(7/4) I )4 (r) ~~dry'*(e) ~(lie —r 1)&0(e)

[~—g~+ '.-(g —gi) t ~(~+ &) —(7/4) I ] "d~A o*(e)J( I r+ 2 e I )4(kr+ -'e) A(ko —r), (23)

['~+lgI~(~+&) —(7/4) I)) draco"(e) J(lie —rl)4(4e —lr)A(kt+r)

—[~+gi+g~+g)k[~(~+ ~) —(I/4))~ drA o*(e)J(12'—r l)@(kr+ 4e)A(ke —r).

Since all the functions appearing under the integral signs depend only on the magnitudes of their
vector arguments, we can combine the 6rst and second and the third and fourth of the expressions
(23). We are then left with three terms

[2gi —g+(2g2 —W~)4(r) ~drAO*(e)~(lkt+rl)A(e)

12~—g +(2g —
g )~)

draco*(e)

~(l l e+r I)4 (lr+-'t) A(le —r), (24)

—z)t dr, oo*(y)J(12'—r
I )e(4 y+ 2r) 40(2 e —r).

&n these expressions we have introduced the abbreviation x= [-',$(5+&)—(//4) 7, and we have also
'made use of the de6nition of 5K.

On substituting (24) into the wave equation, we obtain

sy(r)+u'-y(r) = (2y/a'-) ~)I dr.&0"(y) J(12' g
—r

I )y(f t+-.,'r) y, (-';p —r)

—[2'~ —
g +(2g —g ) ) d 4 *(e)J(l l e+r l)4 (lr+ le)A(le —r)

—[2g —g+(2g —~)&)@(r) t d&A'o'(e)~(l le+rl)Po(e)

where we have placed p=xaM and k'=(2p/fi. ')Il' Since we are .seeking the solution of this equation
which has the asymptotic form

y(r)~exp [~k r)+(1/r)e'"'f(8),

we may replace (25) by the integral equation'

p dr(dr@
@(r)=exp ['k.r]+ [2~—g2+(2g —g~) ~)

I

— exp [&& Ir —
& I)&o*(e)J(12~+&I)&(-'&+&&)

2~k2

exp [ik I
r —E I )

Xy.Pz —g)+[2g —g+(2g —~) ] '
i d«dr. — A*(e)~(12e+61)A(e)4(4)J

exp [ik I
r —g I ]—4 '(y)~(lit —kl)4(ly+lK)4 (le —4) (26)

r —(
N. E. Mott and H. S. Massey, The Theory of Atomic CoQisions (Oxford IJniv. Press, New York, 1933), Chapter IV.
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We can simplify this equation slightly by introducing new variables. We first replace y by —y,
which results in the following changes:

J(lie+(I)~J(i( —
gael)

4 (oe+ ok)~4(o( '—e)-,

4o(o e —5)~Co(o e+5)

J(lie —41)~J(l oe+4i)

all the other quantities in the integrands remaining unchanged. We next introduce the new variables
r' and r" defined by

in the First and third integrals and by

in the second integral. (26) now becomes
r'=g, r"= e

32+ f f dTdT
y(r) =exp [ok r]+ [25tl —go+(2g —gl)z] ~~

~t exp [ok
l
r —r" l]go*((4/3)r'+-,'-r")

27~kg

p d rd7'
XJ(l-:-("—")l)a.(-:"+(4/3)"')~(")+ I 2g -g+(2g.-~).]„i l

——,—
2zk'- r —r'

32p, t
I

dr'dr"
xexp ['& lr —r'l]4o*(r")J(l or"+"l)A("')e(r')—

27ork' ~ ~
l
r —r"

l

&&Co*((4/3)r'+ lr")J(l lr'+(4/3)r" l)A(lr'+(4/3)r")@(r') (27)

In this paper we shall consider only the scattering of very slow neutrons, so that we may place
& =0 in (27). On doing this we obtain the integral equation in its anal form

32@ dT dT
4(r) = l+ [23lt —go+(2g —g~)x]„» t „6'((4/3)r'+ or")J(l or" —-'r'l)A(or'+(4/3)r")

277rh2

p dT dT
XO(r')+ L2g —g+(2g —~) ] i~ ', 0o"( ")J(ll- "+ 'l)4o( ")0(r')

2' f12

32@,
Po*((4/3)r'+-', r")J(l -', r'+(4/3) r" l)Po(-;r'+(4/3) r")y(r'). (28)

27xI ' »
l
r- r"

l

"

TRANSFORMING THE INTEGRAL EQUATION TO A

FORM SUITABLE FOR NUMERICAI.

