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the brackets can be performed with the aid of
the invariance properties of the diamagnetic
susceptibility shown by Van Vleck." (It should
be noted that the symmetry of the molecule
is such that j(0~3I)o~n) ~'=-', ~P(0, n)~' where
P(0, n) are the total angular momentum matrix
elements used by Van Vleck. ) The result is

perpendicular bisector of the line joining the two
nuclei and is consequently the same for H2, D2,
and HD except for second-order effects and where
(r02)A„and (r,')A„are the mean square distances of
the electron distribution from the center of mass
and the midpoint of the molecule, respectively.
However, if d is the separation of the midpoint
from the center of mass (ro')Av —(r,')A, ——d'. From
this and the value of d= ', (3II2—3II-~)/(36+HE~)
the above equation reduces to

(Mg+ 3I2)3I

23XI1M2

where(0~Mt, ~n) isthematrixelementofelectron whence ps should be inversely proportional to
angular momentum about an axis which is the the reduced mass as found experimentally.
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The spinor equations for arbitrary spin and rest mass zero are examined in some detail. Fierz
has shown that for all values of the spin f(&-,') there exists only two "really" independent
plane wave solutions instead of (2f+1) when the rest mass is not zero. Fierz later showed, in
rather a complicated way, that these two plane waves correspond to components of spin +f
along the momentum vector of the wave, We will arrive here at the same result but in a much
simpler and more direct way.

INTRQDUcTIQN

FIERZ' has given a detailed discussion of
~ ~ ~ the spinor wave equations for particles

~ ~ ~

~

with arbitrary spin proposed by Dirac. ' Fierz
showed that when the rest mass is zero there is
a certain degeneracy of the equations, and that
for a given spin f there are only two really
independent plane wave solutions instead of
(2f+1).The interpretation of this was not given
in his first paper. In a subsequent paper, ' how-

* Now in the Applied Mathematics Department, Uni-
versity of Cape Town, South Africa.' M. Fierz, Helv. Phys. Acta l2, 3 (1939).' P. A. M. Dirac, Proc. Roy. Soc. A155, 47 (1936}.' M. Fierz, Helv, Phys. Acta 13, 45 (1940).

ever, he discusses the rest mass zero case in more
detail, and arrives at the result that the two
plane waves correspond to axial spins &f about
the momentum vector of the plane waves. His
work is rather complicated. Here we will arrive
at the same result in a much simpler way. For
coherence it is necessary to give here some of the
work appearing in Fierz's paper. The first section
will be largely a restatement of Fierz's results,
although the notation I mill use will be slightly
different. The second section will contain a
detailed study of the rest mass zero case. In the
present discussion no distinction will be made
between the cases of integral and half-odd spin.
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Such a distinction is quite unnecessary, since the
work is exactly the same for both. The only
essential difference between the two cases is the
form of the energy momentum tensor and charge
current vector, but these do not enter in the
present work.

The spinor notation which I shall use is that
of Veblen. A very good concise account of this
formalism has been given by A. H. Taub, 4 to
which the reader is referred.

The present work was developed during the
course of a number of reports on Fierz's paper
that I gave to a seminar on spinor theory, con-
ducted by Professors O. Veblen and J. von
Neumann. I am much indebted to Professors
Veblen and von Neumann for helpful discussion.

1. THE SPINOR EQUATIONS FOR PARTICLES WITH

ARBITRARY SPIN AND REST MASS NONHERO

satisfy the following condition:

A2' Ar Bl''' Be+1

defined by

Am' ' Ar Bl''''B's 1 +eBeet 'Ale s' ' 'A 'B1' ' ' s* ('2)
4(1) =g ~,P(0);.

is symmetric in all its dotted and undotted indices,
where the g''AB are the components of the four
basic spinor matrices. (See Taub, reference 4.)

For the case of inLegraL spin f=r, we must
have s=r in the above equations.

For the case of haLf odd s-pin f=r+ '„we-must
have s =r+ j in the above equations.

The above two statements will become clearer
in the later work.