INTEGRATIoN

Before we can proceed to the numerical
integration of (28), we must specify the func-
tional forms of J and Po(r). To facilitate the
numerical work, we must choose these so as to
make the integrands fall off very rapidly. For
this reason we have chosen a Gauss function
for J

J(l r,, l) = Vo exp [ r;P/a']—
with the depth Vo and the range a the same for
the interactions between like and unlike particles.

For a Gauss potential the ground state wave
function of the deuteron can be obtained only by
quadratures, so that we have a graph but not an
analytical expression for this function. To sim-

plify the calculations we have replaced the
numerical solution for Po by a sum of two Gauss
functions.

For Vo ——72mc'and for a=0 25(II/(Alon)&c) cm .o

' In a recent paper, Phys. Rev. 55, 1018 {1939)Breit,
Thaxton and Eisenbud have suggested a somewhat shorter
range and deeper well than those here used. Since our cal-
culations had already proceeded considerably at the time
of the publication of this paper, we did not use these values.
An examination of' the integral equation {31)would seem
to indicate that the use of the smaller range would reduce
and thus somewhat improve the value of the cross section
obtained.
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the function

&0(r) = (1.23ir 'a')-"

X (p 8pe—0. 60( ~/ 2) +p 12e—0.066(r t a )) (29)

approximates the exact wave function su%ciently
well for our purpose. The graphical fit is ex-
tremely good for small values of r/a, and only
for r/a)4 does the deviation from the exact

curve begin to become important. As a check on
the wave f&&nction (29), we calculated the
amount of binding energy given by it and found
that it gives all but about 6 percent.

With these expressions for J and $0 we can
now simplify (28) by integrating over the con-
figuration space of r". All the integrations which
have to be performed are of the type

1—exp ——
I (m'P+n'n+P') r"+ (n'P+m'u+q') r'+ (n'P+m'a+q') X'

X a2
+2mn(P+a+ pq/mn) r r' —2[mn(a+ P+pq/mn) r'+ (m'cx+ P'+q') r] X I,

where we have placed X=r —r" and where the constants m, n, P, q are the coefficients of r' and r"
in the arguments of Po and J. n and P are the constants which appear in the exponents of (29) which
we rewrite in the form

Po(r) =A exp [ 0.(r/a—)']+8 exp [—49(r/a)'].

The integration over X can be carried out by transforming to spherical coordinates and introducing

2 }mn[n+ P+ (Pq/mn) ]r'+ (m'a+ P'+ q') r }

as the polar axis. After the integration over X is performed, there remains an integral over the
r' space.

Since g(x') is independent of angle, we can integrate over the angles and thus obtain the integral
equation in a form which is suitable for numerical calculation. Since the details of the analytical
integration are straightforward and uninteresting, we shall merely give the equation in its final form

4(~ij+pij+&iipii)
exp —— r"

24~ p Voa4 a'(4''i+P'i+1)
g(r) = 1+ [20K—g2+ (2g —

g&) x] i
dr'r'p(r') P A;;

52 r ~0» i L& (2=&'i+ 2p'& —1)(4a'i+ p'&+ 1)

3a(4a"+P"+1)'

4 (~"+0")
exp —— r"

a' (4n"+4P"+1) —z ~ dr'r'y(r')X+A;,
(1+4a"+4P")'

4 P"(n"+1)
exp —— r"

a' (4n" +P"+4) 2(2a"+2P"+2)r'+2(P"'+4a" +4)r
P A, , 0—

' i=&, & (2a"+2P"+2) (P"+4n" +4) 3a(P"+4n" +4) *'

i, j=1, 2

2(2u'&+2P'& 1)r'+—2(4a. 'i+P''i+1)r 2~'
X~ + [2g& —g+ (2g2 —5K)x] ' dr'r"@(r')

3 0

(30)

where we have used the following notation:
—A 2 ~ A —A —A 2l ~ A —23'& ~ ~11—J311—~ ~ ~12 —pl2 —~ ~ p21 —~21 —p ~ ~22 —p22 —ll

The function Q(br'+cr) which appears in the integrands of (30) is an abbreviation for the difference
of the integrals of error functions

where
O(br'+cr) =A(br'+cr) A(br' cr), ——

u

A(x) =~ E(y)dy, &(y) = e "ds.
0 0
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If we place r/a=x and r'/a= ), and int:roduce the numerical values for A, 8, n, P into (30), we

obtain

24 P, VIIC2 QO

Q(ax) = 1+—— [29K—g, +(2g g,)x] I d~~y(ap) [p 115e—~ 99VII(1 33x+0 467~)
59 9r*'(1.23)x