The most important property of the matrices
ffg "eff is

o 'A r'B r'A o 'B
The equations are stated most simply for our

purposes in the following form:

A1A2'' Ar'Bt'B2' ' Be AtA2 ''Ar'Bt'B2' ' Bs
g'V(0) - = «V(0)

(1)
(a, r=1, 2, 3, 4), (A, 8=1, 2),

where
A1A2' 'Ar'Bt Bs''' Bs

in all Galilean frames, and «=mc/Li where m is
the rest mass of the particle. Furthermore

A(A)'' Ar B1B2 ' 'Be
A1Ag' 'Ar B1'B2' ' ''Be

is a spinor field of the type indicated by its
indices and is symmetrical in all its dotted and
undotted indices, g

' is the metric tensor which
has the components

1 0 0 0

0 1 0 0
llg"II =

0 0 0 —1

2(g Brj c+g Bg c) =g 8 'c (3)

and the complex conjugate of (3). From this it
follows that

p'A 1 A~ Ar'B1."'Be+1 A1'' 'A r'Bl ' ' ''Bs

»n+1 'Ar'B1' ' ' 'Bs+m

P(m)
&sn".Ar'B1" 'Be+m 1

T\o'm Bs+m
~„,P(m —1);...

o'm'Bs+m A1 ' 'Ar'B1 ''Bso'1 Be+1
~ ~ e g A, lf (0);eur2' e . (5)

It is easily seen that P(m) is symmetric in all
its dotted and undotted indices in virtue of the
like symmetry of P(1) and P(0). Furthermore the
P(m) all satisfy equations like (4), vis

g s.,sP(1); p = «'|L (0) . (4)

The second-order equation (1) may thus be
replaced by the first-order equations (2) and (4)
where the f(1) and $(0) are spinors symmetric
in all their dotted and undotted indices. This is
the usual form in which the equations are given.

We can now define in general a tL (m)
(m=1, 2, r) by

~L(0) '- means p Am+1 Am+2' ' 'Ar'B1 ' ' Be+m+1

g Bs, „P(m+1);p

Amdt ' ' 'Ar Bl ' 'Be+m

In addition to (1) the spinor $(0) (spinor
indices are omitted when not necessary) is to

4 A. H. Taub, Ann. of Math. 40, 937 (1939). For typo-
graphical reasons the usual dotted indices will here be
replaced by indices with dots put in front of the indices.

= «'P(m)

We note that in particular

'Bt" Bs+r

(6)
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has only dotted indices and is symmetric in all
these indices.

In a similar way we can de6ne spinors P( —m)
(m=1, 2, s) by

A r +m 'Bm + 1 ' ' ' 'B s

P( —m)
A1".Ar+~» 1'Bm" 'Bsrrm A r+m

»„P(—[m —1]);...
0' 1 A. r + $ 0m A&+m

=g Bt q

A1 ~ ~ -Ar'Br ~ 'Bs

»4(0)'- "-
rr 1'A r+1=—

g
K

a'r» 'A r +&» O' 'A
1

Bt' ' 'g Bmg Bs+1

A2 "Ar B1"~ 'Bs+1

XP(1);.ur, "... , (7)

using (4) to get the last part of the equation.
Again from the symmetry of P(1) and P(0) in all
their dotted and undotted indices, it follows from

(7) that P( —m) has like symmetry.
In particular

A1A 2' ' 'Ar+s

( —s)

p'Bm A g' 'A r+m Bm+1' ' ''Bs

is a spinor with undotted indices only, and is
symmetric in all of them. The &&t (—m) satisfy the
following equations (analogous to (6)) in virtue
of (1):

From any of the above pairs of equations,
together with the symmetry in dotted and un-
dotted indices of the two P's involved, can be
deduced all the other equations as well as the
symmetry of the rest of the P's in dotted and
undotted indices. From this it appears that we
could have started with Eq. (1) involving a P
with any number of dotted and undotted indices,
rather than the P(0) we started with, having
either r=s or r=s+1. One reason why the &f&(0)

has a preferred position is that the physical
quantities like the energy momentum tensor
and charge current vector are most simply ex-
pressed in terms of P(0). As we will see later,
when the rest mass is zero the P that we start
with definitely has a preferred position. If we
start with any P other than f(0), the energy
momentum tensor and charge current vector
formed from it is identically zero. This follows
from the fact that these tensors defined in terms
of &I&'s other than P(0) involve second and higher
derivatives, i.e. , terms like

g; o7.p

say, and these are zero in virtue of (1) with «= 0.
Let us now consider plane wave solutions of

the equations.
g ~„.it( —m); p

A 1' ' 'Ar+m —1'Bm' ' ' Bs A1 "Ar Bt" Bs ~ 0'A1" Ar B1 Bs i&rise

= @(0) e

We can write the above equations (dropping
the spinor indices) as follows:

will be a solution if

g KrrKg = K

g'tt (o) .=4(1), &7'0(1) '.= &&V(0)

gV(1) '= 4(2), &7'4(2) '= «V(1),
and the componeiits of 4'(0) are constants.