+0.0890e "99&'0(1.24x+0.112$)+0.169e '"&'Q(0.900 +0.154$)

2' s QO

+0 014.5e ""Q(0 900. x+0 458.$)]+ [2g —,,+(2g —3it) ] ' did'4(rot)
3 0

X[0.0113e '999&'+0.0294e '"'&'+0.00826e '"'&']

d](y(g() [0.0208e—' "&'fi(1.76 +x1.11&)+00044. 9e '""'9Q(1 70x+. 0 869&.)

+0.00601e ' "'&'Q(1.46x+1.01$)+0.00144e '""&'Q(2.03x+0.487$) ] . (31)

THE NUMERICAL INTEGRATION

We integrated (31) numerically for two differ-
ent sets of constants 5K, g, g~, g2. This involved
solving four sets of equations because both the
doublet scattering (S=-',) and the quartet scat-
tering (S=-,') had to be calculated separately for
each set of constants. The method adopted for
solving the equations was that of replacing the
integrals in (31) by sums extended over a finite
number of rapidly converging terms. A brief
examination of the exponentials and the func-
tions Q(bx+cp) which appear in the integrands
(tables of these functions were prepared with
little labor) shows that for P)13 the contribu-

tions to the integrals are zero to our order of
accuracy.

By means of Simpson's one-third rule we re-

placed each integral by a sum of twenty terms
extended over the interval from )=0 to /=13.
In this way we obtained a set of twenty simul-
taneous equations for each of the four groups
of constants. Because of the presence of the 0
functions and the rapid convergence of the
other factors in the integrands, the coeScients
of the g(ax;) (i=0, 1, ) in the later equations
approach constant values quite rapidly. This
enabled us to reduce our equations to the
following form with very little labor:

19

nooy(0)+E no y(X,Q,)
i=1

0 + eggy(xga) +P ag;(x;a)
i=2

0 + + a»4(xoa) +p a9,4(x;c) = Co,
4=3

0 + 0 + 0 + ' ' ' ++19,194'(13+) +19

From the last of these equations the value of

P(13a) can be read off directly, and since this is

the asymptotic value of the wave function, the
total cross section can be expressed in terms of it
as follows:

j
(32)

= 29r (1,3a) 9
~ 4 (13a) —1

~

' sin 8dg.
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We shall now give the results of our calcula-
tions for two special choices of the potential.
Case I. gI ——g2 ——0; g=0.2; 5K=0.8.

It has been shown by Breit and Feenberg'
that the values of the g's which may be selected
in an interaction of type (2) are restricted by
certain inequalities which are obtained from the
consideration of the stability of nuclei. The
simplest set of values satisfying all the require-
ments is obtained by placing g&=g2 ——0. Com-
bining this with the empirical value g+g2 ——0.2,
we obtain g 0.2.

If we substitute this set of values in (31), the
numerical integration can be performed for each
value of x separately. Since the doublet and
quartet states are orthogonal, ' no doublet~quar-
tet or quartet~doublet transitions take place
during the process. For this reason we may calcu-
late the doublet and quartet cross sections
separately and then combine the two in the
ratio 2: 1 to give the total cross section.

For the doublet (d) scattering we have S=-'„
x= —~, and we find from our equations @z(13@)
=1.055. Hence we have

If.(&) I
=

I @d(»~)—1I (»~)
=1.59&&10 "' cm. (33)

For the quartet (q) scattering we have S=2,
x = 1,and we obtain P, (13m) =0.749. This gives us

If.(~) I =14,(13~)—1I (13')
=7.30&&10 "cm. (34)

From (33) and (34) we can now obtain the
total cross section

~~ = (4~/3) (2 I f~(~) I
'+

I f~(~)
I

')
(35)

=4.57&(10 "cm'

Case II. g =0.22 —g2, gI
——0.25 —0.8g2, g2

——2.
Another possible choice of g values has been

given by Inglis. ' The restrictions which are to
be placed on the g's can be summarized by means
of the inequality

1.25) 1+Sgy+4g2.

If a low enough binding energy is to be obtained
for Li', the choice of g's must be limited to a

' D. R. Inglis, Phys. Rev. Sl, 531 (1937)..

one-parameter family defined by the relations

g =0.22 —g2, gg ——0.25 —0.8g2.