In addition 4'(1) given by

and so on up to

gV(r 1)' =4(r), —lIV(r)'=«V(r 1), —
A 2" A r 'B

g
"'B s+ g ss'B, +1 At ~ ~ Ar'Bt" 'Bs

=i«~g ~,@(0) (12)

and

l7V(0)'. =4(—1), gV( 1);.=«V(0)—,

&7V( —I)'.=4(—2) gV( —2)'.=«V( —1),

up to

PP( [s 1])'= P—( —s)—

g'P( —s) '= «'P( —Ls —1]).

The notation will be clear if we note that the
first two equations of (9) are Eqs. (2) and (4).

must be symmetric in all its dotted and undotted
indices. %(0) has (r+1) (s+1) independent
components, considering only its symmetry in

its. spinor indices. The symmetry of the right-
hand side of (12) imposes r s conditions on the
components of @(0), however, so that it has
(r+1)(s+1)—rs=r+s+1 independent corn-

ponents.
The same reasoning applies to all the 4'(m)

(m=r, r 1, ~ . 1, 0, ——1, —2, —s). Each
has r+s+1 independent components, and any
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@(m) is expressible in terms of

+1 ' Bd+l

by the following relation:

Hence the equations correspond to a spin
2(—r+s) From this follows the earlier statement
that when s=r. , the corresponding spin is f=r,
and when r=s+1, the corresponding spin is
r+2.

2. REST MASS ZERO CASH

&1" '&s+r

o'A

g 8 =2Kcrg 8. (14)

ii O'A

g B=ZK4g B.

If we now apply a space rotation to the system
(rotation of the x', x', x', leaving x' invariant)
the corresponding spinor transformation is a
unimodular linear transformation leaving g4'~g

numerically invariant, i.e., a unitary transforma-
tion; since in a special spin coordinate system
the matrix g'&s (obtained from g4'"s by lowering
the dotted index) has the components

1 0

0

Thus under a space rotation for a system with
zero momentum (Kg= K2= K3=0) the connection
between the (r+s+1) independent components
of +(r) and the components of e(r nz) is-
numerically invariant. Now the components of
O(r) transform according to the irreducible
representation D~(„+,) of the rotation group under
the unitary spin transformation associated with
a space rotation. Further since the g4'~~ are
numerically invariant under the unitary spin
transformation, the (r+s+1) independent com-
ponents of 0'(r —m)—and in particular %(0)—
also transform according to D~(„+s).5

I See B. L. van der Kaerden, Grl ppentheoreti sche
llfetlsode As der Qmantennseclsanik (Springer, Berlin, 1932),
Chap. I II.

By (13) the components of any 4(nz) are
expressed in terms of the (r+s+1) independent
components of @(r).

Let us now choose a special coordinate system
in such a way that

Ky = K2 = K3 =0, K4 = ~K.

The work of the preceding section has been
largely a restatement of Fierz's results. We now
consider the rest mass zero case. Fierz showed
that when the rest mass is zero, the 4'(0) had
only two "really independent" components,
since it was possible to add to P(0) a set of plane
wave solutions of the equations depending on
(r+s 1) inde—pendent constants, without chang-
ing the energy momentum tensor or charge
current vector for the system. The transforma-
tion of the f's by the addition of these terms he
calls "gauge transformations. " The supposition
was that by a suitable choice of the gauge trans-
formation one could reduce all but two of the
components of 4'(0) to zero. Here we will inves-
tigate the nature of the two components of +(0)
which are not zero. Working in a special coor-
dinate system for which K2 ——KG=0 we will show
that there are two components of @(0)which are
"gauge invariant" and nonzero, i.e., by no
choice of the gauge transformation can these
two components be reduced to zero. These two
components then are the two "really" inde-
pendent components ~f +(0). We will then show
that under axial rotations about the x' axis
through an angle 0, these two components are
multiplied by

'i(r+s)8 and ~
—-2i(r+s)8

l

so that they correspond to components of spin
&f= & ', (r+s) —along the x' axis. But the mo-
mentum vector lies along the x' axis (since we
have chosen coordinates in such a way that
K2= K3 ——0). Thus the two gauge invariant states
correspond to components of spin +f in the
direction of the momentum vector. Thus we here
arrive at the result of Fierz's second paper in a
simple and direct manner.

The equation for the rest mass zero case is (1)
with K=0, together with the condition that f(1)
defined by (2) is symmetric in all its dotted and
undotted indices. Then iP(1) satisfies (4) with
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i~=0. The P(m) (m=1, 2, , r} are defined as
before by (5) and satisfy (6) with i~=0.

The P( —m} (m=1, 2, ~ ~, s) are defined as
before in terms of f(0) by the first part of Eqs.
('7), but the symmetry of P( —m) in dotted and
undotted indices no longer follows by our
previous argument, since there the last part of
(7) (which no longer applies since i~=0) was used.
It is still true, however, Rs we will see later, that
N( —m) is symmetric in dotted and undotted
indices in virtue of the like symmetry of +(0)
and 4'(1},So that for the rest mass zero case the
equations (9) are replaced by similar equations
Vf1th K=O.

Let us now consider plane wave Solutions of
the equations as before

Then we have

Kl =K4.

0 2ial

,
'0 0

2i~l 0

0 0
LKog B

2i~l 0

lie sll.

A1«« ~ g Bt ~ ««

4(0)
A 1 ' ' '~4 r B1

' ' ' 8s &~ Ko'"t
~

=+(o) e
Now 4'(1) is by definition given by

where now As "2 B1"~ B A1".Ar'Bt" 'B,

Ke then have the following state of RAairs:
'II(0) still has (r+s+1) independent components—as before a result of the symmetry of 0'(1) and
4'(0) in their dotted and undotted indices. We
will 84o%' that foI a spcclRl cooHiinatc system Rll

the remaining components of 0'(0) are zero.
Further, in this coordinate system +(m) has
(r+1—m) nonzero components and in particular
%(r) has only one nonzero component. Similarly
4'( —m) has (s+1—m} nonzero components and
in particular +(—s) has only one nonzero com-
ponent.

In what follows we wish to be quite explicit
and give the actual matrices llg '~sl! in a par-
tlculRI spin coordinate systcIH. Lct the

In tlM speclRl coorclinatc systcITl, we have froIH

(19}and (20)

A2".A Bt» B, I

Now 4'(1) is symmetric in all its dotted indices.
Hence the only nonzero components of 0'(1) are:

RMj, there arc f such nonzcro coIHponcnts. It
follows further from (20) and (19) and the
dotted and undotted index 'symmetry of %'(1)
that the following components of %(0) are zero
in our special coordinate system:

lie s!I=

cxceptl I'lg

IAg A 'Bt

IAQA22'2
(A, 8 =1, 2). (22)

!0 1~
llg

0

lie s!I= . Ilg
0 0

The number of terms of +(0) that are zero is
thus r (s+1) r=rs. Since the —total number of
terms of 4'(0) is (r+1)(s+1} the number of
nonzero terms is (r+s+1), i.e., just the number
of independent components of +(0).

~ In the following we shall frequently use consjonent and,
Then let uS dlOOse a spCClal spRCC time frame Of term forindependent component and independent tert@.
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Similarly we have (in the special coordinate where the 4"(0) is given by
system)

An +1 "-4r'B]~ ~ 'Bs+m

A]A2" Ar'B]" 'B.
+'(0)

rr'B]A] A2 "Ar'B2 ~ 'Bs
=i..g c'(0)

C'(m)
A] ' ArB] B-'Be+1 'B,+m

=g A] ~ g ~.c'(0) (23)

and it follows from the form of ~~g~si~ and the
symmetry of C'(m) in all dotted and undotted
indices, that the only nonzero terms of C'(m) are

rr'B] A ~ A]A 3- "A r 'B.„.'B,
c (o)

a B2A] A~ Ar B]B3" Bs
c (o)

o. B2A2 A1A3'' Ar B1B3 ''Bs
+i~.g c(0) +e ~ ~

Am+] .Ar 2 2 ~ ~ ~ '2

+(m) (r+1 —m) in number.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~+
&BsA] A2 ' Ar'B2 ~ 'Bs 1'B]

22". 2 r 11 1'2 ''2.
C'(r) = (2is,) C'(0)

In particular the only nonvanishing term of
C'(r) is

where

+ZKgg

+1K,g

c(o)
a''BsA 3 A]A 3 A r 'B2 ~ ~ 'Be-1'B]

c (0)

A~ "Ar B3".Bs

+ (27)

Similar results will hold for the 4'( —m) pro-
vided 4'( —1) is symmetric in all dotted and un-

dotted indices. That this is so is easily verified
in the special coordinate system. For

c (o)

is symmetric in all its dotted and undotted
indices and in addition C'(1) defined by

c'( —1) ~ c'(0) (25)
A] ''Ar+]Bs''''Bs Ar~] A]'''Ar B] ''Bs

A3A4 ~ ~ Ar. B2 '''Be+1
C'(1)

0' Be+1 A2 ~ ArB2 "Bs
= is,g a C (0) (28)

Now from (25)

A] ~ 'Ar 11 2 'B2'' 'Bs A] Ar 11'1'B2 ~ -'B,
= —2isgc'(0)

= 0 from (22)

is symmetric in all its dotted and undotted
indices.