With these relations the demands of the
experimental data are best met by choosing
g2 ——2. It should be noted that for this case the
potential function is a mixture of all four types
of interactions.

Proceeding just as we did for case I, we obtain
the following results:

4q(13a) =0.820; fq(8) =5.24&(10 "cm

4,(13a) =0.715; f,(8) =8.29X10 "cm.
(36)

From (36) we obtain the total cross section for
this case

«= (4~!3)(2
I f.(e) I

'+
I f~(e) I

')

=6.91X10 '4 cm'
(37)

CQMPARIsoN wITH EZPERIMENT

' We should like to express our thanks to Mr. Carroll
and Professor Dunning for informing us of their results
before publication.

The best experimental data on the scattering
of slow neutrons by deuterons are to be found in
the recent work of Carroll and Dunning (un-
published), ' who obtained a value of 5.7X10 "
cm' for the cross section. If one takes molecular
binding into account, this value has to be
reduced by a factor that lies between 1.5 and
2' ' before it can be compared with the theo-
retical values. The actual value of the reduction
factor is determined by the strength of the
molecular binding; it is equal to 2 for infinite
binding but may be as small as 1.5 for weak
binding.

We see that the experimental value agrees
best with the theoretical value obtained for
case I. This would seem to argue in favor of the
first set of g's (Heisenberg and Majorana forces
only) as against that given by Inglis (Wigner
and Bartlett forces in addition to the other two).

Even if we take 1.5 as the reduction factor,
we see that the experimental value is about 20
percent lower than the theoretical value found
for case I. This discrepancy can certainly not be
accounted for by the approximations introduced



36 S. GOUDSMIT AND J. L. SAUNDERSON

to enable us to carry out the numerical integra-
tion of Eq. (28). These were twofold: The ground
state wave function of the deuteron was approxi-
mated by a sum of two Gauss functions, and
the integrals were replaced by sums over finite
intervals. The first of these approximations can
at most account for a few percent of the dis-
crepancy because the assumed wave function for
the deuteron deviates measurably from the true
wave function only for large values of r/a, and
it is just for these values of r/a that the con-
tributions to the integrals are negligible. As we
have already seen, the second approximation is

not serious because of the rapid convergence of
the integrals.

Since we have neglected polarization in this
paper, it may well be that taking it into account
will get rid of most of the discrepancy, provided
an interaction energy of type (2) is adequate
for the process we are considering. Although a
calculation taking polarization into account
would be exceedingly dificult, its undertaking
at the present time seems warranted.

We wish to thank Mr. Jerome Rothstein
of Columbia University for aiding in the nu-
merical work.
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Multiple Scattering of Electrons. II
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The series developed in a previous paper representing the distribution for the multiple
scattering of electrons has been evaluated numerically for a large number of cases; the results
are given in Table I. An approximate expression is found for the value of sin 8 averaged over
the distribution per unit solid angle, f(8). This expression, which agrees within a few percent
with the exact computation, is

m(sin 8)A„1.76A (5.60 —-'; log Z+-'; log A) &, (18)

in which m is the energy in units mc and A = 24.8X10 "Z Nt. For the scattering intensity per
unit solid angle at 0', that is f(0), an approximate relation is

4vrf(0)/~'~0. 43/A (5.60—
3 log Z+ z log A). (19)

The accurate calculations show also that f(8)/w' is almost independent of the energy. A series
formula is derived for the projected scattering distribution as observed in a cloud chamber.
The averages of m sin a, n being the projected angle, are given in Table VI. These averages
are smaller than the values computed by Williams and show a variation with energy. It is
believed that the largest inaccuracy remaining in the results given is due to uncertainties in
the single scattering law.

1. INTRODUCTION

'N a previous paper' we have treated the statis-
- - tical problem of multiple electron scattering
by thin foils. The principal purpose of the
present article is to bring the results of that
paper into a form which can be more easily com-
pared with experimental data.

We consider an electron of total energy w (in
* Now at the Dow Chemical Company.' S. Goudsmit and J. L. Saunderson, Phys. Rev. 5'7, 24

(1940).

units mc') which has traveled a path length t

through scattering material of atomic number Z
containing N atoms per cc. The normalized
probability that the electron will be deflected
into the angle between 0 and 8+d8 is given by
the following series in Legendre polynomials

2~f(S) sin SdS

=-'; P (2l+1)GiPi( schmo) sin ed'. (1)

The coefficients G& depend only upon two param-