We must verify that C"(0) and @'(1)are sym-
metric in all their dotted and undotted indices.
For C"(0) this is apparent from the definition

(27). +'(1) is given by
A] .Ar 12 1 'Bs ~ .'8,

c'( —1) =0 from (25) and (19). w, " e, a, " 'e.„i
c, (I)

0' Be+1 A] A B] .B
=inc, g ~,%'(0)

So the symmetry of C'( —1) in dotted and
undotted indices follows in a special coordinate
system, and hence in any spin coordinate system.

The rest of the argument then proceeds as
before. C'( —m) has (s+1—m) nonzero compon-
ents and in particular C'( —s) has only one non-
zero component given by

+2K' C'(I) +0 ~ ~

er'B3A2 A3 "A.B]Bz .Bs+]
+i g sC(1)

cr B3A3 A~A4".Ar'B]'B3" 'Be+1

er'B]A2 A3 ~ 'Ar B2' ~ ' Be+1
=is,g C(1)

er'B]A 3 A gA 4' Ar 'B2 Be+1

2 2'1 ~ ~ 122 2

+(—s) =(—2isg) 4'(0)
(26)

pic,g C(1) +0 ~ ~

+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ (29)

C(0)e l y LC(0)+ C"(0)]e
ET

'4 Kg X

Let us now consider the effect of the "gauge
transformations" of Fierz on the C'(0), 4'(m) and
C'(-m).

Fierz showed that the energy momentum
tensor and charge current vector for the system
was unchanged if one replaced the plane waves

In deriving the above we use (3) and (16).
Thus %'(1) is given in terms of C (1) in the same

way as C"(0) in terms of C(0), and is symmetric
in all its dotted and undotted indices. The same
applies for all C"(m) for m &~ r —1. All the C"(m)
are given by means of a relation like (29) in

terms of C (m), where c (m) is defined in terms of
C (0) in the same way as 4'(m) in terms of 4'(0).
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and %(0)

of 0'(0) by (24) and (26).
Hence it is clear that these two components of

4(0) are gauge invariant and are the two really
independent components of %(0).

All that remains is to interpret these states.
With the choise of the matrices ~~g''"s~~ that we

For m=r, however, 4'(r) =0. This is perhaps
most easily seen from (27), considering the
definition of %'(r) in terms of 4'(0) and noting
(3) and (16).

The position then is as follows: 4'(0) has
(r+s+1) independent nonzero components. To
this may be added +'(0) depending on +(0)
which has (r+s —1) independent nonzero com-
ponents, so that by a suitable choice of C (0) all
but two of the components of 4'(0) can be made
zero.

Further 0'(m) (m =1, 2, ~ ~ r) has (r+1 ni)—
nonzero independent components and C(m) has
(r —m) nonzero independent components, so that
each 4'(m) has only one "really" independent
component. In particular +(r) has only one non-
zero component, and 0"(r) =0 as was shown
earlier. A similar state of affairs holds for the
+(—m).

It is now clear that the single nonzero com-
ponents of @(r) and &11(—s) cannot be trans-
formed away by a gauge transformation. But
these nonzero components are given in terms of
the components

have made, an axial rotation about the x' axis
through an angle 8 corresponds to the spin
transformation F~~ given by

ps& 0

0 g
—)i8

Under this spin transformation

1 12 ~ '2

is multiplied by a factor e&'("+'~ while

2. 2'1" '1

+(0)

is multiplied by a factor e &'&"+'".

From this follows that the two components
of %(0) correspond to components of spin

i2(r+s)-along the x" axis. But we have chosen
the frame of reference in such a way that the x'
axis coincides with the momentum vector. So
that the two states correspond to components of
spin af along the momentum vector (where
f=-,'(r+s)). This is the result given by Fierz.
A further result of Fierz is that the (total angular
momentum)' for the system is always ~&f(f+1).
The reason for this is easily seen. The orbital
angular momentum for the system always has
component zero along the momentum .vector.
Thus it follows that the total angular momentum
always has the components &f along the
momentum vector, and thus the (magnitude)'
of the total angular momentum must always be

& f(f+1).


